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Assisted protein folding at low temperature: evolutionary
adaptation of the Antarctic fish chaperonin CCT and its client
proteins
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ABSTRACT

Eukaryotic ectotherms of the Southern Ocean face energetic

challenges to protein folding assisted by the cytosolic chaperonin

CCT. We hypothesize that CCT and its client proteins (CPs) have

co-evolved molecular adaptations that facilitate CCT–CP interaction

and the ATP-driven folding cycle at low temperature. To test this

hypothesis, we compared the functional and structural properties of

CCT–CP systems from testis tissues of an Antarctic fish,

Gobionotothen gibberifrons (Lönnberg) (habitat/body T521.9 to

+2˚C), and of the cow (body T537˚C). We examined the

temperature dependence of the binding of denatured CPs (b-

actin, b-tubulin) by fish and bovine CCTs, both in homologous and

heterologous combinations and at temperatures between 24˚C and

20˚C, in a buffer conducive to binding of the denatured CP to the

open conformation of CCT. In homologous combination, the

percentage of G. gibberifrons CCT bound to CP declined linearly

with increasing temperature, whereas the converse was true for

bovine CCT. Binding of CCT to heterologous CPs was low,

irrespective of temperature. When reactions were supplemented

with ATP, G. gibberifrons CCT catalyzed the folding and release of

actin at 2˚C. The ATPase activity of apo-CCT from G. gibberifrons at

4˚C was ,2.5-fold greater than that of apo-bovine CCT, whereas

equivalent activities were observed at 20˚C. Based on these results,

we conclude that the catalytic folding cycle of CCT from Antarctic

fishes is partially compensated at their habitat temperature,

probably by means of enhanced CP-binding affinity and increased

flexibility of the CCT subunits.
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INTRODUCTION
Protein quality control and maintenance of the proteome are

essential for the health of cells and organisms (Hartl et al., 2011).

Most proteins must acquire precise, but flexible and minimally

stable, three-dimensional structures to function within cells.

Because the ‘‘folding landscape’’ is complex, with many potential

nonfunctional outcomes, cells produce molecular chaperones to

guide efficient folding while preventing protein aggregation.

Proteins that are irreversibly misfolded or aggregated are

removed by the ubiquitin–proteasome system or by lysosomal

autophagy (Ciechanover, 1998; Arias and Cuervo, 2011).

The chaperonin containing t-complex polypeptide-1 [CCT, aka

TCP-1 ring complex (TriC)] plays a central role in cellular

homeostasis by assisting the folding of ,10% of newly synthesized

proteins, including tubulins and actins (‘‘client proteins’’ or CPs)

(Thulasiraman et al., 1999; Valpuesta et al., 2002; Dekker et al.,

2008; Yam et al., 2008; Valpuesta et al., 2005). CCT is a

cylindrical, 16-subunit toroid composed of eight distinct subunits

(CCTa–CCTh) that form two eight subunit, back-to-back rings,

each containing a folding ‘‘cage’’ for CPs (Yébenes et al., 2011;

Leitner et al., 2012). Sequestration of CPs by CCT in a closed

conformation and CP release require ATP binding, hydrolysis, and

associated intra- and inter-ring allosteric signaling (Yébenes et al.,

2011; Leitner et al., 2012; Cong et al., 2012). In some cases,

additional protein co-factors are required either to deliver CPs to

CCT or to facilitate final maturation and oligomerization of CPs

after their interactions with CCT (Valpuesta et al., 2002; Valpuesta

et al., 2005; Yébenes et al., 2011).

The Antarctic notothenioids are a unique, cold-adapted fish

fauna whose evolution has been driven by the development of

extreme low temperatures as the Southern Ocean cooled to the

modern range, 21.9 to +2 C̊, over the past 25–40 million years

(DeWitt, 1971; Lawver et al., 1992; Lawver et al., 1991;

Eastman, 1993; Eastman and Clarke, 1998; Scher and Martin,

2006; DeConto and Pollard, 2003). The acquisition of novel

antifreeze proteins by the notothenioids (Chen et al., 1997; Cheng

and Chen, 1999), their evolution of a cold-stable microtubule

cytoskeleton (Detrich et al., 1989; Detrich et al., 2000; Redeker et

al., 2004), their loss of an inducible heat shock protein (HSP)

response (Hofmann et al., 2000; Buckley et al., 2004; Detrich et

al., 2012), and the loss of hemoglobin expression by the icefish

family (Cocca et al., 1995; Near et al., 2006; Zhao et al., 1998)

are examples of novel traits that evolved over 5–10 million years

of isolation in a perennially icy environment. Today, these

stenothermal fishes are threatened by rapid warming of the

Southern Ocean (,1–2 C̊ per century) over periods measured in

centuries or less (Gille, 2002; Clarke et al., 2007; Ducklow et al.,
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2007; Pörtner et al., 2007; Pörtner and Farrell, 2008; Somero,
2005), which may challenge their capacity to maintain protein

homeostasis.
Although High Antarctic notothenioids lack an inducible HSP

response (Hofmann et al., 2000; Buckley et al., 2004; Buckley
and Somero, 2009; Thorne et al., 2010), they do express

constitutively many chaperones (Place et al., 2004; Place and
Hofmann, 2005), including CCT (Pucciarelli et al., 2006), very
likely to counteract the seemingly paradoxical cold-induced

denaturation of proteins (Todgham et al., 2007; Lopez et al.,
2008; Dias et al., 2010). Thus, we hypothesize that Antarctic
notothenioids have evolved a chaperonin that is compensated, at

least in part, to maintain folding activity at low temperature. To
test this hypothesis, we have purified CCT from testis tissue of
the Antarctic Humphead notothen, Gobionotothen gibberifrons

(Lönnberg), and have compared its structural and functional
properties to those of bovine testis CCT. The apparent affinity of
G. gibberifrons CCT for homologous CPs is high at low
temperature and declines as temperature increases, whereas the

opposite behavior was observed for bovine CCT and CPs; affinity
increased with increasing temperature. Furthermore, the ATPase
activity of apo-CCT from the Antarctic fish is substantially

greater at cold temperature than that of bovine CCT. We suggest
that adaptation of the function of Antarctic fish CCT at low
temperature is based on lowering the activation energy barrier(s)

of the folding cycle through enhanced CP-binding affinity and
increased subunit flexibility. Nevertheless, the thermal scope of
the activity of G. gibberifrons CCT appears to be sufficient to

tolerate temperatures as much as 5 C̊ above their present habitat
norm.

