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SPARSE CONTROL OF THE FITZHUGH-NAGUMO EQUATION*

EDUARDO CASAST, CHRISTOPHER RYLL?, AND FREDI TROLTZSCH?

Abstract. Optimal sparse control problems are considered for the FitzHugh-Nagumo system
including the so-called Schlégl model. The nondifferentiable objective functional of tracking type
includes a quadratic Tikhonov regularization term and the L'-norm of the control that accounts for
the sparsity. Though the objective functional is not differentiable, a theory of second order sufficient
optimality conditions is established for Tikhonov regularization parameter v > 0 and also for the case
v = 0. In this context, also local minima are discussed that are strong in the sense of the calculus
of variations. The second order conditions are used as the main assumption for proving the stability
of locally optimal solutions with respect to v — 0 and with respect to perturbations of the desired
state functions. The theory is confirmed by numerical examples that are resolved with high precision
to confirm that the optimal solution obeys the system of necessary optimality conditions.
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Introduction. This paper contributes to several recent developments in the op-
timal control of partial differential equations. First, and this is perhaps the main
novelty of our work, it improves the theory of second order sufficient optimality con-
ditions for the optimal control of nonlinear evolution equations. We prove results
that are not only new for the control of the FitzHugh—Nagumo equations. They are
also not yet known for the optimal control theory of standard academic semilinear
elliptic or parabolic control problems with smooth objective functionals. We even
go beyond this and consider problems with nonsmooth functionals in the context of
sparse optimal control, where the L'-norm of the control appears in the objective
functional.

Our control system of FitzHugh—-Nagumo equations plays an important role in
physics, chemistry, and mathematical biology. Here, we continue our research in [8] on
the optimal control of wave-type solutions such as traveling waves or spiral waves that
appear as typical solutions of this system in unbounded spatial domains. Investigating
this class of control problems with its interesting applications, we observed numerical
effects that we wanted to confirm by a deeper mathematical analysis. Eventually,
we arrived at novel second order conditions that we needed to explain our numerical
observations that are examplarily presented at the end of this paper.

Let us detail our main achievements in the theory of second order sufficient opti-
mality conditions a bit more:
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Second order conditions are related to certain critical cones that must be chosen
as small as possible. For sparse controls, in Lemma 3.1(3) we introduce the cone of
critical directions Cjy, that is smaller than the associated one suggested in [7]. In this
way, we improve the results of [7] that were developed for a simple class of elliptic
equations. Even for this class of simpler problems, our result is new.

Moreover, our paper contains second order conditions that are sufficient for strong
local minima in the sense of calculus of variations. So far, almost all contributions
to the theory of second order conditions in the optimal control of PDEs addressed
weak local minima. To our best knowledge, the first result on strong local minima in
PDE control was recently obtained in [1] for the case of semilinear elliptic equations.
Although our results are similar to the ones of [1], they are more general, even if they
are transferred to the elliptic case discussed there. In particular, we introduce two
extended cones of critical directions, C7 in (3.14) and E7 prior to Theorem 3.13. They
can be used to deal with the case of vanishing Tikhonov regularization parameter v;
see the more detailed remarks in the introduction to section 3. We do not know papers
on the control of PDEs that deal with strong local minima for the case v = 0.

The case v = 0 is important for the numerical application of control methods to
the FitzHugh—Nagumo equations that we present in the last section. In our preceding
paper [8], we observed that the numerical methods worked fairly stable also for very
small parameter » > 0 so that we became interested in the convergence analysis as
v — 0. To prove the observed stability of optimal controls for » — 0, we had to
develop our new second order conditions that are applicable to the case v = 0. This
is a situation where strong local minima are needed. We also discuss the stability of
optimal solutions with respect to perturbations of the given desired state functions.

Compared with standard semilinear elliptic or parabolic equations, the analysis
of the FitzHugh-Nagumo system is more difficult. Therefore, we have to prove the
fairly technical Lemmata 3.8-3.11. Although these results do not directly extend the
optimal control theory, their detailed proofs are unavoidable for building our theory
and occupy a major part of our paper.

The analysis of optimal control problems for FitzHugh—-Nagumo systems was al-
ready considered in [3], which investigated associated problems by the Dubovitskij—
Milyutin optimality conditions, and in [13], which concentrated on the analysis of
time-optimal control problems for a linear version of the FitzHugh-Nagumo equa-
tions. Later, resolving certain obstacles in the analysis of differentiability, in [8] we
proved the first order optimality conditions for the (nonlinear) FitzHugh—-Nagumo
equations by showing the differentiability of the control-to-state mapping of any or-
der. Moreover, we reported on a variety of computational results. In this context,
we also mention [4], where the analysis and numerical treatment of optimal control
problems for traveling wave fronts is discussed for the so-called Schlogl model (also
known as the Nagumo equation).

The discussion of control and feedback control problems of reaction-diffusion equa-
tions has a long tradition in the community of theoretical physics. We mention, for
instance, contributions in [15], [17], [20], and the references therein. We also refer to
the survey volume by [16]. Our investigations on the control of FitzHugh—Nagumo
equations and systems of related type were initiated by these ideas.

1. Control problem. Assumptions and preliminary results. In this pa-

per, we consider optimal control problems for the following two reaction-diffusion
equations:
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dy

E(x t) — Ay(x,t) + R(y(z,t)) + az(x,t) = wu(x,t) inQ,

Ony(z,t) = 0 on X,

(L1) y(@,0) = () o
%(az,t)—l—ﬁz(x,t)—'yy(a:,t)—ké =0 in Q,

z(x,0) = zo(xr) inQ.

Here, @ ¢ RN, 1 < N < 3, is a bounded Lipschitz domain with boundary I'; T' > 0,
Q=0x(0,T),and ¥ =T x (0,T). The parameters «, 3, v, and § are real numbers
with 8 > 0. Further, R is a cubic polynomial,

R(y) =ar (y — 1)y —y2)(y — y3),

with real numbers ar > 0 and y; < y2 < y3. Moreover, yo and zo are given initial
states belonging to L>°(Q2). By n and 0,,, we denote the outward unit normal vector
and the associated outward normal derivative on I', respectively.

In this system, the partial differential equation for y is said to be the activator
equation, while the one for z is called the inhibitor equation. The function y is the
state that is to be controlled. In our paper, the inhibitor z has only some auxiliary
character with respect to the control. For the choice a = 0, both equations decouple
and the state function y has to solve the Schlogl equation. We should mention that
this equation is also known as the Nagumo equation and it is also a particular case
of the Allan—Cahn equation. Here, the inhibitor equation is meaningless. For o« = 1,
the FitzHugh-Nagumo system is obtained. These values a € {0, 1} are the values of
our interest, but the analysis for the system (1.1) is the same for any arbitrary real
Q.

Following the usual notation we set

Oy

W(0,T) = {y € L*(0,T; H'(Q)) : o

€ L2(0,T;H1(Q)*)}.

The following theorem was proved in [8, Theorem 2.1 and Corollary 2.1].

THEOREM 1.1. Under the previous assumptions, ¥V u € LP(Q) with p > 5/2,
(1.1) has a unique solution (yu,zy) € [W(0,T)N L>(Q)]*>. There exists a constant C
independent of u such that

Yl Loo(@) + lYullwo,7) + |2ull Loc(@) + II2ullw0,7)
< C(llull ey + llyoll o) + llzoll Lo () + [R(0)])

and we have (yu, z.) € C(Q x (0,T))%. In addition, if yo and zo are continuous in €2,
then y,, and z, belong to C'(2 x [0,T7]).

Following again [8], we introduce the mapping G : LP(Q) — [W (0, T)NL>(Q)]?,
defined by G(u) = (Yu,2u). Then, the following differentiability properties were
proved in [8, Theorem 2.2].
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THEOREM 1.2 (differentiability of the control-to-state mapping). The mapping
G is of class C%. The derivative (1,,(,) = G'(u)v is equal to the pair (n,¢) solving
the system

0
S M R@antal = v Q.
an'r] = on X,
(1.2) n(z,0) = 0 in,
0 ‘
S HfC-am = 0 mQ,
¢(x,0) = 0 in€.

The second derivative (Wy, vys Xvi,vs) = G (u)[v1,v2] in the directions vi, ve € LP(Q)
is given by the pair (w,x) solving the equation

Oow

5 ~ AWt Ry)etax = —R'y)mm. inQ

anw =0 on E’

(1.3) wm®) =0 e
8 .

S HBx-qw = 0 in Q,

X@0) = 0 2,

where 1y, = G'(u)v;, 1 = 1,2.

Remark 1.3. Though G is not a differentiable function from L?(Q) to W (0,T)?,
it is not difficult to check that G'(u) and G”(u) can be extended to continuous linear
and bilinear mappings from L?(Q) to W (0,T)? for any u € LP(Q) with p > %

Now, we formulate our control problem

Min  J,(u),
(PV) {u S L{ad

where J, (u) = F, (u) + rj(u) with
Fw) = 5 [ (C4@ 0 1) v ) + C4 @) ule, ) (w0} do
+5 [ACH@ 0. T) = (@) + CE@ D) — sr(0)) o
+Z/ u?(z,t) da dt,

2 Jq
j(u)=/Q|u(x,t)| dz dt.

In this setting, we have given constants v > 0, x > 0, coefficients C}, Cg € L>(Q),
CY,CZ € L*>(Q), desired state functions yg,2q € LP(Q) with p > 5/2, yr, 27 €
L>(Q), and the set of admissible controls

Usg = {u € L®(Q) : a < ulx,t) <b foraa. (z,t) € Q}
with —00 < a < 0 < b < 400. For the choice a = 0 in the state equation (1.1), we
fix Cg =2¢ =0and CZ = zr = 0. We also assume that the functions Cg, Cg, cy,
and CZ are nonnegative.

Remark 1.4. We introduced fairly general coefficients in the objective functional
F,. The reason for that is the fairly different applications we have in mind. For
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instance, in [8] we considered the problem of extinguishing a moving spiral wave. To
do so, we observed only the tip of the desired spiral wave that moved from the center
to the boundary of the domain Q. Here, Cg was the characteristic function of a circle
around the tip that moved with the tip through €. We also mention that our theory
works under the slightly weaker assumption yr, zp € LP(Q2), too. However, this would
lead to more technicalities, hence we do not use this assumption.

Thanks to Theorems 1.1 and 1.2, it is easy to prove that V v > 0 the control
problem (P,) has at least one solution u,; see [8, Theorem 3.1].

We finish this section by analyzing the cost functional .J,, that consists of two
terms having different smoothness. While the first part is smooth, the second part, j :
L'(Q) — R, is not a differentiable functional, but it is a Lipschitz convex functional.
It admits directional derivatives given by the formula

(1.4)
' (w;v) = v(x,t) dedt — v(z,t) ded v(z,t)| dedt Yu,v e L ,
/(i) /Q+(t> t= [ vty dvdes [ ool dedr e 1@

where
Qr ={(z,t) € Q:ulz,t) >0}, Q_{(z,t) € Q:u(x,t) <0},
Qo ={(z,t) € Q : u(x,t) =0}.

Of course, the relations defining these sets are required only almost everywhere. More-
over, we know that a measurable function A\ belongs to the subdifferential in the sense
of the convex analysis of j at a point u, A € 9j(u), if and only if it satisfies for a.a.

(z,t) € Q
=+1 if u(x,t) >0,
Mz, t) ¢ =-1 if u(x,t) <0,
€ [-1,+1] if u(z,t) = 0.

