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Abstract

We review the behavior of standard dynamic geometry software when
computing envelopes, relating these approaches with the various defini-
tions of envelope. Special attention is given to the recently released ver-
sion of GeoGebra 5.0, that implements a recent parametric polynomial
solving algorithm, allowing sound computations of envelopes of families
of plane curves. Specific details on this novel approach are provided in
this paper.

Keywords: automated deduction in geometry, envelope computation,
dynamic geometry

1 Introduction

Loci determination is unanimously accepted as a key characteristic of dynamic
geometry (DG) systems. DG deals with geometric constructions that can be
changed dynamically [1]. The locus ability is the second most present feature in
the Wikipedia list of DG software1. Less attention has been paid both from DG
developers and users to the computation of a particular kind of loci, namely, the
envelopes of families of curves. Thus, from the developers side we observe the
dominance of a simple strategy for envelope computation, consisting on tracing
–for a sufficiently large number of instances– an element of the given family of
curves, as the main tool for graphically suggesting the corresponding envelope.
On their side, users seem to be comfortable with already existing, envelope
computation related, tools in DG programs. At least we have not detected
significant requests to enhance such tools, as it is the case concerning locus

1http://en.wikipedia.org/wiki/List of interactive geometry software

1



computation facilities2. Nevertheless, envelopes, apart from being a classical
topic, involve different mathematical fields and can be used fruitfully in science
teaching.

Throughout this paper we will only consider envelopes of families of plane
curves.

The aim of this note is, first, to perform a systematic discussion of the con-
struction of envelopes in the top four most widely distributed DG environments,
namely Cabri3, Cinderella4, GeoGebra5 and The Geometer’s Sketchpad6 (GSP).
To this end, we recall basic notions about envelopes and refer to different reputed
sources, some classical and some very modern, for further details on the elusive
concept of envelope. Through selected examples and cases, we review how the
above mentioned DG systems perform when computing envelopes. Then, we
focus on describing the new command for envelope computation featured in
GeoGebra 5.0. The algorithmic approach behind this command is presented,
as well as some examples of its performance, along with a rough description of
some essential limitations of the proposed method.

2 Formal definition of envelope

Usually, informal definitions of envelope highlight the idea of contact. For in-
stance, an envelope is defined as a curve which touches every member of a family
of curves or lines7, or a curve C such that C is tangent to every member of the
set [of curves]8. Even a collaborative source as Wikipedia begins its article on
the concept of envelope defining it as a curve that is tangent to each member
of the family at some point9. But soon, the encyclopedia introduces other al-
ternative definitions, and mentions different set containments between them.
Although someone could doubt on the soundness of the Wikipedia, in the en-
velope case its description faithfully follows the main ideas developed in more
reputed sources as [2]. There, the envelope E1 or discriminant of a family of
curves in the real (x, y)-plane F (x, y, t) = 0, parametrized by t ∈ R, is defined
as the set10

E1 = {(x, y) ∈ R2 : ∃t ∈ R, F (x, y, t) =
∂F

∂t
(x, y, t) = 0}. (1)

In the same reference, three other definitions of envelope are also introduced.
For instance, a second notion, that of an envelope E2 considered as the curve
tangent to Ft(x, y) = F (x, y, t), for each t. A new idea of envelope E3 is also

2http://www.dynageo.de/discus/messages/14/232.html?1076183239
3http://www.cabri.com
4http://cinderella.de
5http://geogebra.org
6http://www.dynamicgeometry.com
7http://www-history.mcs.st-andrews.ac.uk/history/Curves/Definitions2.html#Envelope
8http://xahlee.info/SpecialPlaneCurves dir/Envelope dir/envelope.html
9https://en.wikipedia.org/wiki/Envelope mathematics

10Note that we restrict the definition to families of plane curves. Furthermore, the notation
here used is slightly modified with respect to [2].
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presented as the limit of intersection points of nearby curves Ft. Finally, the
notion of envelope E4 is outlined as the boundary of the region filled by curves
Ft. Furthermore, it is shown that Ei ⊂ E1 for i = 2, 3, 4.

In all these cases, the given family of curves we would like to compute its
envelope, is presented as depending on a single parameter t. Now, if the family
of curves, as it usually happens in DG, depends on a point moving on some
constructed path, users will deal not anymore with a uniparametric family, but
with one involving two parameters, namely, the two coordinates of the mover
point. In this case the family will be described by F (x, y, t1, t2) = 0, where
parameters t1 and t2 are constrained by the restriction of point (t1, t2) to move
along a one-dimensional path in the plane, that is, by adding an extra equation
g(t1, t2) = 0. In this case the defining condition in envelope E1 is to be replaced
by

E1 = {(x, y) ∈ R2 : ∃t1, t2 ∈ R, F (x, y, t1, t2) = g(t1, t2) =
∂F

∂t1

∂g

∂t2
−∂F

∂t2

∂g

∂t1
= 0}.
(2)