RESULTS
Purification of G. gibberifrons CCT
The eukaryotic class-II chaperonin CCT possesses biochemical
and biophysical properties – subunit size and heterogeneity,

oligomeric structure, etc. – that can be exploited to purify the
complex from diverse sources. Here we employed ion-exchange
chromatography, sucrose-gradient ultracentrifugation, and size-

exclusion chromatography to isolate CCT from immature testis
tissue of the Antarctic Humphead notothen, G. gibberifrons.
Fig. 1 shows the purification of G. gibberifrons CCT at several
stages: 1) a 30–50% ammonium sulfate cut of a testis high-speed

centrifugal extract, which, after dialysis, was applied to a Heparin
Sepharose column (Fig. 1A); 2) the elution of bound chaperonin
from Heparin Sepharose (Fig. 1B) by application of a step

gradient of NaCl (0.45R0.6 M); 3) the banding position of the
,25S CCT complex on a sucrose gradient (Fig. 1C); 4) its
subunit complexity as revealed by SDS-PAGE (Fig. 1D); and 5)

elution of CCT from a Superose 6 column at an apparent
molecular weight of ,1000 kDa (Fig. 1E). The Superose-6-
purified CCT is nearly homogeneous and is composed of multiple

subunits of Mr ,55–60 kDa (Fig. 1D). The yield of CCT was
40 mg/g testis tissue, ,4-fold greater than obtained by our
previous method (Pucciarelli et al., 2006).

CCT subunit identification and biochemical characterization
Using HPLC and mass spectrometry, we confirmed that G.

gibberifrons CCT contained the eight canonical subunits (a, b, c,

d, e, f21, g, h) characteristic of the vertebrate chaperonin
(Fig. 1F,G, Fig. 2); the mammalian f22 variant was not detected.
The pIs of five of the G. gibberifrons subunits were more basic

than their bovine orthologs, and three had pIs that were more

acidic (Table 1). The differences in pIs were generally
concordant with compositional variation in charged amino acid

residues (data not shown).
Muñoz et al. have shown that many subunits of bovine testis

CCT are posttranslationally modified by small, charged moieties
(thought to be acetate and phosphate groups) to give multiple

modified variants (Muñoz et al., 2011), and the mouse CCT
subunits b, c, d, e, f, and g contain multiple acetylated and/or
phosphorylated residues (UniProtKB and references therein). By

contrast, CCT subunits from G. gibberifrons were generally
homogeneous in isoelectric point, with the exception of the g
chain (Table 1). [Although the c and e chains of G. gibberifrons

each eluted as two peaks from the C4 Reversed-Phase HPLC
column (Fig. 1F,G), they did not show evidence of isoelectric
heterogeneity (Table 1).] Substantial isoelectric heterogeneity

was observed for bovine CCT subunits b, c, d, e, f21, and g (data
not shown), consistent with the results of Muñoz et al. (Muñoz et
al., 2011) and in agreement with the mouse data. Therefore, CCTs
expressed by the Antarctic notothenioids appear to be modified to

a lesser extent than are mammalian CCTs, an observation that
mirrors the reduced polyglutamylation of notothenioid tubulins
(Redeker et al., 2004).

Structural characterization of G. gibberifrons CCT
Negative-stain EM and image averaging of the notothen apo-

chaperonin at 4 C̊ showed that it conforms to the classical end-on
and side views of eukaryotic CCT – a toroid composed of two
eight-subunit rings (Fig. 3A) in back-to-back orientation

(Fig. 3B). Each ring contains a binding ‘‘cage’’ for CPs
(Yébenes et al., 2011; Leitner et al., 2012). When
G. gibberifrons apo-CCT was incubated either with denatured
b-tubulin or with denatured b-actin, the binding cage was found

to be occupied by a stain-excluding mass that crossed the cavity
(Fig. 3C,E, respectively) in a CP-specific arrangement that was
virtually identical to that observed with bovine CCT and its

orthologous CP (Fig. 3D,F, respectively) at 25 C̊. [Note that the a
and b chains of the bovine tubulin CP bind identically to CCT
(Llorca et al., 2000).] Therefore, the structures of CCT–CP

complexes from a psychrophilic fish are quite similar to those
previously reported for CCT–CP complexes from mesophilic
species, an observation consistent with the general structural
conservation of chaperonins and their clients in organisms

adapted to distinct thermal regimes.

Folding activity of G. gibberifrons CCT
The hallmark of chaperonin function is the capacity to assist
the folding of its denatured clients. To assess the folding activity
of G. gibberifrons CCT at an environmentally relevant

temperature, we incubated the chaperonin with 35S-labeled
C. aceratus b-actin at 2 C̊ and then added ATP. Fig. 4 shows
that G. gibberifrons CCT was able to bind denatured b-actin and

release it in its native conformation. Release of the folded product
first became apparent at 12 h (Fig. 4B), after which accumulation
followed a sigmoidal path to a plateau attained at ,72 h
(Fig. 4C,D). Thus, the folding cycle of Antarctic fish CCT at a

temperature close to the physiological norm is considerably
slower than that of mammalian CCT at 30 C̊ (cf. Melki and
Cowan, 1994), but this difference may simply be due to thermal

scaling of the temperature coefficient, Q10. (Note that Q10 for the
ATPase activity of G. gibberifrons apoCCT scales normally
between 4 and 20 C̊; see ATPase activities of apoCCTs below.)