For every 0 < p < 1 we have

(1.5) j(v)—j(u) > Jlutplo=w) = j(w) > j'(u;v—u) = max / Av—wu) dz dt.
Q

p Aedj(u)

These inequalities are valid for any convex and locally Lipschitz functional j; see, for
instance, [2].

The first part of J, has the following differentiability properties.

THEOREM 1.5. The function F, : LP(Q) — R, p > 5/2, is of class C?, and we
have for the first and second derivatives the expressions

(1.6) F(u)v = / (pu + vu)vdzdt Yu,v € LP(Q),
Q
and for vy,vy € LP(Q)
F;/(u) [v1, v2] = »/Q {[022/ - R//(yu)‘ﬁu]nm Moy + Cg<v1<v2} dx dt

(1.7) —I—/ {O}/ml (T)n,, (T) + C’:,Z~CU1 (T)Co, (T)} dxr + V/ vivg dx dt,
Q Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/15 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SPARSE CONTROL OF THE FITZHUGH-NAGUMO EQUATION 2173

where @, along with ¥, are the solutions in W(0,T) N L*>(Q) of the adjoint system

Dy :

- (;Dt —Apu + R'(yu) pu + ahu = Cf(yu — ¥Q) in Q,

811%071 - 0 on E,

(1.8) ¢u(@,T) = O (yu(T)—yr) inQ,
Oy, :

- gt +ﬁwu_790u = CS(Zu_ZQ) m Qa

Yu(2,0) = CZ(2,(T) — zr) in .

The proof of the existence and uniqueness of the solution (¢y,1,) € [W(0,7) N
L>(Q)]? of the adjoint system and the formula (1.6) can be found in [8, section 3.2].
The expression of the second derivative follows from the chain rule, (1.3), and (1.8).

2. First order optimality conditions. Since the control problem (P,) is not
convex, we must consider local minima. In this section, the goal is to set up the
first order necessary optimality conditions satisfied by the local minima and to draw
some conclusions from the optimality system. We say that @, is a local minimum of
problem (P,) in the LP(Q) sense, 1 < p < +o0, if there exists € > 0 such that

Ju(uy) < Ju(u) Yu € Upa N Be(uy),

where B.(1u,) denotes the LP(Q)-ball centered at @, with radius . Let us mention
that the boundedness of Uyq in L°°(Q) implies that i, is a local minimum in the L?(Q)
sense if and only if it is a local minimum in the LP(Q) sense for any 1 < p < +o0.
On the other hand, if @, is a local minimum in the L*°(Q) sense, then it is a local
minimum in the LP(Q) sense for any 1 < p < +oo. Hereafter, local minima will
always be understood as local minima in the L?(Q) sense.

Remark 2.1. Minima of this type are, viewed in the sense of calculus of variations,
weak local minima. They ensure optimality in a neighborhood of the locally optimal
control u,. Later, we will also investigate conditions for local minima that are strong
in the sense of calculus of variations. In that case, we have

Jo(u,) < Ju(u) Vu € Uag such that |yu — ya, |

Le(Q) <&

no matter how far u is from u,,.
Now we state the optimality conditions satisfied by a local minimum of (P,).
THEOREM 2.2. Let u, be a local minimum of (P,). Then, there exist (y,,Z,)
and (@y, ) in [W(0,T)N L=(Q)]?, and A\, € dj(u,) such that

0y,

ot — Ay, + R(ﬂl/) +az, = U in Q,
Oy = 0 on %,
(2.1) Yo(@,0) = yo(z) inQ,
aaztu‘f'ﬁgu_’ygu"'& =0 Z’l’lQ,
zZ,(x,0) = zo(z) inQ,
0@, N N - _ .

B (;,; —Apy + R/(yU) Pv+ath, = Cg(y” ) in Q,

Onpr = 0 on X,

(2.2) ¢u(,T) = Cr(G(T)-yr) nQ,

o, -
- ;i +B8% —vor = Cg(zu_zq) n Q,
Uu(2,0) = CE(Z(T)~Zr) inQ,
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(2.3) / (@y +viiy, + kX)) (u— ) dedt >0 Yu € Uag.
Q

Proof. Let € > 0 such that J,(u,) < J,(u) for every u € Unq N B:(u,). Then, for
any u € Uad, u # Uy, and ¥ 0 < p < e/|lu — U, ||2(q), we have that @, + p(u —1u,) €
Uaa N Be(1,). Hence, using the convexity of j, we get

0< Ju (U + pu _puz/)) —J, () < F,(t, + p(u _pulf)) — F,(u,) + kj(u) — w5 (T@y).

Now, passing to the limit p — 0, we infer

(2.4) Fl(uy)(u—1y) + kj(u) — kj(i,) > 0.

Taking (7., Z,) and (@, 1) as the solutions of (2.1) and (2.2), respectively, and using
the expression (1.6) of the derivative of F),, we deduce from the above inequality that

/ (pr +vay)(u—u,) dedt + kj(u) — k() >0 Yu € Uaq.
Q

Therefore, u, solves the convex optimization problem

Min fQ(gEV + vy )u dx dt + kj(u),
U € Uyg

that can be considered in L'(2). Finally, from rules of subdifferential calculus we
deduce the existence of A\, € 9j(,) such that (2.3) holds. O

From inequality (2.3), we deduce some interesting relations.

COROLLARY 2.3. Let i, @,, and X\, be as in Theorem 2.2, and assume that
v > 0. Then the following relations hold:

ﬂV(xvt) = 0 g |¢V(‘T7t)| S Ky

i (2,1) = Projj, (—%[%(x, £) + K (2, t)]) ,

< . 1
Av(xvt) = Pro.][—l,+1] <_;<pu(f7t)> .

Moreover, from the last two representation formulas it follows that \, is unique and
Uy, Ny € L2(0,T; H'(Q)) N L=(Q).

COROLLARY 2.4. Leta,, ¢, and M\, be as in Theorem 2.2 and assume that v = 0.
Then the following relations are satisfied:

|Pu(x,t)| < k= ay(x,t) =0,
Gu(x,t) > +k = Uy(z,t) = q,
ou(x,t) < —k = Uy(z,t) =0,
Gu(x,t) = +k = Uy (z,t) <0,
ou(x,t) = —k = u,(x,t) > 0,
A1) = Proj_y oy ( - %@V(x,t)).

The last representation formula yields that \, € L*(0,T; H*(Q)) N L>(Q) and A\, is
unique for a fized local minimum ..
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For the proofs of these relations, the reader is referred to [7, Corollary 3.2] and
[6, Theorem 3.1], which deal with the cases v > 0 and v = 0, respectively, in a similar
situation. The relations in the corollary show that local minima u, can be zero in
large regions, the support of #, being monitored by k.

In particular, a value kg < oo exists such that for k > kg we have only one
local minimum, namely, 4, = 0. Indeed, since Uy,q is bounded in L>(Q), the set
{(Yu, 2u) tueu,, is bounded in L*°(Q), and hence from (1.8) we deduce that the set
{(¢u, ¥Yu) buets,y is also bounded in L>°(Q). Then, our statement holds obviously for

ko = sup{ [|Qull Lo (@) : u € Uaa}-

In the case v = 0, the control @, can admit values outside of {a,0,b} on a set of
positive measure only if the set {(z,t) € @ : |@,(x,t)| = £} has a positive Lebesgue
measure. If the measure of this set is zero, then @, (x,t) must belong to {a,0,b} for
almost every (z,t) € Q. Such optimal controls @, (z,t) are of “bang-bang-bang” type.

3. Second order optimality conditions. In this section, we carry out the
second order analysis for (P, ). First, we establish second order necessary conditions.
Distinguishing between the cases v > 0 and v = 0, we consider sufficient conditions.
The reader might be surprised how different both cases can be.

Let us give at this point a short orientation on the second order conditions. To
deal with the different situations depending on v, we will introduce three different
cones of critical directions, namely, the cone Cy and the cones C7 and E7. The cone
Cjy is quite standard and well known. It will be used in the case v > 0. In Theorem
3.4 we prove that sufficient second order conditions based upon Cy ensure (weak) local
optimality. However, we show just as a corollary that then @, yields even a strong
local minimum.

The two other cones are needed for the case v = 0. The second order conditions
based on E7 imply that @ is a strong local minimum in the sense of calculus of varia-
tions; cf. Theorem 3.13 and relation (3.38). This property of strong local optimality
cannot be deduced if we replace E] by C7.

Section 4 is devoted to the stability of locally optimal solutions with respect to
perburbations. For v > 0 the cone C7 can be used to show Lipschitz stability of
optimal controls; cf. Theorem 4.2. Here, weak local minima are useful.

In section 4.1.2, we discuss the stability of locally optimal solutions for v = 0.
Here, we invoke the second order conditions based on EI and prove the stability of
the optimal states with respect to perturbations of the desired state. Now, stability
can be proved only if @ is a strong minimum. For weak minima we cannot prove this
property.

We should mention that this strong minimum property would also be needed if
we want to prove error estimates for the optimal states when the control problem is
discretized. Indeed, we only have weak convergence of the optimal discrete controls to
the continuous ones, but the corresponding states have strong convergence properties,
which allows the use of the sufficient second order condition.

3.1. The case v > 0. First, we introduce a cone of critical directions associated
with a control @, € U,q satisfying the optimality system (2.1)—(2.3) along with the
state (7., Z,) and the adjoint state (,,,). This cone is an extension of the analogous
one for finite dimensional optimization problems to the infinite dimensional case,
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Ca, = {v € L*(Q) : vsatisfies the sign conditions (3.1) and F/, (i, )v+ kx5’ (4,;v) = 0},

(3.1) v(a:,t){>0 i, () =

a,
<0 if 4y (z,t) = b.

The next proposition establishes some properties of Cy,, .

LemMmA 3.1.

(1) If v € L*(Q) satisfies (3.1), then (@, + v, + kX\,)v >0 a.e. in Q.
(2) Ifv e Cy,, then

(3.2) (@ + vid, + KA )v =0,

- =0 if [z, t)] <1,
(3.3) / |v| dx dt = / Aovdrdt = v(z,t) >0 if \(z,1) = +1,
0 0 <0 if \(z,t) =—1,

where Qo = {(x,t) € Q : Uy (z,t) =0}.
(3) An element v € L?(Q) belongs to Cy, if and only if the following properties
hold:

=0 if [y (z,1) + v (z,t)| # &,
(3.4) v(a,t) ¢ >0 difay(z,t) =a or (p,(x,t) = —k and 4,(x,t) = 0),
<0 ifuy(x,t) =0 or (¢u(z,t) = +k and 4y (z,t) = 0).

Proof. (1) The first statement is an immediate consequence of Corollary 2.3. In-
deed, if (¢, +vii,+KA,) (2, t) > 0, then i, (z,t) > —1(@, 4K, )(, t) holds. According
to the representation formula for @,, this inequality is possible only if u,(x,t) = a.
Then (3.1) implies that v(z,t) > 0. Analogously, we proceed when (@, + v, + k\,)
(x,t) < 0.