The failure to observe folding of actin at 4 or 20 C̊ in our previous
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study of N. coriiceps CCT (Pucciarelli et al., 2006) probably

resulted from the short incubation time (90 min) used in those
assays.

Temperature dependence of CP-binding by G. gibberifrons
and bovine CCTs
Given the dramatic effects of temperature change on the kinetics

and energetics of biochemical reactions, we hypothesize that the
CCT and CPs of Antarctic fishes co-evolved to give productive
substrate folding in the cold and, therefore, may not perform
efficiently at elevated temperature. Conversely, we predict that

bovine CCT and CPs would interact more effectively at elevated
temperatures near the body temperatures of mammals (+37 C̊). We

tested these predictions by comparing the binding of homologous

combinations of CCT and CPs (actins, tubulins) at temperatures
between 24 C̊ and +20 C̊ by electron microscopy and image
processing. Fig. 5A shows the binding of Antarctic fish b-actin to

the open conformation of G. gibberifrons CCT (hatched bars) vs

the binding the bovine cardiac actin to bovine CCT (black bars);
Fig. 5B presents comparable analyses with homologous tubulins as

the CPs. The trends in the data are clear – irrespective of CP, the
percentage of G. gibberifrons CCT that bound client declined with
increasing temperature, whereas the percentage of bovine CCT
bound to CP increased. The data were well fit by linear regression

(Pearson’s adjusted coefficient of determination, R2, >0.95 for the
four fits; data not shown), which indicates that the binding
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Fig. 1. Purification of G. gibberifrons CCT from immature testis tissue and separation of subunits by HPLC. An ammonium sulfate cut (30–50%) of a
centrifugal extract of testis tissue was chromatographed on Heparin Sepharose, CCT-containing fractions were pooled and centrifuged on sucrose gradients,
and the ,25S chaperonin fraction was chromatographed on Superose 6 (see Materials and Methods for details). The subunits of CCTwere isolated by HPLC for
subsequent analysis by mass spectrometry (Fig. 2). Throughout the purification, protein compositions of fractions were analyzed by SDS-PAGE. (A) Testis
extract, dominated by a- and b-tubulins, prior to application to Heparin Sepharose. (B) Fractions containing CCT (subunits ,55–60 kDa) eluted from the Heparin
Sepharose column by a 0.45R0.6 M NaCl step gradient. (C,D) CCT-enriched fractions from Heparin chromatography (B) were pooled and then centrifuged
through 10–50% sucrose gradients (C), and proteins sedimenting at ,25 S were analyzed by electrophoresis (D). (E) Pooled CCT was loaded on a Superose 6
gel filtration column, and the material eluting at an Mr of ,106, which consisted of nearly homogeneous CCT, was collected. (F) HPLC elution profile of CCT
subunits and several contaminating proteins; the starting material corresponded to purified CCT shown in Fig. 1D. (G) SDS-PAGE of HPLC fractions on 8.5%
gels. Protein identities were established by mass spectrometry (Fig. 2): a–h, CCTsubunits; EF1a, elongation factor 1a; SHMT, serine hydroxymethyltransferase;
a-tub, b-tub, a- and b-tubulins, respectively. Absorbance (mAU) and the solvent gradient (%B) are plotted vs elution volume in panel F. Note that CCTsubunits c

and e were each resolved as two peaks.
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percentages were very likely determined by the assay temperature.

Our results are consistent with the co-evolution of the interaction
surfaces of CCT and CPs from Antarctic fishes to yield high
binding affinities at low temperature.

The analyses of the temperature dependence of the CCT–CP
interaction in homologous combination suggest that the binding

affinities of psychrophilic and mesophilic CCTs and CPs in

heterologous combination would likely be low. Fig. 6 compares
the binding of homologous and heterologous combinations of
CCT and CPs at two temperatures, +4 C̊ and +20 C̊. In

homologous combinations (Fig. 6A,B), the results recapitulate
those of Fig. 5A,B – the G. gibberifrons CCT–CP interaction was
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Fig. 2. Identification of G. gibberifrons CCT subunits. Plugs containing the indicated protein bands were excised from the gel shown in Fig. 1G for in-gel
tryptic proteolysis and mass spectrometric analysis. The identities of the presumptive G. gibberifrons CCT subunits were confirmed by querying the non-
redundant NCBI protein database with the G. gibberifrons tryptic peptide sets. Each subunit possessed six, seven, or eight peptides that mapped perfectly to
peptides of a bovine CCT subunit (red). Peptide sequence coverage ranged from 15–27% for the G. gibberifrons/bovine comparison, and higher values were
found for comparison to CCT subunits from other fishes (data not shown). Percent coverage was highest for the b (67%) and h (55%) subunits of CCT from the
Antarctic Bullhead notothen, N. coriiceps, whose sequences had been established previously from cloned cDNAs (Pucciarelli et al., 2006). The calculated pIs
correspond to the bovine CCT subunits.
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stronger at low temperature for both actin (A) and tubulin (B),

whereas the converse was true for the bovine system. In
heterologous combination (Fig. 6C,D), by contrast, CCTs and
CPs interacted at lower affinity regardless of temperature. [The
apparent affinities observed in Fig. 6 were on average 15%

greater than comparable values reported in Fig. 5. This disparity
may be attributed to small variations in CCT preparations, which
were made on multiple occasions over several years. Although

the experiments cannot be directly compared numerically, the
same patterns of temperature dependence of CCT binding affinity
emerge from the two data sets.] There was an indication that the

CCTs bind either actin substrate with greater affinity at the
‘‘physiological’’ temperature of the chaperonin (Fig. 6C), but this
trend was not seen for tubulin substrates (Fig. 6D). Because

binding of the heterologous pairings was analyzed in a single
experiment, the results must be interpreted cautiously.