(2) If v € Cg,, then the identity F'(,)v + kj’(4,;v) = 0 holds. Hence, we have
with (1)

0< / (@, + vy, + kX vdzdt < / (P, + vty )vdx dt + xj' (,;v) = 0.
Q Q
Using again (1), we deduce (3.2) and
/ MNodxdt = 5 (,;v).
Q

Then the formula (1.4) for j'(u,;v) and this identity imply (3.3).
(3) First, we assume that v € Cy,. Then v satisfies (3.1) and we have to discuss
three cases in (3.4):
o If ¢,(x,t) = +r and 1, (x,t) = 0, then Corollary 2.3 implies that A, (z,t) =
—1. This identity along with @, (x,t) = 0 and (3.3) yields v(z,t) <O0.
e Analogously, we prove that v(x,t) > 0 if ¢, (x,t) = —k and @, (z,t) = 0.
e Let us now analyze the case | @, (v, t)+vu, (x,t)| # £. We distinguish between
two situations. In the first, we suppose that |@, (z,t) + v, (z,t)| > . Since
I\ | <1, we infer that @, +vii, +k\, # 0; hence (3.2) implies that v(z,t) = 0.
In the other case, we assume that [p, (v,t) + vi,(z,t)| < k. If ,(2,t) # 0, then
I\, (7,t)| = 1 and consequently @, + vii, + kA, # 0. Once again, (3.2) implies that
v(z,t) = 0. Finally, we assume in this second case that 4, (z,t) = 0 and |@, (2, t)| < k.
Then A, (z,t)| < 1 and (3.3) leads to v(x,t) = 0.
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Second, we consider an element v € L?(Q) satisfying (3.4). Then v obeys (3.1)
and it remains to prove that F'(u,)v + xj'(t,;v) = 0. The equality

/|v|dxdt:/ A\v dx dt
0 0

is a consequence of (3.4) and the projection formula for M\, given in Corollary 2.3.
Therefore, the identity (\,,v) = j'(@,;v) holds and consequently we have

/ (@y + vy, + kX )vdrdt = F(4,)v + k5 (T,;v).
Q

If (P +vity + KA (2, 1) > 0, then @y (z,t) > —L(@, +kA,)(z, t). From this inequality
and the projection formula for @, established in Corollary 2.3, we infer that @, (z,t) =
a, hence A\, (7,t) = —1 and (@, + vi,)(z,t) > k. Then, (3.4) implies that v(z,t) = 0.
Analogously, we deduce that v(z,t) = 0 if (¢, + v, + £Ay)(2,t) < 0. From these
properties and the above identity we deduce that F’(u,)v + 5’ (t,;v) = 0. O

The proof of the following theorem follows the lines of the proofs of Proposition
3.4 and Theorem 3.7 of [7] with obvious modifications.

THEOREM 3.2. The set Cy, is a convex and closed cone in L*(Q). Furthermore,
if 1, is a local minimum for (P,), then F!(ii,)v* >0 Yv € Cg, .

The reader should observe that the contribution of the term j(u) in the second
order optimality conditions is through the critical cone Cy,, but only F/(u,)v? is
involved in the second order approximation. In some sense, j is piecewise linear and
there is no second order contribution from it. Next we consider the sufficient second
order conditions.

Let us now start the second order analysis. The presence of the so-called Tikhonov
term %HuH%z(Q) in the cost functional is extremely important. Due to this term, the
second order sufficient conditions for the local optimality of u, are a straightforward
extension of the corresponding conditions for a finite dimensional optimization prob-
lem. Actually, it is well known that the equivalence stated in the following theorem is
not in general true for infinite dimensional optimization problems. However, it works
perfectly in this case because of the presence of the Tikhonov term.

THEOREM 3.3. The following statements are equivalent:

(1) F)(u,)v*> >0 Yo € Cy, \ {0}.
(2) There exists o > 0 such that

(35) Fly(ﬂl,)’UQ Z O'H'U”%2(Q) Yo S Oﬂy.

We omit the proof of this result, because it was proved for a certain class of
parabolic partial differential equations in [9, Theorem 4.11]. For the FitzHugh—
Nagumo system, the situation is slightly more involved, but the extension of the
proof in [9] to this system is more or less straightforward.

Finally, we are able to prove the following result.
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THEOREM 3.4. Let U, € Uaq satisfy the optimality system (2.1)~(2.3) along with
the state (ij,,%,) and the adjoint state (p,,1,). We also assume that F!(i,)v? > 0
Vv € Cyz, \ {0}. Then, there exist 6 > 0 and € > 0 such that

§
(3.6) Jo(a,) + 5||u — W72 < Jo(u) Vu € Una N Be(iy),

where Be(u,) is the L*(Q) ball centered at i, with radius .

Proof. This proof follows the classical one that is performed by contradiction.
The only difference to take into account is the nondifferentiable term j involved in
the cost functional and in the definition of the cone of critical directions. Let us sketch
some details of the proof. Arguing by contradiction, we assume that there exists a
sequence {ug}72; C Uaq such that

_ 1 _ 1 _
(3.7) lug — u,,||L2(Q) < A and J, (u) < J,(4,) + ﬁHuk — u,,Hiz(Q) vk > 1.

Now, we take
(3.8)

1 .
Pk = Huk — ay”LQ(Q), v = E(Uk — ﬂl,), hence ||Uk||L2(Q) =1and vy = vin LQ(Q),

the last convergence after possibly selecting a subsequence of {v,}7° ;. The proof is
split into three parts.

(i) v € Oy, . Since every vy, satisfies the sign conditions of the definition of Cy,,
we deduce that v also satisfies them. Let us prove that F)(u,)v + kj,(t,;v) = 0.
From (1.5) and (2.3) we get that

Fl(u,)v + k5 (4,;v) > F.(u,)v + /@/ A\vdx dt
Q

1
= lim — / (@v + vy + £A)(up, — a) dedt > 0.
k—o0 P Q

To prove the converse inequality, we apply the mean value theorem and use (3.7),

2

Fu(ﬂu) + kazlz(ﬂV + akpkvk)vk + ﬁj(au + pkvk) < Fu(ﬂu) + Kj(ﬂl/) + g_]]z

with some 0 < @), < 1. Therefore, with (1.5) we obtain from above
Pi
2k
Now by convexity and continuity of the mapping L*(Q) > v + j(@,;v), we get
p—k =
2k
Here, we have used that F, : LP(Q) — R is of class C? for p > 5/2 and uy, — 1,
strongly in L9(Q) V ¢ < oc.

(ii) v = 0. Performing a Taylor expansion and using (3.7) again, we find

pe{ E (T + Ok (up — ) Jok + w5 (G5 08) } <

F(u,)v+kj, (1,;v) = likminf{F,ﬁ(ﬂ,,—i—Gk(uk — ) vk + K4, (U vr) < likminf 0.
—00 —0o0

2 2
F, () + prF. (0, ) vk + p—;F,j’(aV+9kpkvk)u,§ +k(Uy + provg) < By () + k7 () + g—z.

From (1.5), we obtain

2 2
pid Fl (1 Yvr + i (5 0p) } + %‘“Fl(ﬂv + Ok — ) vi; < g_lli'
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Invoking (1.5) and (2.3) we deduce that F)(u,)vr + k5’ (4y,;v) > 0, then F(a, +
Ok (ur — ,))v7 < 5. Thanks to the expression of F)/ given in (1.7), it is easy to
pass to the limit with the aid of the compactness of the linear operator L?(Q) >
v (9, G) € L2(Q)? and L2(Q) > v = (no(T), ¢ (T)) € L*(Q)? to deduce that
F!'(ii,)v? < 0. In view of the assumptions of the theorem, since v € Cg,, this is
possible only if v = 0.

(iii) Contradiction. Since vy — 0 in L?(Q), it holds (1, , (v, ) — (0,0) in W(0,T).
Hence all the terms in F” (@, )v} tend to zero except the Tikhonov term ||vk|\%2(Q) =1
Thus, we have v < liminfy_, o F// (@, )vi = 0. a

Now we prove the surprising fact that the local optimality ensured by Theorem
3.4 is even strong.

COROLLARY 3.5. Let @, satisfy the assumptions of Theorem 3.4. Then, there
exist &' > 0 and & > 0 such that

/

_ d _ _
(3.9) Ju () + §||u - Ul,Hiz(Q) < Ju(u) Yu € Uag @ |yu — JullLe) < €.

Proof. Let us assume that (3.9) does not hold for any ¢’ and &’. Then, for any
integer k£ > 1, we can find a control uy € Uaq With |y, — 7 ||L~(g) < 1/k such that

o ]
(3.10) Tolu) < Iy (@) + o lluk = @l q)-

We can take a subsequence, denoted in the same way, such that {ux}r>1 is weakly
convergent in L?(Q). Since y,, — ¥, in L°°(Q), we deduce that uy — u, in L*(Q).
Indeed, from the boundedness of {ux}r>1 in L°°(Q) and Theorem 1.1 we infer the
boundedness of {(yx,zk)}r>1 in W(0,T). Therefore, taking again a subsequence if
necessary, we can assume the weak convergence of {(yx,zx)}r>1 in W(0,7T") and of
{uk }x>1 in LP(Q) for every p < +oo. The weak limit of {yj }r>1 is obviously 7,. From
the state equation satisfied by the functions z, we deduce that z — z, in W(0,7).
Finally, passing to the limit in the first equation of the system (1.1) we conclude that
ur — U, in L*(Q). From y,, — ¥, in L>(Q) and the last two equations of (1.1) we
also obtain that z,, — z, in L*°(Q). Now, we deduce from (3.10)

v ) v, _ L _ 1 _
§HUKH%2(Q) + rj(ug) < 5”“11”%2(@ + £ () + Fo(uy) — Fo(ug) + Q—kHUk - UVH%2(Q)'
Passing to the limit, we get

v, _ 2 L . . v 2 .
Sl 2y + wi(a) < limint { S unlFq) + wilun) |

. v . v, _ cr—
< timsup { 5 i [3aq) + wi(me) } < Gl o) + mi)
—00

Notice that Fy(ur) — Fo(u,) follows from the strong convergence of y,, and the
circumstance that Fy does not explicitly depend on .

This implies that %HukH%Q(Q) + kj(ug) — %Ha,,H%z(Q) + rj(t,). From here, we
obtain the convergence ||u|lr2(q) — ||| r2(g)- Due to the presence of the term
kj(ug), this is not completely standard and we proceed as follows:
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z||ﬂl,||2 < liminf z||uk||2 < limsup K||ukH2 = lim sup (ZHukﬂz + kj(uk) — /ij(uk))
2 k—0 2 ko0 2 k—0 2

< lim sup (KHUkHz + Iij(uk)) + k limsup(—j(ug))
k—0 2 k—0
(311) = Zfa | + k(@) — wlimint j(ug) < 2 ||,
2 k—0 2
Hence, we infer that uj — 1, strongly in L?(Q). Therefore, given ¢ > 0 such that
(3.6) holds, we have that |lux — U, r2(q) < € V k sufficiently large. Then (3.10)
contradicts (3.6). O

3.2. The case v = 0. In this case, we write (P) instead of (Py), J and F instead
of Jy and Fy, and @, g, @, etc., instead of ug, 9o, Po, etc. In general, for an infinite-
dimensional optimization problem, the strict positivity of the second derivative of the
functional on the critical cone is not enough for local optimality. The reader can find
an example for this fact in [12]. Therefore, we have to consider an extended cone.
Given 0 < T < k, we define the cone CZ as the set of elements v € L?(Q) satisfying

—0 [0l > T,
(3.12) v(z,t) ¢ >0 ifu(z,t)=aor (¢(z,t) =—~r and a(z,t)

= 0)7
<0 ifu(z,t)=">bor (p(z,t) =+ and u(x,t) = 0).