ATPase activities of apoCCTs
CCT possesses an intrinsic ATPase activity in the absence or
presence of client proteins, and free energy released during the
hydrolytic cycle drives the conformational cycle of the folding

complex (Melki and Cowan, 1994). To determine whether CCT
from G. gibberifrons exhibits thermal compensation of folding in
the cold habitat experienced by the species, we compared its

steady-state ATPase activities at psychrophilic and mesophilic
temperatures to those of bovine CCT. Table 2 shows the ATPase
activities of the two apoCCTs at 4 and 20 C̊, measured via a

coupled-enzyme assay under conditions in which the
concentration of CCT was the rate-limiting factor. At these
temperatures, the ATPase activity of each CCT was linear for

intervals >60 min, which indicates that neither the psychrophilic
nor the mesophilic chaperonin denatured measurably during the
assays. At 4 C̊, the ATPase activity of the notothen CCT was 2.6-
fold greater than that of the bovine chaperonin, whereas the

activities of the two CCTs were nearly identical at 20 C̊. The
temperature coefficient, Q10, for G. gibberifrons CCT was 2.6,
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Table 1. Isoelectric points of CCT subunits from an Antarctic
fish and a mammal

pI

CCT subunit G. gibberifrons B. taurus

h 5.4 5.6
e 5.9 5.8
c 6.15 6.5
b 6.2 6.4
a 6.35 6.05
f21 6.7 6.55
g 6.75/6.9 6.6/6.9
d .7 6.6/6.9
f22 – 7.0

Subunit pI was determined as the pH of the IPG well corresponding to
highest subunit concentration. Some subunits gave two pIs, presumably
indicative of posttranslational variants.

Fig. 3. Structural characterization of G. gibberifrons CCT by EM:
comparison to the bovine chaperonin. Two-dimensional average images
of apo- and holo-CCTs were generated as described in Materials and
Methods. (A) apo-CCT from G. gibberifrons, top view (n5575 particles).
(B) apo-CCT from G. gibberifrons, side view (n5486 particles). (C) G.

gibberifrons CCT in complex with N. coriiceps b1-tubulin, top view (n5650
particles). (D) CCT–tubulin complex from the cow, top view (n5570
particles). (E) G. gibberifrons CCT in complex with C. aceratus actin, top
view (n5710 particles). (F) CCT–actin complex from the cow, top view
(n5657 particles). Scale bar: 5 nm.

Fig. 4. G. gibberifrons CCT binds to, folds, and releases C. aceratus

actin at physiological temperature. CCT was incubated with denatured
actin at intervals from 0 to 96 h at 2˚C in binding buffer containing 1 mM
Mg2+-ATP. Reaction products were analyzed at 2˚C by non-denaturing
electrophoresis on 4.5% polyacrylamide gels followed by autoradiography.
(A) apo-CCT migrates as a single band as shown on this Coomassie Blue-
stained gel. (B–D) Folded b-actin is detected at 12 h and increases in
amount until a plateau is reached at 72–96 h. Large amounts of b-actin
remained in complex with CCT. The positions of apo-CCT, of CCT–b-actin,
and of folded actin monomer are indicated.
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close to the range of 2.0–2.5 that typifies biochemical reactions
involving protein conformational changes at physiological body
temperatures (Hochachka and Somero, 2002). This ‘‘normal’’ Q10

is somewhat surprising considering that 20 C̊ is distinctly outside

the habitat temperature range of the Antarctic fish, but many

psychrophilic enzymes and structural proteins have activity
optima at temperatures near 20–30 C̊ (cf. D’Amico et al., 2003;
Detrich et al., 2000; Detrich et al., 1992). By contrast, Q10 for

bovine CCT was 5.0, which is consistent with a steep decline in
catalytic performance with decreasing temperature. We conclude
that G. gibberifrons CCT is at least partially compensated for the

rate-depressing effects of low temperature and is sufficiently
stable to retain catalytic activity at mesophilic temperature,
whereas the activity of the bovine chaperonin is significantly
compromised at psychrophilic temperature.

DISCUSSION
The successful radiation of Antarctic notothenioid fishes in the

Southern Ocean involved constraints and trade-offs at many
levels of biological organization: molecular, cellular, organismal,
and ecological (Pörtner et al., 2007). At the molecular and

cellular levels, numerous studies have documented compensatory
thermal adaptation of individual proteins of these fishes relative
to cool temperate notothenioids from South America and New

Zealand and to temperate fishes in general (for reviews, see
Coppes Petricorena and Somero, 2007; Somero, 2004). One may
plausibly argue that widespread, cold-adaptive alteration of
enzymes and structural proteins in the stenothermal Antarctic

notothenioids would be disadvantageous, or perhaps lethal,
should these fishes encounter the rapidly rising oceanic
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Fig. 5. Temperature dependence of CP binding by testis CCTs from
an Antarctic notothen and the cow. The binding of CPs by their
homologous chaperonins was examined at four temperatures between
24˚C and +20˚C. Experiments were performed in triplicate, and at least
2000 top-view CCT particles from each binding reaction were scored
automatically as apo- or holo-CCT as described in Materials and Methods.
Data are presented as percentage CCT bound to CP (mean 6 s.d.).
In toto, .110,000 particles were scored. Client proteins: (A) actin;
(B) tubulin. Chaperonins: hatched bars, G. gibberifrons; black bars, Bos
taurus (cow).

Fig. 6. Temperature dependence of CP binding by CCT in homologous
and heterologous combinations. CCT–CP binding reactions were
performed and analyzed as described in Materials and Methods. (A,B)
Homologous combinations of CCT and CP: actin (A); tubulin (B). (C,D)
Heterologous combinations of CCTand CP: actin (C); tubulin (D). Incubation
temperatures are given beneath each bar. Red bars, incubations performed
at 20˚C; blue bars, incubations performed at 4˚C. Data are presented as
percentage CCT bound to CP. Abbreviations: Act, actin; AF, Antarctic fish; Bt,
B. taurus; Gg, G. gibberifrons (notothen); Tub, tubulin.

Table 2. Temperature dependence of the ATPase activities of
apoCCTs from an Antarctic fish and a mammal

ATPase activity (nmol ATP/mmol CCT6min)

CCT 4˚C 20˚C

G. gibberifrons 5.5 25.0
B. taurus 2.1 27.4

Assays were performed in triplicate; standard deviations were negligible.
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temperatures projected along the Antarctic Peninsula during the
next century (Gille, 2002; Clarke et al., 2007; Ducklow et al.,

2007; Pörtner et al., 2007). Thus, Somero’s question – ‘‘how
many proteins ‘need’ to adapt (in ectotherms) when temperature
rises by a few degrees?’’ (Somero, 2011) – requires an expansive
functional analysis of proteins belonging to many structural

classes and different groups of organisms (Lockwood and
Somero, 2012). Must a few proteins evolve, many, or a lot?

To evaluate the thermal tolerance of the notothenioid proteome to

a warming marine environment, we have chosen to focus on the
gatekeeper of cellular protein homeostasis, the cytoplasmic
chaperonin CCT. This protein complex, which assists the folding

of a large number of proteins of multiple structural classes and
complex topologies (Thulasiraman et al., 1999; Dekker et al., 2008;
Yam et al., 2008), could constitute a metabolic bottleneck in

Antarctic notothenioid cells should its function be compromised by
elevated temperature. Alternatively, retention of the capacity of
notothenioid CCT to bind CPs and to assist their three-dimensional
maturation at 5 C̊ above the current habitat temperature of this fish

group would support conjectures that a relatively small number of
proteins might require adaptive fine-tuning of function and stability
in the context of anticipated climate change (Somero, 2011; Powers

and Schulte, 1998; Ream et al., 2003; Lockwood and Somero, 2012).
Our results are consistent with the latter possibility, since the
psychrophilic CCT appears to be folding-competent, and at least

some of its CPs (e.g. tubulins) stable and active (Detrich et al., 1989;
Detrich et al., 1992), at temperatures 5–10 C̊ above the physiological.

The apparent affinity of G. gibberifrons testis CCT for its

homologous actin and tubulin substrates at temperatures between
24 C̊ and +4 C̊ approximates the affinity of bovine testis CCT for
its CPs at 20 C̊ (Fig. 5). Since these temperatures are reasonable
proxies for their respective cellular environments, our results imply

that the two chaperonins have evolved corresponding states of the
conformational flexibility necessary for binding and release of
their CPs, and perhaps for the protein folding cycle as a whole.

How might this be achieved? Comparative analyses of orthologous
psychrophilic, mesophilic, and thermophilic enzymes have shown
that the rate-limiting step in enzymatic catalysis is the flexibility of

loops that must move to accommodate substrate binding and
product release during the catalytic cycle (reviewed by Somero,
2004). For psychrophilic enzymes, amino acid substitutions that
facilitate the flexibility of the hinge regions about which loops or

domains must move are the key adaptive changes that lower
activation energy barriers for catalytically critical conformational
changes. Therefore, we propose that adaptive evolution of CCT for

efficient function at psychrophilic temperatures may be based upon
flexibility-enhancing residue substitutions in the apical lid, which
appears to control the rate-limiting transition from the closed to

open state as ADP and Pi are released (Reissmann et al., 2007). We
have not examined this step of the catalytic cycle, but our
measurements of the temperature dependence of the ATPase

activities of apoCCTs strongly supports this hypothesis – the
thermal coefficient of G. gibberifrons CCT is consistent with
maintenance of structural flexibility at 4 C̊, whereas that for bovine
CCT indicates a loss of flexibility at this temperature. We note,

however, that the interdomain and intersubunit cooperativity
intrinsic to the CCT folding cycle (Muñoz et al., 2011; Pereira et
al., 2012) suggests that sequence changes in the intermediate and

equatorial domains may also be involved in thermal adaptation of
the G. gibberifrons chaperonin.

CCT binds quasi-native actin or tubulin to specific ring

subunits via polar and electrostatic interactions (Ritco-Vonsovici

and Willison, 2000; Llorca et al., 2001; Gómez-Puertas et al.,
2004). Pucciarelli et al. have shown that the b and h subunits of

CCT from the Antarctic Bullhead notothen, N. coriiceps, contain
multiple flexibility-enhancing amino acid substitutions (bulky/
polar/charged residues in the CCT subunits of temperate fishes
and mouse replaced by Ala or Gly in the psychrophilic fish

subunits) in locations that should enable the conformational
changes necessary for binding and release of CPs to occur at
activation energies lower than those of mesophilic CCTs

(Pucciarelli et al., 2006). We anticipate that a comprehensive
survey of all G. gibberifrons CCT subunits will confirm this
observation and that comparative structural analysis of

G. gibberifrons and bovine CCTs (6 bound CPs) will help to
refine our understanding of the molecular interactions and
catalytic mechanism of class II chaperonins. Conversely, we

note that psychrophilic CPs also show evidence of increased
structural mobility. Detrich et al. have shown that the a- and b-
tubulins of Antarctic notothenioids have evolved more flexible M
and N loops (Detrich et al., 2000), which likely strengthen

interprotofilament interactions in microtubules at 21.9 C̊. Since
the M and N loops of tubulins contribute importantly to binding
to CCT (Gómez-Puertas et al., 2004), their increased flexibility in

Antarctic fish tubulins should also enhance the CCT–CP
interaction at low temperature. Together, these observations
support the hypothesis that CCT and some CPs have co-evolved

to maintain productive chaperonin-assisted folding reactions in a
psychrothermal environment.