)

PROPOSITION 3.6. The extended cone CT has the following properties:
(1) CacCIVO<T<E.
(2) For every v € L*(Q) satisfying the sign conditions (3.1), the inequality

(3.13) F'(u)v + rj'(a;0) > 7ljv]|L1(q.)

is fulfilled, where Q. denotes the set of points (x,t) € Q such that (3.12) is not
satisfied by v(x,t).

Proof. The first statement is an immediate consequence of Lemma 3.1(3). Let us
prove the second statement. If ||@(z,t)| — x| > 7 and @(x,t) # 0, then |A(z,t)| = 1
and the projection formula implies hence |g(x,t)| > k. Therefore, |p(z,t)| > kK + T
holds. If ¢(x,t) > k + 7, then Corollary 2.4 implies that @(x,t) = a and therefore
v(x,t) > 0. Here, we have @(x,t) — k > 7 and hence (@(z,t) — rk)v(x,t) > T|v(x,t)].
Analogously, we prove that (¢(x,t) + k)v(x,t) > 7lv(z,t)| if —@(z,t) <k + 7.

Now, we assume that ||@g(z,t)| — k| > 7 and u(z,t) = 0. Hence, from Corollary
2.4 we deduce that |@g(z,t)| < k (here, |@(x,t)| = k is not possible) and continue by

pla,t)o(z,t) + rlo(z,t)] = (k = |@(x, D)) vz, t)] = Tlo(z, t)].

Finally, we assume that |@g(x,t)] = k and @(x,t) = 0 . From Corollary 2.4 we get
that [A(z,t)] = 1. If (z,t) € Q,, then v(x,t) satisfies the sign conditions established
in (3.12) and hence @(z, t)v(z,t) + Klv(z,t)| = 0. Conversely, if (z,t) € Q,, then we
have that ¢(x, t)v(x,t) + Klv(z, t)| = 2k|v(z, t| > T|v(z,t)] .

The established inequalities prove (3.13). O

From (3.4) and (3.12) we infer that C7 is a small relaxation of Cy when v = 0. In
the finite dimensional case, both cones are the same for all sufficiently small 7. Now,
one might be tempted to formulate the second order sufficient conditions as

(3.14) 3 >0 and 30 >0 such that F"(@)v® > ol|v[|72q) Vv € CF.
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However, for v = 0, this condition can hold only in exceptional cases, as we will prove
at the end of this section. In fact, it is enough to take a look at the expression (1.7) of
F"()v? to understand why the condition (3.14) cannot be expected for v = 0. The
next theorem provides the correct sufficient condition.

THEOREM 3.7. Let u € Uaq satisfy the optimality system (2.1)—~(2.3) along with
the state (§,2) and the adjoint state (¢,1)). We also assume that

(315) Ir>0and3o>0: F'(@)? >0 (||nv||2Lz(Q) + HnU(T)H?LQ(Q)) Vo € CI.
Then, there exists € > 0 such that
_ o _
(3.16)  J(@) + 1o (Imu-aliag) + Im-a(DlFaq)) < J(w) Vu € Usa N Be(@),
where Bc(u) is the ball of L*(Q) centered at i with radius €.
Before proving this theorem, we derive some auxiliary results.

LEMMA 3.8. There exist constants Cqp, C1, Co, C3, and Co such that ¥V u € Uaq
we have the estimates

(3.17) lyullw o,y + lyull e @) + leullwo,r) + llpulle@) < Cab,
(3.18) lyu — Flwo,r) + llpu — Pllwo,r) < Callu —alL2(q),

(3.19) low = @llL=(@) < Coollyu — Ul (@) < Csllu— il Ls(q),
(3.20) 70017200y + 1m0 (D)7 2(0) < CillvllLs@llvlli@) Yo € L(Q).

Proof. The first estimate follows from Theorem 2.1 and Corollary 2.1 of [8]. To
prove the second and third estimates, we introduce the family of operators

t
Ku(w)(x,t):/ e~ BHWE=9) (1, 5)ds
0

for 4 > 0. Now, we take w(x,t) = e (y, — y)(x,t). Subtracting the equations
satisfied by y,, and gy and observing that (z, — z)(z,t) = Ko(y. — 9)(z,t), we obtain
the following equation for w:

ow

— —Aw+ R (J)w+pw+a K, (w) = e *(u—u) inQ,

ot
(3.21) Oyw = 0 on X,
w(xz,0) = 0 in £,

where g, (z,t) = gz, t) + 0(z,t)(yu(x,t) — g(a,t)) and 0 < O(z,t) < 1. If p is
sufficiently large, [8, Lemma 2.3] directly leads to the estimate for y, — 7 in (3.18).

The estimate of ¢, — @ in (3.19) is obtained by considering the difference of the
adjoint equations for ¢, and @. Notice that the right-hand side of the associated
adjoint PDE of this difference is just Cg(yu — 7), while in the terminal condition
the term CJ (yu(T) — §(T)) appears. Here, we use that |y, (T) — (1) =) <
lyu — ¥llLo(@)- The estimation of ¢, — @ is performed for the version of the adjoint
equation where 1, and ¢ are eliminated on using the adjoint integral operator K.
We omit the related computations, because they are straightforward.

Finally, we prove the estimate (3.20). From [8, (10)], we know the estimate

1Kl ez < I % Now, we set w(x,t) = e i, (x,t); then, w satisfies
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(3.21) with e #*v in the right-hand side. Next, we fix p large enough such that

R(§)+ p+ aly| m > 1 in Q. Multiplying the equation by w and integrating

in @ we infer

1 -

s Iw(DZ20) + 1VwlZe) + lwlzz ) S/Qe "owdrdt < ||v]|pyg)llwll=)-
From here we get

lw(M) 720 + lwlizg) < Cllvlizi@llvllze)-

Writing n, (x,t) = ettw(x,t) we deduce (3.20). 0O
LeEMMA 3.9. There exist a constant C,, and € > 0 such that

(322)  [Muw — mllwo.r) < Collya — Ul @) Imllrz@) Yo € L*(Q), Vu € Uaa,

where from now on, differing from the notation in Theorem 1.2, n, ., and n, are the
first components of G'(u)v and G'(@)v, respectively. Moreover, there is a constant Cy
such that

(3.23) 1Yu =¥ = Nu—allwo,r) < Collyu — UllLee(@)llyu — FllL2(@) Vu € Una.

Proof. We introduce the operator K, as in the proof of Lemma 3.8 and define
w(z,t) = e " (ny., —ny). Now, we subtract the equation satisfied by 7, from that for
Nu,o and apply the mean value theorem to get

(3.24)
0

6_15 —Aw+ R (yu)w + pw + a Ky(w) = —e "R (§u)(yu — 0o in Q,

Opw = 0 on X,

w(xz,0) = 0 in Q,

where g, (2,t) = g(x, t) +9(z, 1) (yu(x, 1) —7(z, 1)), 0 < I(z,t) <1, and p is sufficiently
large. Invoking again [8, Lemma 2.3], we obtain (3.22).

To show (3.23), we proceed similarly. We set @ = e~ (y,, —J—1,_z) and perform
the Taylor expansion

Rlyu) = B(y) + B'(§)(ya —9) + %R”(y +0(yu = 1)y —)° with 0<6(z,t) <1.

From the PDEs for y,, 3, and 7,_z, we deduce analogously to (3.24)

ow _ _ _ N _ _ _ o .

6_15 — A+ R (§)@ + pb + o K, (0) = —e M R"(§ + 0(yu — 9))(yu — 9)* in Q
subject to the same homogeneous boundary and initial conditions as for w above.
Then the estimate (3.23) for w = y,, — 4 — 1y—z follows as the one for w. O

LEMMA 3.10. There exists a constant M,y such that Yu € Unqa and Yvi,v2 €
L?(Q) the following estimate holds:

(3.25)
[F"" (w) (v, 02)] < Mag (170, 1 22(0) 170 | 22(@) + 11702 (T) | L202) 17702 (T) | £2(02)) -
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Proof. This estimate follows easily from the expression (1.7) of F”, (3.17), and
the fact that the functions C¢), CY, C§, and C7 are bounded. In addition, we have

to recall that {,(x,t) = Ko(n,)(z,t), where Ky is the operator introduced in the proof
of Lemma 3.8. From this identity we get

(3.26) I6ollz2(@) < AT mollzz@) and  [Co(T)llz2(@) < AV Tl z2(0)- o

Next, we prove our last lemma.
LEMMA 3.11. For every p > 0 there exists € > 0 such that

(3.27) 1 () = F" @] < p (I3 + (D))

holds ¥ v € L*(Q) and ¥ u € Uaq such that ||y, — | =(q) < €.
Proof. From (1.7), it follows that

F" (u) — F"(@)]? = /Q CY (2, — 1) dadi+ /Q (R@@r — R (ya)pur?.y} dedt
4 / CY (1. (T) — 72(T)) da: + / CA(C2,(T) — C2(T)) da
Q Q
+/ CH(Co, —C) dudt =1 + I+ Is + I + Is.
Q

Let us indicate how all these terms can be estimated. First, from (3.22) we deduce
that

(3:28) [1Mu,0 = Mol z2(@) < 1Muw — Mollwo. 1) < Collyu — llLe @) 1m0ll2(@)
(3.29) Hnu,v(T) - nv(T)”L?(Q) < C||77u,v - 77U||W(O,T) < OCnHyu - Z?”Lm(Q)”nv”L?(Q)-

From here, we also get

(3.30) 1Mu,0llL2(Q) < (1 + Cyllyu — @HL%(Q)) 170l 22(0),
70,0 (D) 22(2) < 1Mu,0(T) = 10 (T 2(0) + [70(T) | 2(0)
(3.31) < CCYllyu = Yl Lo 1wl L2(Q) + 170 (T)[ L2 -

We use (3.28) and (3.30) to estimate I;:
L] < MO Nl @110 + 0 ll 22(@) 100 = M0l L2(@)
< 1€ le=@) (2 + Cyllyu = Gl @) Cullyu — Fllz(@) 1m0 72(q)-
I3 is estimated from (3.29) and (3.31) as follows:
13| < ICF | poe () 0,0 (T) + 10 (T) | 22 (@) 10,0 (T) = 10(T) [ 2202
<CF o) C*Collyu — Fll7 o0 0 01|72 ()
+||07¥|‘L°°(Q)Ocn||yu - §||L°°(Q)2||77v||L2(Q)||77v(T)HL2(Q)

<O @) |y = Gl (@)

x {22+ llyw = Bl e @) mallizg) + Imo( Dz | -
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To deduce the estimates for I, and I5 we use again the operator Ky. Then, from
(3.26) we obtain

[Curollz2@) < AT 1Nu,wll2(@)

1w (D) 22y < VT 0w (T) 20,

1Cuw = Collz2(@) < AT IMuw — Moll2(Q),

ch,v(T) - Cv(T)”L?(Q) < "Y\/T”nu,v(T) — T (T)HLz(Q)-

Now, we proceed in the same way as for the estimates I; and I3. Finally, we estimate
I as follows:

L] < 1R () — R (yu) | Lo (@) 18]l 2o (@) 1m0l 72 )
+ IR (W) |z 18 = eull L@ Iml32q)
+ IR ()l oo @) loull oo @) 1m0 — w122 -

By (3.19), we can estimate the first two terms by C’||y, — 9| () H%H%z(Q) for some
constant C’. The third term is estimated as I;. The statement of the lemma is a
straightforward consequence of the obtained estimates. O

Proof of Theorem 3.7. By Lemma 3.11, we have the existence of ¢y > 0 such that
YV u € Upq with ||y, — Z?HLM(Q) < €o,

i o
(332) 1P = F'@)]] < = {nlBa) + (T Baey } 7o € I2(@).
Using Lemma 3.8, we deduce that

_ 03 -~ 03 s
1Y = Gl < C_”U — | 3(q) < C—(b —a)"3|lu— u||L/2(Q)'

Let us take

Cto 3/2
0 <| - .
ses (03<b—a)1/3>

Then ||y, — ngLoo(Q) <egif ||u— ﬂ”L?(Q) < 1. Hence, (3.32) is true in Uag N Be, (1),

(3.33)

_ o _
1" () = F' @10 < = { ey + Imo(D)2a(y b Yo € L3(Q),u € Uaa 1 By ().