Comparison of enzymes obtained from psychrophilic and

mesophilic organisms can be difficult due to differential thermal
stability. As one increases the experimental temperature from the
psychrophilic range (,0 to 15 C̊) to the mesophilic (,15–40 C̊),
the anticipated exponential increase in the activity of the

psychrophilic enzyme is likely to be compromised by an
increased rate of denaturation. In this work, however, we found
no evidence for denaturation-based decay of the ATPase activity of

G. gibberifrons CCT at the low mesophilic temperature of 20 C̊.
Similarly, we have shown that the brain and egg tubulins of
Antarctic fishes assemble and disassemble reversibly at

temperatures as high as 25 C̊ with little evidence of denaturation
(Detrich et al., 1989; Detrich et al., 1992; Detrich et al., 2000),
whereas denaturation is clearly evident at 37 C̊. Thus, we suggest
that 20–25 C̊ may a thermal ‘‘sweet spot’’ for comparing the

activities of psychrophilic and mesophilic enzymes.
Psychrophilic organisms, such as the Antarctic notothenioids,

that have evolved in stable thermal environments over millions of

years appear to be threatened by protein denaturation at both the
upper and lower limits of their narrow thermal regimes. The very
flexibility that maintains the functionality of their enzymes at

physiological temperatures renders these proteins both heat labile
and cold labile (Makhatadze and Privalov, 1995; Privalov, 1990;
D’Amico et al., 2003). Decreased stability and unfolding at low

temperature appear to be due to favorable changes in the contact
free energy between nonpolar groups and water, such that peripheral
penetration of water molecules weakens the hydrophobic effect and
causes mechanical instability in the protein core (Lopez et al., 2008;

Dias et al., 2010). The reality of cold-induced protein denaturation
is well illustrated by the observation of elevated protein turnover in
Antarctic fishes via ubiquitin-mediated proteasomal degradation

(Todgham et al., 2007). Thus, CCT and the suite of chaperones that
maintain protein homeostasis in Antarctic fishes provide novel
opportunities for mechanistic analysis of cold denaturation using

structural and biophysical strategies.
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MATERIALS AND METHODS
Materials
Unless otherwise stated, reagents were purchased from Sigma–Aldrich

(St Louis, MO, USA). Water was purified by use of Milli-Q systems

(Millipore, Bedford, MA, USA).

Collection of Antarctic fishes
Specimens of the Humphead notothen, Gobionotothen gibberifrons

(Lönnberg), were collected by bottom trawls or via baited fish traps

deployed from the ARSV Laurence M. Gould south of Low Island or west

of Brabant Island in the Palmer Archipelago (April–June, 2008 and

2010). The fish were transported alive to Palmer Station, Antarctica,

where they were maintained in seawater aquaria at 21.5 to 0 C̊. All

procedures, including euthanasia, utilizing live vertebrate animals at

Palmer Station, Antarctica, were reviewed and approved by Northeastern

University’s Institutional Animal Care and Use Committee.

Purification of CCT from G. gibberifrons testis
All steps were carried out at 21 to +1 C̊ (unless otherwise noted).

Immature testes (stages 2–3) from G. gibberifrons were homogenized

in a Teflon-glass tissue grinder at a ratio of 1 g tissue per ml buffer H

[40 mM HEPES-KOH (pH 7.35), 20 mM KCl, 2 mM EDTA] containing

1 mM DTT and 1 mM PMSF; one protease inhibitor tablet (cOmplete

EDTA-free Protease Inhibitor Cocktail Tablets, Roche Diagnostics,

Indianapolis, IN, USA) was added per 50 ml buffer H. The homogenate

was centrifuged at 9600 6 g for 1 h at 4 C̊, and the supernatant was

recovered and centrifuged again at 105,000 6 g for 1 h at 4 C̊. The

second supernatant (designated testis extract) was flash frozen in liquid

nitrogen and stored at 270 C̊.