Next, we prove that (3.16) holds with e = min{ey, g2}, where e5 will be defined below.
Let us take u € Uag N Be(u). We denote by @, the set of points (z,t) € @ such that
(3.12) is not satisfied by (u — u)(x,t). Now we set

v = (u—u)xQ,

where g, is the characteristic function of @,, and w = (u — @) — v. By definition
w(x,t) satisfies (3.12) for every (x,t) € @, and hence w € CT.
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From (1.5), (3.13), and (3.33) we infer
J(u) = J(a) > F'(u)(u —u) + %F”(ﬁ +0(u —u))(u — u)* + kj'(@;u — )
> 7ol + 5 () — ) + 5 [F" G+ 6(u — ) — F ()] (u — 0)?

1
> 7ol + FF (@w? + F"( Jo? + F" (@) (v, w)
g

(3.34) ~

{Imu-al32iq) + Imu-a(D32)
From (3.20) we get

01320y + (D) 3200y < CrLb = @) 2w — @755 0]l 22 )
< Ci(b— a)' e ]l

From here it follows

1
HU||L1(Q) 2 M—W {HmHm @ |70 (T )H%Q(Q)} :
1

Inserting this inequality in (3.34) and using (3.15) and (3.25) it follows that

J(u) — J(u) >

!
T Ll + Im ()32
1= 2

M,,

o b
+ 2 {Imallfzg) + Imu(Dlz@) = =2 {Inol22q) + Imo (1) 320y }

— Map {lImoll 22 (@) 1wl 22 (@) + 110 (T) | 200 1700 (T) | 2(02) }
— = {ImealFag) + Il }
and, with Young’s inequality,

T Muqb Mg’b 2 5
- <Cl(b — a)1/382/3 2 & {||n”||L2(Q) + ”nv(T)HL?(Q)}
2

(3.35)
g 2 2 g 2 2
+ 2 {Inallfa) + (DI } = 15 {Imi—alFac) + ez } -

We take €9 > 0 satisfying

T M., Mg, 57
Ci(b— a)t/3e2/3 2 o T4

Inserting this inequality in (3.35) we obtain
_ g
J(u) = J(u) > 1 {H%H%z(Q) + 100 (D)72(0) + mll72(q) + Hﬁw(T)H%z(Q)}
g
— Z{Imu-all3z @) + In-a(DllEz }
> z 2 T 2 _ i 112 _ T 2
> 5 Unerelzaig) + oo (M z20) § = 16 { Imu-allzz) + Iu-a(T)Z20)

o
= == {Imuallfag) + lm—a(D)lEae }
(notice that v+ w = u — @). Hence, (3.16) holds with ¢ = min{eq,e2}. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/15 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2186 E. CASAS, C. RYLL, AND F. TROLTZSCH

COROLLARY 3.12. Under the assumptions of Theorem 3.7, there exist € > 0 and
0 > 0 such that

(336) J()+ 5 {0~ 33200y + (D) ~ Ty} < Ju) Vu € Una 1 Be()
Proof. We define w = e (y,, — i — nu_g); then we know the estimate (3.23),
lwllwo,r) < C1llyu — FllLe@) e — Tll2(@) Yo € Uaa.
Let now ¢ be as in Theorem 3.7 and take ¢; < e such that e#TCigy < % Then, for

lyu — FllL>=(q) < €0 we have

_ uT 1 _
lyu = 9ll2@) < e lwlrz@) + Inu-allzz@) < 5lyu = ¥llz2@) + Imu-allz2@);
hence, moving the term %||y, — 7|/12(g) to the other side,

Iy — Tl 22@) < 21nu—allzz@) Yu € Uaa : ||y — FllL=(Q) < 0

Moreover, we have

lyu(T) = 9(T) || 220y < T WD)l L2(0) + 1Mu—a(T)| 20
< CaeT|Jwllw o,y + 1Mu—a(T)| 20

& _
< 7||Z/u = Jlzz@) + IMu—a(D)llz2) < C2llnu-allr2(@) + 1Mu—a(T) | 2(0)-

Therefore, we get from the last two estimates

Iy = 9ll72(q) + v (T) = G(T)[|Z20) < Cs {|\77u—ﬂ||2L2(Q) + |\77u—ﬂ(T)||2L2(Q)}

Vu € Uaa such that ||y, — gl|r=(q) < . Finally, we take 0 < § < gZ- and 0 <€ < go
so that ||y, — 7llL=(q) < €0 for every u € Uaq N B(u). Then, (3.36) follows from
(3.16). o

The growth condition (3.36) is valid in a ball around @. Therefore, we analyze
if a result similar to Corollary 3.5 can be proved for the case v = 0. This would be
applicable in a ball around g, hence in a possibly larger neighborhood of .

We have not been able to establish such a result based on the cone C7. To deal
with this problem we introduce a different extended cone defined by

E7 = {v € L*(Q) satisfying (3.1) and
Fla)o + k5’ (a;v) < m{lInollzz@) + Ino (1)l 2oy} -

From Lemma 3.1(1) and (1.5) we infer that Cy C E7 for every 7 > 0. Thus the cone
ET can be considered as a small extension of C;. We are able to prove the following
result on second order sufficiency that is based on E7.

THEOREM 3.13. Let t € Uqa satisfy the optimality system (2.1)~(2.3) along with
the state (y,z) and the adjoint state (p,1). Assume also that
(3.37)
37 >0 and 30 >0 such that F"(a)v® > o (||77v||2L2(Q) + ||77U(T)H%2(Q)) Vv € E7.
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Then, there exists € > 0 such that

(3.38)
J(u,) +

N |

Proof. First, we prove that there is a constant M > 0 such that

(3.39) Mu—allL2@) + 1Mu—a(T)llL2@) < M |yu — FllLeo(q) Vi € Uaa-

With Lemma 3.9, (3.23), and (3.17) we obtain

1Mu—all2@) + lMu—a (D)l z2) < Mu—a — Wu — Dl 22(@)

+ 10u-a(T) = (Yu = DD 220 + 19 — llz2(@) + [ (Yu — D(T) | L2(02)

< Cltu—a = (yu = Dllwo,y + (R + 121y = Fll (@)
< [0Co2Cap + QI + 1012 llyu — Fll L~ ().

Hence, (3.39) holds with M = CCy2C, 5 + |Q[*/? +|Q|'/2. Let us set

47

T Mo+ 2M,,)’

2187

{Inu—allFacq) + Im—a(@)Fay | < T0) Y € Una 1y = Gl < =

where M, was introduced in Lemma 3.10. From Lemma 3.11, we deduce the exis-

tence of e5 > 0 such that Yu € Uaq with ||y, — 7]l 1=(g) < €2

(340)  IIF"w) = F @) < 2 {IllBag) + Im(T) ey } Vo € I3(@).

Next, we prove that (3.38) holds with ¢ = min{eq,e2}. We take u € Uyaq such that

4w — ¥l L=(@) < € and distinguish two cases.
Casel. u—u ¢ E7. Here we have

J(u) — J(u) > F'(a)(u —u) + %F”(a +0(u—w))(u — a)? + kj' (G u — )

> 7 {lmu-all 2@ + lIu—a(T)ll 2 }

Ma,b
= =22 {Imu-allizg) + I (1) 1320 }

Y

T 2
e {Inu-allz2@) + Mu—a(MlL2) }

Mu“b
57 {Imalia(@) + Imua(T) 320 }

T Map 2 2

g
= {Imu—alZeg) + Imu—a (@) } -

Y

Notice that (3.39) yields (|[nu—allr2(Q) + Mu—a(T) || r20)) ~* > (Me)~ 1.
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Case II. uw— @ € ET. This time, we use (1.5), (2.3), (3.37), and (3.40):
1
J(u) — J(u) > F'(a)(u —u) + §F”(ﬂ +0(u—0))(u—a)? + Ky (4 u — 0)

I _ 1, _ _
Z/Q(w—l—l/u—kfi/\)(u—u) da:dt—|—§F (@ +0(u —u))(u— a)?

> @)= 0+ 5F 0 =) — F @)~
> 5 {Ime-sla@) + sl }

g

= 7 Uil + Inea(T) o }

g
2 IuallZaie) + s (M Baey } - O

COROLLARY 3.14. Let u satisfy the assumptions of Theorem 3.13. Then, there
exist 6 > 0 and € > 0 such that ¥V u € Uaq with ||y, — 3llz=q) < &,

B4 J@) + o I~ 3l + Ial) — HO)Fage) } < T(w).

The proof of this corollary is almost the same as that of Corollary 3.12. Corollary
3.12 also holds under the second order condition (3.37). This is a consequence of
(3.41) and (3.19). By Corollary 3.14 the local optimality of @ is strong in the sense
of calculus of variations.

We finish this section by proving that the second order condition (3.14) can only
hold in some exceptional cases.

THEOREM 3.15. Let @ € Uag satisfy the optimality system (2.1)—(2.3) along with
the state (y,2) and the adjoint state (@,v). Ifv =0 andu#0, uZa, uZb, ¢ Z K,
and ¢ # —k, then (3.14) cannot hold.

Proof. We argue again by contradiction. Assume that (3.14) holds. Then, arguing
as in the proof of Theorem 3.7, we deduce the existence of § > 0 and € > 0 such that

)
J(@) + Fllu = aullfa i) < () Vu € Usa 0 Bx(a).
Then, @ is a solution of the problem
: d _
Q) Min I(u) :=J(w) = 5 flu- il720),
U € Ung N B ().
The Hamiltonian of this control problem is given by
)
H(Jf, tv Y, 2,9, U) = L(Jf, tv Y, z)—|—cpu+/€|u|—§(u—ﬂ(x, t))2 = L(JZ, tv Y, Z)+H($, tv P U),
where
L(z,t,y,2) = CG (x,1)(y — yo(,1))* + C§ (2, 1)(2 — 2q(, 1))

and H denotes the part of the Hamiltonian involving u. To shorten the notation we
set H(x,t,u) = H(x,t,o(z,t),u). According to Pontryagin’s principle,

(3.42) H(z,t,u(z,t)) = m[inb] H(z,t,u) foraa. (z,t) € Q;
uela,
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see, for instance, [5] or [14, Chapter 4] for the proof of Pontryagin’s principle for
control problems associated with evolution partial differential equations. However,
(3.42) contradicts the following inequalities:

§ _ _
ifﬁ<@(x,t)<n+§|a| = H(z,t,0) < H(x,t,a),
if/£<—¢(a:,t)<l<:—|—éb = H(x,t,0) < H(x,t,b),

(3.43) 2 5 _ _
if 0 < ¢(z,t) < kand kK — p(x,t) < §|a| = H(z,t,a) < H(z,t,0),
if —k<@(z,t)<0andk+ @(z,t) < §b = H(z,t,b) < H(x,t,0)

Indeed, let us prove that the first and third statements contradict (3.42). The other
two statements are analyzed similarly. If k < @(x,t), then Corollary 2.4 implies that
u(z,t) = a. Now, using that @(z,t) < k + 3|a|, we get

H(x,t,u(x,t) = ¢z, t)u(x,t) + klu(z,t)| = ¢(z,t)a + klal
= (k —@(z,t)]al > —ga2 = H(z,t,0).

Let us consider the case 0 < @(x,t) < k. Then Corollary 2.4 implies that u(x,t) = 0.
On the other hand, using the inequality x — @(z,t) < |al, we obtain

H(z,t,a(zx,t) = ¢z, t)u(z, t) + klu(z, )| =0
> (k— @(x,t))|al — gaQ = H(z,t,a).

Finally, since ¢ € C(Q), and u # 0, u # a, u # b, ¢ # K, and ¢ #Z —k, we deduce
from Corollary 2.4 that the sets

: = {(x,t) €Q: @(ﬁvt) > K}a Q; = {(ﬁvt) €Q: cﬁ(x,t) < —/{}7
and Q. = {(x,t) € Q :|o(x,t)| < Kk}

are strict open subsets of @), and at least one of them is not empty. Hence, the set of
points (z,t) satisfying one of the conditions of (3.43) is open and nonempty. Conse-
quently, the set of points where Pontryagin’s principle fails has a positive Lebesgue
measure, which is not possible. O

Remark 3.16. The coercivity assumption (3.15) can hold only if there is a constant
do > 0 such that C}) (2,t) > dy holds for a.a. (,t) € Q and Cy. (x) > dy holds for a.a.
x € Q. Our theory is worked out for this case.

If C¥ does not obey this assumption, for instance, if C¥ = 0, then the main results
must be modified in an obvious way. The reader will confirm that then the theory
remains valid under the following changes: The norm squares of 7,(T"), n,—a(T) in
(3.15), (3.16), (3.37), and (3.38) are to be deleted. Analogously, the norm squares of
yu(T) — y(T') must be deleted in (3.36) and (3.41).

4. Applications to the stability analysis with respect to perturbations.
Here, we exemplarily show by three case studies how the second order sufficient op-
timality conditions can be invoked as the main assumption for proving the stability
of optimal solutions with respect to perturbations of our optimal control problem.
We consider perturbations of the desired state functions and also the case where the
Tikhonov regularization parameter v tends to zero. This can be viewed as a pertur-
bation of the reference parameter v = 0.
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4.1. Perturbations of the desired state functions.

4.1.1. Case v > 0. Assume that a family of perturbed desired state functions
Yo, 26 € L?(Q), p > 5/2, and y5, 25 € L>(Q), € > 0, is given such that
(4.1)
max{[|y5, — yolr2@), 126 — 2QllL2@); lvT — yrllL2): 127 — 27l L2(0)} < Ce Ve >0

is satisfied. We also assume that {y5, 25 }o>0 is bounded in L (). Associated with
these perturbed data, we define the perturbed objective functionals,

1
Fy(u) =5 /Q{Cé(yu —y5)? 4+ Cf(zu — 25)°} dudt

43 [ACF 1) = 93 + CHaul 1)~ 7} da+ G [ dat
Q Q

Jo(u) = Fj(u) + £j(u),
and the family of perturbed optimal control problems,

. Min  JZ(u).
e {20

Prior to proving the next result, for convenience we introduce the notation
F(u) := Fy(u), F(u):= F§(u).

These functions contain only the parts of J and J¢ that depend on the state functions.
The Tikhonov regularization term and « j are separated from them.

THEOREM 4.1. If {@S}. is any sequence of optimal controls of problems (P%) that
converges weakly in L*(Q) to some i, then i, is optimal for (P,) and

. . _
(4.2) ;1&(13 HU,, Uu”LP(Q) 0

holds ¥ p € [1,00). Conversely, if @, is a strict locally optimal control of (P,), then
there exists a sequence {u}c of locally optimal controls of (P%) converging to @, . This
sequence obeys (4.2). Furthermore, there exists p > 0 such that every @$ affords a
global minimum to JS in Upa N B, (1), where B,(i,) denotes the L*(Q)-ball.

Proof. Let us skip the subscript v in the proof for convenience. We write @ := u,
and U, := @. From u, — u we get & € Upq and, in a standard way, that @ is optimal
for (P,). It remains to show the strong convergence.

Applying a result of [11], we know that §. — 7 is bounded in some Hdlder space
C*@), X € (0,1). Therefore we obtain by compact embedding in C(Q) that a
subsequence y. = yz, converges strongly in L*°(Q) toward y as € — 0. Since the
same holds for all subsequences, we even have g — ¢||r=(q) — 0 as ¢ — 0 for the
whole sequence. From (1.1), we also deduced that ||Z. — Z[| (@) — 0 as € — 0.

Now we show the strong convergence tie — @ in L?(Q). Writing |- || :== |- || 22(g)
for short, we find

J(@) < liminf J ()
e—0
<liminf (F(a) + 2 || + rj(a.) ) = lminf (F(a.) + 2)la.])® + ()
e—0 2 e—0 2
< lim sup (Fs(ag) + KHQEW + Kj(’ﬁa)) < lim sup (Fs(ﬂ) + K||1EH2 + Kj(’ﬁ))
e—0 2 c—0 2

= F(@) + 5 |al* + rj(a) = J (@).
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Obviously, this chain of inequalities implies the convergence
v, _ o v, o
2 el + i) — Sl + wj@), = 0.

As in (3.11), we infer that ||t.||12(0) — ||@| £2(g). Along with the weak convergence,
this leads to @, — u in L?*(Q). By boundedness of Uy,q in L>°(Q), we obtain this
convergence also in LP(Q)Vp € [1, 00).

Let us now prove the second part of the theorem and assume that @ is a strict local
solution to (P,). The controls @. are defined as (global) solutions to the auxiliary
problems

minJE(u), u € Upg N B,(1),

where p > 0 is taken sufficiently small. The existence of such controls @, follows by
standard arguments. Thanks to boundedness and closedness of U,q, we can assume
that . — @ € Uaa N B,(1), possibly after selecting a subsequence. Now we apply
the first result of the theorem in U,q N B,() and obtain that @ is globally optimal
in Una N B, (1), the convergence to @ is strong, and (4.2) holds. Therefore, since @ is
a strict local solution, & = % must hold provided that p was taken sufficiently small.
This is true for any subsequence of 4. and hence the convergence result refers to the
whole sequence 1i.. O

THEOREM 4.2 (Lipschitz stability for v > 0). Assume that v > 0 and 4, is
a locally optimal control of (P,) that satisfies the second order sufficient optimality
condition (3.5). Assume further that (4.1) holds. Let (a$) be a sequence of locally
optimal controls of (P%) that converges to u, in L*(Q) as € — 0 and enjoys the
properties established in Theorem 4.1. Then, there are constants Cr, > 0 and g > 0
such that

(43) ||ﬂi—ﬂl,HL2(Q) <(Cre Vee (O,EO].
Proof. Since uS, — u, as € — 0, there exists €9 > 0 such that the quadratic growth

condition (3.6) holds and @, is a global minimum of J in Uaq N Be,(4,). Then, we
can argue as follows:

_ _ _ v,_ .
Sy () = J(uy,) = F=(uy) + §||ui||2L2(Q) + rj(ay)
_ v, _ . _ _
= F(u;) + EHUiHiz(Q) + rj(ae) + F=(uy) — F(uy)
= Jy(te) + F*(uy) — F(u;)
_ 0 o _ _
2 Jo(w) + 5 lw, — U2y + F* () — F(ag).

After rearranging, the last inequality admits the form

(9]

(4.4) (F(w,) = F(a)) — (F*(ay) — F()) = 5l1a; — wll7eq)-

Notice that the same terms g|\a,,||2L2(Q) and kj(u) are included in J(@,) and J(@,)
and are hence cancelled. Inserting the concrete expressions for F¢ and F, the left-
hand side of this inequality can be simplified considerably. For instance, by a7 — a3 =

(a1 — az)(a1 + az) we obtain for the terms related to Cg
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3 OB ) ~ o —va)®) dedt 5 | (G5 98" 5 —vo)?) dos
= %/QCE (v —¥0) (20, —yq — o) — (o —v5) (20, —yo — vo)) ddt
- /Q C (v — )@ — 72) dwdt < 1CY =y lve — vl @) I3 — 722y

< Celg = Fllzz@) < Celltw — @5 |l L2(q)-

In the same way, all other integrals appearing in (4.4) are first simplified and next
estimated by the Cauchy—-Schwarz inequality. Now the result follows immediately
from these estimates and (4.4). O

4.1.2. Case v = 0. Now we consider the problem (P,) for v = 0 and we write
for short (P):= (Py). Let us prove the following result analogous to Theorem 4.1.

THEOREM 4.3. If {a®}. is any sequence of optimal controls of problems (P¢) that
converges weakly in L?(Q) to some w, then @ is optimal for (P) and

e,
(4.5) lim [[5° = gl Lo (@) = 0

Conversely, if u is a strict locally optimal control of (P), then there exists a sequence
{u}¢ of locally optimal controls of (P€) converging weakly to . Moreover, (4.5) holds.
Furthermore, there exists p > 0 such that every u® affords a global minimum to J¢
with respect to the elements u € Uyq such that ||y, — 7o < p-

Proof. The first part of the theorem can be proved arguing as in the proof of
Theorem 4.1. For the second part, we take p > 0 such that @ is the minimizer of the
functional J in the convex and closed set

K, = {u € Uaa : |yw — lloe < p}-

Now we take u° as a global minimizer of J® in K,. Arguing again as in the proof
of Theorem 4.1, we deduce that {u°}. converges weakly to @ in LP(Q) and (4.5)
holds. O

THEOREM 4.4 (Lipschitz stability for v = 0). Let @ be a locally optimal control of
(P) that satisfies the second order sufficient optimality condition (3.37) and let {u.}
be a sequence of locally optimal controls of (P€) that converges weakly to u in LP(Q)
as € — 0 with the properties established in Theorem 4.3. Denote the associated states
by (7, 2) and (Ye, 2z ), respectively. Then there exists C > 0 such that

(4.6) (19 =llL2@) + 17 = 2l L2(@) +19(T) = (D)l L2 () +[2=(T) = 2(T) | L2y < Cle.

Proof. Since ||y — yllz~(@) — 0 as ¢ — 0, for all sufficiently small ¢ > 0, g.
belongs to a neighborhood of g, where the quadratic growth condition (3.41) holds by
Corollary 3.14. Thanks to this growth condition, we can argue as follows:

Je(u) = Je(te) = F*(te) + rj(ue) = F(te) + rj(ue) + F* (ue) — F(e)
= J(ue) + F*(uc) — F(uc)

> J(u) + g{H@a = 3llZ2iq) + 17:(T) = G(T) 72 ()} + F*(ue) — F(ae).