After thawing, testis extracts were precipitated by addition of 30%

(w/v) ammonium sulfate, and the suspension was centrifuged at 14,5006g

for 30 min at 4 C̊. The supernatant was recovered, ammonium sulfate was

added to 50% (w/v), and the suspension was centrifuged again using the

same parameters. The pellet was gently resuspended in a small volume of

buffer A [50 mM Tris-HCl (pH 7.35), 150 mM NaCl, 5 mM MgCl2, 10%

(v/v) glycerol] containing 1 mM DTT and one protease inhibitor cocktail

tablet per 50 ml, and the suspension was dialyzed overnight against the

same buffer without protease inhibitors. The dialyzed extract was loaded by

use of a peristaltic pump onto two sequentially coupled 5-ml HiTrap

Heparin Sepharose columns (GE Healthcare Bio-Sciences, Pittsburgh, PA,

USA) pre-equilibrated with buffer A plus 450 mM NaCl. Bound proteins

were eluted from the column by application of buffer A plus 600 mM

NaCl, fractions of 1.5 ml were collected, and the protein compositions of

the fractions were analyzed by SDS-PAGE (Laemmli, 1970); gels were

stained with Coomassie Brilliant Blue R-250. CCT-containing fractions

were pooled, the solution was made 80% (w/v) in ammonium sulfate, and

the precipitated proteins were collected by centrifugation at 12,0006g at

4 C̊. Supernatants were discarded, the pellets were resuspended in small

volumes of buffer A and pooled, and the CCT-enriched sample was

dialyzed against l6buffer A for at least 2 h with one buffer change. After

dialysis, aliquots (1–1.5 ml) of the pool were loaded onto preformed

sucrose gradients [10–50% (w/v)] in Beckman SW 28 open-top thick-wall

polycarbonate centrifuge tubes, which were then centrifuged at 104,0006g

(28,000 rpm, rav5118.2 mm, Beckman SW-28 rotor) for 60 h at 4 C̊.

Fractions (1 ml) were collected by lowering a glass needle, connected to a

peristaltic pump, to the bottom of each tube. CCT-containing fractions,

identified by SDS-PAGE, were pooled, flash frozen in liquid nitrogen, and

stored at 270 C̊; some preparations were dialyzed against buffer A prior to

flash freezing and storage. CCT was transported to our home institutions on

dry ice.

The final step in the purification of G. gibberifrons CCT was size-

exclusion chromatography of the sucrose-gradient-purified CCT on a

Superose 6 10/300 GL column (GE Healthcare Bio-Sciences, Pittsburgh,

PA, USA) equilibrated in buffer A and coupled to an ÄKTA Prime FPLC

system (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) maintained

at 6 C̊. The column was previously calibrated using the molecular size

markers Dextran Blue (2000 kDa), thyroglobulin (670 kDa), ferritin

(440 kDa), bovine serum albumin (67 kDa), and RNase (13.7 kDa).

Separation of G. gibberifrons CCT subunits by HPLC
Purified G. gibberifrons CCT (280 mg) in buffer A was precipitated at

4 C̊ by addition of trichloroacetic acid to 10%, and the suspension was

centrifuged (15,0006g, 4 C̊). The pellet was resuspended in 1 ml of 8 M

urea, the suspension was diluted 8-fold with 0.1% trifluoroacetic acid,

and the sample was centrifuged at 15,000 6 g for 15 min (4 C̊). The

supernatant was loaded (four injections of 2 ml each) on an XBridge

BEH300 C4 Reversed-Phase HPLC column (2.1 6 50 mm; Waters

Chromatografia S.A., Spain) coupled to an Ettan LC chromatography

system (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA). Bound

proteins were eluted by application of dual gradients of acetonitrile [50–

82% (v/v)] and trifluoroacetic acid [0.1–0.075% (v/v)] in 15 column

volumes: solvent A550% acetonitrile, 0.1% trifluoroacetic acid; solvent

B582% acetonitrile, 0.075% trifluoroacetic acid. Fractions (250 ml) were

collected, solvent was evaporated by use of a Savant Speed-Vac (Thermo

Fisher Scientific, Pittsburgh, PA, USA), and protein compositions of the

peaks were analyzed by SDS-PAGE on 8.5% gels.

Mass spectrometric analysis of G. gibberifrons CCT subunits
Protein bands containing CCT subunits were excised from Coomassie

Blue-stained gels (see previous section), and automated in-gel protein

digestion using modified porcine trypsin (sequencing grade; Promega,

Madison, WI, USA) was performed on a Proteineer dp proteomics

workstation (Bruker Daltonics, Bremen, Germany) according to

established protocol (Shevchenko et al., 1996), with minor

modifications. Peptide mass fingerprinting, MS/MS analysis, and peptide

database searching were performed as described (Choi et al., 2013).

Isoelectric focusing
Subunits of G. gibberifrons CCT, previously separated by HPLC and

identified by mass spectrometry, were prepared for isoelectric focusing

using an Agilent 3100 OFFGEL Fractionator and the OFFGEL pH 4–7

and 6–11 Kits (Agilent Technologies, Madrid, Spain) following the

manufacturer’s instructions. After drying in a Savant Speed-Vac (Thermo

Fisher Scientific, Pittsburgh, PA, USA), each subunit sample was

resuspended in 1 ml OFFGEL buffer containing 8 M urea, 2 M thiourea,

70 mM DTT, and 1.2% (v/v) ampholytes: pH 4–7 (Agilent Technologies,

Madrid, Spain) were used with subunits a, b, c, d, e, f, and h, whereas

pH 6–11 (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) was added to

subunit g. Subunit samples were diluted to 3.6 ml by addition of OFFGEL

fractionation buffer. Twenty-four aliquots of a subunit sample (150 ml each)

were placed in the 24 wells of the OFFGEL tray, and focusing was

performed on a 24-cm immobilized pH gradient (IPG) gel strip (linear pH

gradient of 4–7 or 6.2–7.5, 50 mA) until 64 kVh was reached (,48 h).

After focusing, the 24 fractions were recovered and electrophoresed on an

8.5% SDS-PAGE gel. Each subunit pI was determined as the pH of the IPG

well corresponding to highest subunit concentration.

The pIs of bovine CCT subunits were determined by focusing 300 mg of

the purified complex on two IPG strips (pH 4–7 and 6.2–7.5) using the

OFFGEL system described above. After SDS-PAGE of the 24 fractions from

each strip, protein bands in the range 55–62 kDa were excised from each

gel lane, and subunits were identified by mass spectrometry as described

above. Subunit pIs were assigned by reference to the IPG pH gradient.