After rearranging, the last inequality admits the form

(4.7) F*(u) — F(u) — (F* () — F(u)) = g{l\ﬂs = 9lZ2(q) + 17:(T) = G(T) 122
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Arguing as in the proof of the previous theorem we get

1 o i 1 . i
3 o) =) dedt =5 | U~ )"~ (32— v)?)
< Celly = Yellrz)-

In the same way, all other integrals appearing in (4.7) are first simplified and next
estimated by the Cauchy—Schwarz inequality. Finally, we find

cre{lly = Gelle2@) + 12 = Zell2(@) + 19(T) — 9=(T)l2(0) + 12(T) — Z(T)|| 22(0) }
o . _ _ _ _
> §{||Z/s — 0l 7200y + 15 (T) = G(T) |72 (0}
> 2 {19 — 91720 + 19:(T) = 4T 720y + 122 = ZlI72(q) + 12:(T) = Z2(D)|72(0)}
> {15 — Ullr2@) + 119=(T) = 4(T) || L2(0) + [12e — 2|l 12(Q) + [12:(T) — 2(T) || 20 }>-

Here, we have exploited the estimate

1Ze = Zll2(@) = 1Ko(@e — Dllz2@) < Cllge — ¥ll2(q)

and an associated inequality for the time ¢t = T (cf. the proof of Lemma 3.8) to get
the second inequality and the equivalence of all norms in R* to obtain the third one.
Now the result follows immediately. 0

4.2. Tikhonov parameter tending to zero. In this section, we investigate
the behavior of a sequence of optimal controls {@, },~¢ of (P,) and the corresponding
states {(v,Z)} >0 as v — 0. Since Uaq is bounded in L*°(Q), any sequence of
solutions of (P,) contains subsequences converging weakly* in L°°(Q). Below, we will
deduce consequences of this convergence.

THEOREM 4.5. Let {u,},~0 be a sequence of global solutions of (P,) such that
a, —  in L*(Q) for v 1 0. Then @ is a global solution of (P) and ||, —ul|12(g) — 0.
Moreover, the following identity holds:

(4.8) a2y = min{||ul|L2(q) : u is a global solution of (P)}.

Proof. First we observe that the boundedness of {@, },~0 in L>(Q) and the weak
convergence 4, — % for v | 0 in L*(Q) implies that @, — @ for v | 0 in LP(Q) for
any 1 < p < oco. Moreover, 4 € Uag holds. Let (7, 2,) = G(u,) and (7,2) = G(a).
From the equation satisfied by z,, we deduce

t
(4.9) z,(2,t) = e Plog(a,t) + / e PU=) (g, (x,5) — ) ds.
0

We have a similar representation for z in terms of §. Using (3.17) and (3.19) and
the compactness of the embedding W (0,7) C L2(Q), it is easy to pass to the limit
in the state equation (1.1) satisfied by (9., z,) and to confirm that (4,,z,) — (7, 2)
in W(0,T). By the continuity of the embedding W (0,7) — C([0,T], L*(2)), the
convexity of the cost functional with respect to (y, z,u), and using that @, is a solution
of (P,), it follows that

J(a) < hin_}(r)lf J(a,) < hin_}(r)lf Ju(ty) < lm J,(u) = J(u) Vu € Uag.

v—0
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This implies that @ is a solution of (P). Let us prove that {4, },~0 converges strongly
to . Since 4, and u are solutions of (P,) and (P), respectively, we obtain

_ v, _ _ _ _ |2 _ V., _
J(uy) + EHUVH%%Q) = Jy(uw) < Jy(u) = J(u) + §|W||2L2(Q) < J(u) + §||U|\i2(g)7
which implies that [|@y[|7(q) < [[@]|72(g) for every v > 0. From here, we infer
[ullL2(@) < lminf {4, [| L2(q) < Timsup [t [|L2(q) < llullzz(q)-
v v—0

Thus, we have [|4, || z2(q) — ||l 12(@), which leads to the strong convergence , —
in L2(Q). Finally, arguing as above, for any (global) solution u of (P) we have that
|ty 22(0) < |lullL2(q) Vv > 0. Hence,

[l z2@) = lim fla ] 2@) < llullL2(@),

which implies (4.8). O

Remark 4.6. Except for the strong convergence 4, — @ in L?*(Q), the rest of
the statements in the above theorem can be deduced from Danskin’s theorem [10,
Theorem. 1]. However, to apply this result, we would have to verify the hypotheses
of the theorem. Moreover, our proof above is short. To make our paper self-contained,
we preferred to present a complete proof without using Danskin’s theorem.

Now, we formulate a converse result, namely, that strict local solutions to (P)
can be approximated by local solutions of (P, ). This is an analogon of Theorem 4.1;
therefore we omit the proof, because it is almost identical to that of Theorem 4.1.

THEOREM 4.7. Let @ be a strict local solution of (P). Then, there exist p > 0,
v >0, and a sequence {U, Yo<y<p of local solutions of (P,) such that u, — @ in L*(Q)
and every @, affords a global minimum to J, in K, = Uaq N Bp(ﬂ).

Let us mention the following property. If @ is as in Theorem 4.5 and @ is a global
solution of (P) with ||@| 12y > [|@[|12(g), then (4.8) implies that there is no sequence
{t, }u>0 of global solutions of problems (P,) converging to . However, Theorem 4.7
proves that @ can be approximated by local solutions of problems (P,).

We know the convergence of global (local) solutions @, of (P,) to global (local)
solutions @ of (P). But, we are interested in determining the rate of convergence. The
next theorem provides such a rate for the associated states. It is applicable, if the
coercivity condition is fulfilled in the form (3.15) (based on C7) or in the form (3.37)
(based on ET). Notice that y, # v, implies u # v. Therefore, the strong quadratic
growth condition (3.41) ensures in particular that @ is a strict local solution.

THEOREM 4.8 (Holder rate of convergence as v | 0). Let 4 and {U, }o<p<p be as
in Theorem 4.7. Let us assume that one of the conditions (3.15) or (3.37) is satisfied.
Then, the following identities hold:

. 1 _ _ _ _
lim 7 {5 = 9lle2) + 1120 — 2l 2@y} = 0,

N P _ _ _
lim 7 {17(T) = 5T £20) + 12,(T) = 2(T)l| L2(2 } = O,
where (Y, z2,) = G(uy) and (g, z2) = G(u).

Proof. Using (3.36) or (3.41) and the fact that J,(a,) < J, (@), we get

(4.10)

., 90 _ _ v,
J@) + 5 {lle = 9320) + (D) = 5Dy | + Sl

_ v, - -~ v,
< J(u,) + 5””1/”%2(@) = Jy(uy) < Jp(u) = J(u) + §Hu||2L2(Q)'
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From here, we deduce that |@,|/12(q) < ||@]/z2(g) and furthermore

) i _
= {lve = 91320 + 19(T) = H(Dl32(ey }
Vo _ _ _ _
=3 (lallz2@) = Nallz2(@)) < vlallzella — vl L2 (q)-

Hence, the inequality

1/2
1 _ i 2, o
7 {llye = 9llz2@) + 19 (T) = G(D) |2y } < <5|uIIL2<Q>Ilu - UV|L2(Q)>

is fulfilled, where the right-hand side converges to zero. The proof is finished by
recalling that

120 =2l 22(@) H 2 (T) = Z(T) |20y < C{llye — Fllz2@) + l90(T) = §(D)llz2 @} - O

We should mention that this estimate is fairly pessimistic. All our numerical tests
below show that the convergence has the order v, i.e., numerically we see a Lipschitz
rather than a Holder estimate. Though this is not a proof, there is a theoretical
explanation for this. It is known from similar discussions for problems with linear
elliptic equations that a Lipschitz estimate for v — 0 is true provided that the adjoint
state function for v = 0 satisfies a certain assumption on the behavior in its zeros; cf.
[19]. This assumption is often fulfilled and the result of Lipschitz stability seems to
be satisfied also in our case of a nonlinear system of parabolic equations. However,
an associated discussion would go beyond the scope of our paper.

5. Numerical results. The goal of this section is to confirm the convergence of
7, against g for v — 0. This needs a very precise computation of optimal solutions and
therefore we concentrate on the spatial one-dimensional (1D) case. In one dimension,
the Schlégl model develops traveling wave fronts, while the FitzHugh—Nagumo system
exhibits traveling pulses as typical solutions. For 2D examples, we refer to the various
examples in our former paper [8]. For instance, we showed the control of moving spiral
waves.

We apply a semismooth Newton method since it allows us to determine solu-
tions that satisfy the first order necessary optimality conditions with high accuracy.
This method requires the solution of forward-backward parabolic systems that can be
efficiently solved in one dimension but would be very demanding in two dimensions.

Let us briefly sketch our numerical approach. The optimal solutions must obey
the projection formulas

i (1, 1) = Projj, (—%[gp,,(x, £ + 1 Az, t)]) ,

_ . 1_
Ay(x, t) = PI‘OJ[71’+1] <_;@V($7t)>

for the optimal control and the associated subgradient. We define active and inactive
sets for the control v depending on the adjoint state ¢,:

Ao i={(z,t) € Q| —pu(z,t)+ Kk <vaae inQ},

I :={(z,t) €Q |va< —pulz,t)+r <0 ae inQ},
Ao = {(2.1) € Q | lpule.t)] <k ae. in Q)

Iy ={(z,t) e Q| 0 < —pyu(z,t) —k <vbae. in Q},
Ay ={(z,t) € Q | vb < —py(x,t) — Kk a.e. in Q}.
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Almost everywhere on A,, Ao, and A, the optimal control must be equal to a, 0,
and b, respectively. Almost everywhere in Z_, respectively, Z,, the equation u =
1[—pu + K], respectively, u = 1[—p, — ] must hold true.

By these sets, the system of necessary optimality conditions can be expressed in

the form

9]
ay—Ay—FR(y)—i—ay—u

Ez—l—ﬁaz—’yy

o — Ao+ R (y)p— v —c (y—vq) :
0
—o P BY +ap -G (2 2q)
1
U—XAaa—XAbb+;(XI+(80+K)+XI_(<P—H))

0:—7:(9’2,9071#71!) = _E

where xi, k € {Aa,Z—, Ao,Z+, Ay}, denotes the indicator function of the associated
sets. This optimality system, along with the associated initial and boundary condi-
tions, is solved by the semismooth Newton method. To shorten the presentation, we
do not explain the steps of this standard method and refer to [18], where the method
is presented in the context of sparse controls for elliptic equations. The method is
terminated if a suitable norm ||F|| is sufficiently small.

To avoid certain oscillation effects of the control iterates, we did not take the whole
Newton step and added the computed Newton direction (dy, dz, dy, dy, d,,) with some
step-size s to the last iterate (yg, 2k, ¥k, ¥k, ug). We invoked a modified Armijo—
Goldstein rule, since the standard one slowed down the algorithm considerably.

We fix m € N and determine step-sizes {s1,...,8m} by s1 := 1 and s; :=
(% + rand (0, %)) si-1, I € {2,...,m}. Here, rand (0, %) denotes a random value
between 0 and % Out of this set, the step-size s was taken that minimizes the
norm of F(yy + sdy, 2k + sdz, pr + sdy, ¥ + sdy, ur + sd,,). Fairly small numbers
m € {10, ...,25} were sufficient for making the method fast.

To have a sufficiently accurate initial iterate for the semismooth Newton method,
we applied a few iterations of the nonlinear CG method that we also used in [8].
Moreover, the CG method was our method of choice in the case v = 0.

To set up an optimality indicator for u, we define the function

max (0, —gu(z,t) — ky Az, t))  if u(z,t) =a,

Ru(z,t) :=  |Qu(m, t) + Ky Az, 1) ifa <a(z,t) <b,
max (0, u(z,t) + Ky Az, 1)) if a(z,t) = .

As an optimality indicator, we used

(5.1) 0 := QI IRullz2(@),

where |@Q] is the volume of ). Our optimization algorithms are terminated for suffi-
ciently small O.

5.1. Example 1 (Schlogl model). At first, we consider the Schlégl model and
fixa=B8=y=8§=0,c% =0, cg =0, c¥ =0, and cg =1, i.e., we are tracking some
yq in Q. Starting from a naturally developed uncontrolled wave profile y;, 54+ shown
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Fia. 1. Example 1, natural development y,, ¢+ of the wave profile for w = 0 (left) and the desired
state yq (Tight).

in Figure 5.1 (left) at ¢ = 0, the target is to approach a piecewise linear shape defined
by

1, 0<z<9.5,
yo(z,t) =105 —z, 9.5 <z <10.5,
0, 10.5 < & < 20;

hence the desired front y¢ is a stationary nonsmooth wave front. As nonlinearity, we
fix R by

R(y) =y(y —0.25)(y — 1).
For Q = (0, 20), partitioned by 201 equidistant nodes, the initial value of our desired

wave front satisfies yo(10) = 3. Figure 5.1 displays the natural development of this
wave profile as well as the desired state yg for the observed time horizon (0, 10).
As a sparse parameter, we set k = le — 2 and fix the control bounds a = —1

and b = 1. For v = le — 9 the optimal control is displayed in Figure 2 together with
its associated state, its adjoint state, and the related sets A,, Ay, Ap that should
coincide with the active/inactive sets of @. As in the other examples, they show a
very good coincidence.

Let us explain why this form of the optimal control can be expected. In the
unconstrained case, we insert the desired function y¢ in the left-hand side of the 1D
Schlégl model,

0 9? X
ng - @QQ + R(yq) =0+ d9.5 — d10.5 + R(yg) =: u.

The result is a control such that the objective functional is zero for v = 0. Notice
that the first derivative of yg is a function of Heaviside type with jumps at 9.5 and
10.5, hence the Dirac Delta functions dg 5 and —d19.5 are obtained as derivatives. The
“best” unconstrained control 4 is a measure and not a measurable function.

With bounded and measurable control functions taking values in [a, b], the desired
state yg cannot be reached. However, the optimal controls will approximate the
measure defined above. This explains why @ is of bang-bang-bang type; cf. Figure 2.

To compute the optimal solution for v = 0, we used the nonlinear CG method
and took the optimal control for v = 1e — 9 as the initial iterate. However, the CG
method did not improve the initial iterate; the optimality indicator ©® = 6.21e — 13
from (5.1) was very small. For this reason, we took § := g1._g as a reference solution
to determine the order of convergence as v | 0. In both the L?(Q)- and L*°(Q)-norms,
|7, — 7|l appears to decay linearly for v | 0; cf. Figure 3.
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Fic. 2. Ezample 1, optimal control @ (top left), state § (top right), adjoint state @ (bottom
right), and associated active/inactive sets (bottom left) for v =1le — 9.
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F1a. 3. Bzample 1, |9 — 9llr2() (left) and |9y — gl (q) (right) for v 1 0.

5.2. Example 2 (FitzHugh—Nagumo system). Here we consider the 1D
FitzHugh-Nagumo system for Q = (0,75), T = 10, « = 1, 8 = 0, v = 0.33,
§ = —0.429, and R(y) = y(y—v/3)(y++/3). We take a natural impulse as initial value;
this is a snapshot of an (instationary) impulse that develops in the uncontrolled case
as a typical solution of the 1D FitzHugh-Nagumo system. For k = 0.1, a = —10, and
b = 10, the goal is to double the velocity of the natural impulse in the y-component
of the solution (y, z). To this aim, we fix ¢}, = ¢Z = ¢ = 0 and ¢) = 1. The natural
development of the initial impulse and the desired trajectory are shown in Figure 4.

Figure 5 displays the optimal control and the adjoint state for v = le — 10.
Graphically, the optimal state does not differ from the desired state displayed in
Figure 4. Moreover, also here the active sets of the optimal control and the sets
Ty, Ao, Z_ coincide. We skip these figures for space reasons. The calculated control
does not touch the bounds a = —10 or b = 10. Its maximal absolute value is 8.89.

As in Example 1, taking this result as initial control for the case v = 0, the CG-
method did not further decrease the objective function; the value © = 9.81e — 13 of
the optimality indicator already is very small.
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Fia. 4. Ezample 2, natural development ygq¢ of the impulse for u = 0 (left) and the desired
state yq (Tight).
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Fic. 5. Ezample 2, optimal control 4 (left) and adjoint state @ (right) for v = le — 10.

Also in this example, the decay of |7, — || in the L?(Q)- and L*°(Q)-norms seems
to be almost linear. The deviation of the last value for v = 1le — 9 is due to numerical
limitations. For very small v > 0, the accuracy cannot be expected to get any better.
Notice that the term 1/v appears in the optimality system. We dispense with an
associated graphical representation as in Figure 3, as the decay looks similar.

Let us emphasize that the values of |7 = yq|l ~ (g and [|7, — yQ||L2(Q) from
Table 1 are quite large. Since the sparse optimal control acts very localized, not all
features of the desired trajectory can be achieved. As Figure 6 displays, the profile of
the impulse is not conserved perfectly, but the main characteristic is. Therefore, we
believe the result is close to global optimality.

5.3. Example 3 (FitzHugh—Nagumo system with explicitly known
optimal solution). In the preceding example, for v = 0 or v very close to 0, the fig-
ures revealed areas with nonempty interior, where the optimal control took nonzero
values strictly between a and b. According to the analysis, the absolute value of
the adjoint state should be equal to x in these regions. However, this is a numer-
ical result for a finite dimensional approximation. We cannot be certain about the
structure of the real optimal solution. There are two possibilities. The exact set
{(z,t) € Q | |p(x,t)] = k} might have positive measure as the computation seems
to indicate. On the other hand, this might be a numerical artifact and the measure
of the set is zero. In that case, the optimal control should touch the bounds + 10.
Perhaps our numerical resolution is not sufficiently fine to see this. To show that also
the first explanation might hold true, we construct an associated example as follows.
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TABLE 1
Example 2, |5 — yqllL2 gy and |9y — ¥llL=(q)-

| v | ||37V - ZJQ||L2(Q) | H?u - yQHLOO(Q) | ||gu - ?7||L2(Q) | ||17V - ?”LOO(Q) |
1 7.95036 2.86134 7.18160 2.26412
le-1 3.22170 1.28987 1.52707 7.70512e-1
le-2 2.94165 0.91893 4.96245¢-1 3.28877e-1
le-3 2.98672 0.73515 1.32929¢-1 1.66305e-1
le-4 3.00047 0.71178 2.14528e-2 4.08718e-2
le-5 3.00258 0.70999 2.43604e-3 5.02801e-3
le-6 3.00281 0.70981 2.47567e-4 5.15669¢-4
le-7 3.00284 0.70979 2.51592e-5 5.17744e-5
le-8 3.00284 0.70979 4.82772e-6 5.25352e-6
le-9 3.00284 0.70979 4.13440e-6 6.00743e-7
le-10 3.00284 0.70979 0 0
10 2
0.6 [
8 YQ !/\
0.4 o ; /
6 02 | \
- or
4 0 ‘)
|
2 _02 - L / \
0 —04 » T E== .
0 0 20 40 60

Fic. 6. Ezample 2, difference §j — yq in the space-time domain Q (left) and § in comparison
to yg att =5 (right) for v = le — 10.

Let Q = (0,50), T = 10, and define ¢(z,t) := E(x) T (t), where £ € C?(Q2) and
T € C0,T]. Under these conditions, we first construct an adjoint state ¢ that is
equal to —k in a subset @), of (Q with positive measure. Next, we fix an associated
control 4 of our choice which is equal to zero in @ \ @, but nonnegative in Q.

Setting ¢ = ¢ = ¢}, = 0 and ¢}, = 1 once again, for fixed parameters the second
adjoint state v is obtained directly from @ by (1.8). Moreover, since 1 is also fixed,
g can be calculated numerically from the state equation. Along with @, ¢, and 7, the
adjoint equation leads to the desired trajectory yg. With this approach, we know an
exact stationary point for v = 0.

Let a =1, 3=0,7= 1,5 =—1 and the nonlinearity R(y) = y(y — 2)(y + 1) be
given. The constant initial values yo = —% and zg = —g are stable for this setting.
With £ = le — 2, we define fi(z) == -8k (23 — 2%), gu(x) == k — fo(1 — ) =
—k (1 — 8z + 2422 — 2423 + 82%) and
fu((x —10)/5) if 2 € [10,12.5],
9x((x —10)/5) if z € (12.5,15],

—K if x € (15,35),

€)= 3 (40— 2)/5) if z € [35,37.5),
£.((40 — 2)/5) if z € [37.5,40],
0 else,
(cos(2m (t—0.5))+1) /2 ifte[1,1.5]U[3.5,4],
T(t): = 1 if ¢ € (1.5,3.5),
0 else
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Fic. 7. Ezample 3, analytically constructed optimal control @ (top left), state § (top right),
adjoint state @ (left), and decay of (|G — Gl p2(q) for v 1 0 (bottom right).

TABLE 2
Ezample 3, |90 —yollL2(q) and |9y — JllLee(q)-

| v | g, — yQHL2(Q) | 7. — ?JQ||L°°(Q) | lgy — Z7||L2(Q) | 1go — ?3”1,00(@) |
1 1.25458 0.32876 1.13356 2.86116e-1
le-1 0.59012 0.18273 4.31176e-1 1.30223e-1
le-2 0.29383 0.09338 8.71793e-2 3.26041e-2
le-3 0.24118 0.07169 1.06175e-2 4.29191e-3
le-4 0.23582 0.07172 1.09357e-3 4.45709e-4
le-5 0.23529 0.07173 1.09709e-4 4.47483e-5
le-6 0.23523 0.07173 1.09745e-5 4.47662e-6
le-7 0.23523 0.07173 1.09749e-6 4.47680e-7
le-8 0.23523 0.07173 1.09750e-7 4.47629e-8
le-9 0.23523 0.07173 1.26651e-8 4.53634€-9
0 0.23523 0.07173 0 0

to obtain ¢. For the control, we define @(x,t) := max(0, (1 — (¢t —2.5)%)*o(x)), where
() := max(0,1 — ((x — 25)/10)?). This analytically defined optimal control along
with its associated state and adjoint state are shown in Figure 7.

This approach has the advantage that we have a well-defined stationary point for
v = 0 and can confirm the convergence against this point. Also in this example, we
observe a linear decay of |4, — 9||. For the norm of L?(Q) this is displayed in Figure
7; for the norm of L>°(Q) this looks similar.

Remark. Since @ only takes values in [0, 1] and our approach does not depend on
the bounds a and b, @ satisfies the first order necessary optimality conditions for any
a < 0and b > 1. In particular, this works for a < 0 and b > 1 so that the control does
not touch the bounds. Let us mention that our example is not completely analytic.
The states y and ygo are numerically obtained. We emphasize that the first order
necessary optimality conditions are satisfied but that global optimality of @ cannot
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be deduced from this. Even the local optimality cannot be ensured. For this purpose,
we would have to check second order sufficient optimality conditions. This cannot
be done numerically. However, even with the quite high penalization from the sparse
term, the computed state ¢ is very close to the desired yq. Most likely, the consistence
of the first order optimality conditions together with the quite small objective value
indicate global optimality of u.
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