Preparation of Antarctic fish client proteins (CPs)
Notothenioid CPs were obtained by expression of brain actin and tubulin

cDNAs from two species, Chaenocephalus aceratus (Lönnberg) and

Notothenia coriiceps (Richardson), that are closely related to

G. gibberifrons (Eastman, 1993). C. aceratus b-actin (unpublished

sequence, GenBank acc. no. KC594078) and N. coriiceps b1-tubulin

(Detrich and Parker, 1993; acc. no. L08013), each cloned in pET 11a,

were produced in E. coli as described (Gao et al., 1992) and modified

(Pucciarelli et al., 2006). 35S-labeled CPs were expressed in medium

containing 0.2 mCi of EasyTag2 L-[35S] methionine (NEG-709A,

.1000 Ci/mmol, PerkinElmer, Waltham, MA, USA) and methionine-free

amino acid mix. Unlabeled CPs were produced using complete amino acid

mix. CPs were transferred to 7.5 M urea, 10 mM DTT, 20 mM Tris-HCl

(pH 7.5) by gel filtration, and aliquots (5 mg/ml) were stored at 270 C̊.
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Preparation of bovine CCT and CPs
CCT from bovine testis was purified by the method of Martı́n-Benito et

al. (Martı́n-Benito et al., 2002). Bovine cardiac actin (.99%; cat. no.

AD99) and bovine brain tubulin (.99%; cat. no. TL238) were purchased

from Cytoskeleton, Inc. (Denver, CO, USA).

Structural characterization of CCT and CCT–CP complexes by EM
To compare the structures of apo- and holo-CCT particles from the

psychrophilic fish to those of the mesophilic mammal, we generated two-

dimensional average images by negative-stain EM. G. gibberifrons CCT

was incubated in ATP-free binding buffer [50 mM Tris-HCl (pH 7.4),

500 mM NaCl, 5 mM MgCl2, 1 mM DTT, 10% (v/v) glycerol] (Cuellar et

al., 2008) at 4 C̊ in the absence or presence of homologous, denatured CPs

(actin, tubulin), whereas bovine CCT was incubated with or without bovine

CPs at 25 C̊. Denatured CPs from Antarctic fish or from the cow were

diluted 100-fold into their respective CCTs to yield 10:1 molar ratios

(1 mM CP, 0.1 mM CCT), and the samples were incubated for 5 min.

Aliquots (5 ml) of each reaction were applied for 1 min to glow-discharged

carbon-coated grids pre-cooled to the appropriate temperature. The

samples were then stained for 1 min with 2% (w/v) uranyl acetate at the

incubation temperature. Images were recorded at 0˚ tilt using a JEOL

1200EX-II electron microscope, operated at 100 kV, on Kodak SO-163

film at 20,0006nominal magnification. Micrographs were digitized using

a Zeiss SCAI scanner with a sampling window corresponding to 3.5 Å per

pixel, and particles were automatically selected and classified using

XMIPP software (Sorzano et al., 2009). Two-dimensional, reference-free

average images of the end-on and side views of each CCT 6 its CPs were

averaged from ,500–700 individual images (see legend to Fig. 3).

CCT–CP binding and folding assays
To assess chaperonin–client protein affinities, denatured CPs from

Antarctic fish or from the cow were combined with CCTs as described in

the previous section, and the samples were incubated for 5 min at four

temperatures between 24 C̊ and +20 C̊ in ATP-free binding buffer.

Homologous binding (fish CCT–fish CP, etc.) experiments were

performed in triplicate, whereas heterologous binding experiments (fish

CCT–cow CP, etc.) were performed once, albeit with a very large

sampling population. Samples from each reaction were prepared for

negative-stain EM as described in the preceding section. Unless

otherwise noted, 2000 end-on view CCT particles from each binding

reaction were scored automatically as apo- or holo-CCT (determined by

the absence or presence of a stain-excluding mass in the chaperonin

cavity) using maximum-likelihood procedures (Scheres et al., 2005).

After particle classification, the apparent affinity of binding was

measured as the percentage of CCT particles containing bound

substrate [(holo-CCT/holo-CCT + apo-CCT)6 100%].

The folding activity of G. gibberifrons CCT was assessed at 2 C̊ by

diluting denatured 35S-labeled C. aceratus b-actin 100-fold into

chaperonin in binding buffer containing 1 mM ATP. At intervals,

aliquots were withdrawn from the reaction, and the products (CCT–b-

actin complex, folded actin) were analyzed on 4.5% non-denaturing

polyacrylamide gels (Zabala and Cowan, 1992) run at the same

temperature. Autoradiographs of the gels were scanned to quantify

folded b-actin (Zabala and Cowan, 1992).

ATPase assays
Rates of ATP hydrolysis by apoCCT from G. gibberifrons or from the

cow were measured spectrophotometrically in a buffer containing a

coupled-enzyme, ATP-regenerating system (Sot et al., 2002). Reaction

mixtures (50 mM Tris-HCl, 10 mM MgCl2, 100 mM KCl, 0.2 mM

NADH, 2 mM phosphoenolpyruvate, 15 mg/ml pyruvate kinase, and

30 mg/ml lactate dehydrogenase, pH 7.5) were pre-equilibrated at the

desired temperature (either 4 or 20 C̊) for 10 min in the thermostated

cuvettes of a Shimadzu CPS-240A spectrophotometer. ATP (2 mM final

concentration) was added to each cuvette, and the assay mixtures

were incubated isothermally for 2 min. Finally, CCT (0.38 mM final

concentration) was added, and the decrease in absorbance at 340 nm was

followed for intervals up to 120 min. Triplicate assays were performed at

each temperature. We verified that the activities of the coupling enzymes

were sufficiently high at both temperatures such that the ATPase activity of

CCT was the limiting factor controlling the oxidation of NADH.
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