Finally, let us remark that, in general, more than two parameters could
be involved in the construction of the moving path for the parametric point
describing the family of curves. In such a case, given a n-parametric family
F (x, y, t1, . . . , tn) = 0, there will be, for sound DG constructions, exactly n− 1
constraints g1, . . . , gn−1, and the envelope E1 is the set of real solutions x, y
of the system consisting of F (x, y, t1, . . . , tn) = 0, gi(t1, . . . , tn) = 0, for i =
1, . . . , n− 1, and the Jacobi determinant∣∣∣∣∣∣

∂F/∂t1 . . . ∂F/∂tn
∂g1/∂t1 . . . ∂g1/∂tn

∂gn−1/∂t1 . . . ∂gn−1/∂tn

∣∣∣∣∣∣ = 0

for real values of t1, . . . , tn.

3 Envelopes in dynamic geometry software

3.1 Envelopes as boundaries of plane regions

Definition E4 has been traditionally used in DG systems to suggest envelopes.
Since tracing an element in any environment is a quite basic task for DG pro-
grams, given a family of curves, selecting a family member and activating its
trace, a user can inspect the part of the plane swept by the curve and get a
feeling of the envelope. Consider, for instance, a circle with center (0, 0) and
radius 4, the point A(3, 0), and a point B moving on the circle. Draw the line
AB and its perpendicular line through B. Activate the trace of this last line
and drag B along the circle. The user will get, in any of the four DG systems
enumerated in the Introduction, a screen similar to the one in Figure 1.

Nevertheless, stating that the graphically displayed envelope is, in fact, an
ellipse, will usually be out of bounds for inexperienced users. With envelope
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Figure 1: A family of straight lines enveloping an ellipse.

computation in DG systems mostly limited to this tracing approach, even teach-
ers could ignore in some cases which is the precise curve that corresponds to
the displayed envelope. Although this situation can be well suited for discov-
ery tasks, the concern here is the automatic computation inside the system.
And, since there is not a curve as result, this method for envelope computation
sounds unpromising. Even worse, sometimes the boundary can be hard to vi-
sualize, ill–defined or non existent at all, adding difficulties for the user to draw
any specific conclusion. As an illustration of this latter case, let us reconsider
the construction above by designing A to lie in the circle, say A(4, 0), and then
trace again the line AB. Now the trace is the whole plane (Figure 2), and thus
–after some reflection– we should conclude that the envelope is empty, according
to definition E4. Moreover, the purely graphical approach does not provide an
argument for the noticeable fact that the traced lines seem to concentrate on
the circle point opposed to A, turning this point –for non expert users – into a
potential candidate for the envelope. This fact is not fortuitous, as we will see
below.

GeoGebra and GSP do not incorporate any refinement of this envelope-
computation-by-tracing strategy. At least in these programs a user can manu-
ally sample the one-dimensional path of the parametric point and trace a family
curve for each sample point, in order to get a more pleasant visualization of the
envelope. A GeoGebra command for this task is Sequence11, as it has been
recommended in the GeoGebra forum, where a request for enhancing envelope
computations has been posted12. On their side, both Cabri and Cinderella auto-
mate this process by using their Locus command. Although this command will
be further discussed in a following subsection, let us here pay special attention

11http://wiki.geogebra.org/en/Sequence Command
12http://www.geogebra.org/forum/viewtopic.php?f=2&t=20103
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Figure 2: The lines sweep the whole plane.

to its behavior in the envelope computation context.
Thus, the standard DG approach to find the geometric locus of a (tracer)

point depending somehow on another (mover) point consists of automatically
sampling the path of the mover, and, for each sample, compute the actual
position of the corresponding tracer point. The list of computed points is then
plotted, showing the sought trajectory (see [3] for a full description of loci finding
strategies in DG). Replacing the tracer point by a tracing curve, Cabri and
Cinderella commands are then used to plot a collection of curves in order to
suggest the envelope. The main difference with respect to the manual approach
lies on the sampling mechanism, which can incorporate sophisticated methods
to divide the parameter path. A direct translation of this idea is thus used
by Cabri and Cinderella when dealing with envelopes. Facing the envelope
of ellipses with foci A(4, 0) and B(0, t), where B is constrained to a segment
such that −3 ≤ t ≤ 3, and major axis 5, Cinderella will output as result a 2–
dimensional region (Figure 3, left). Cabri, if using a macro to construct ellipses
from foci and an ellipse point, returns a similar region. Nevertheless, changing
its Preferences in the Options menu by selecting Envelope and increasing the
Number of objects in locus to 500, the border of the region appears (Figure 3,
right), showing a more accurate result.

3.2 Envelopes as limit of intersections of nearby curves

Although no current DGS strictly features automatic envelope computation fol-
lowing this approach, it could be implemented by computing the intersection of
a curve of the family with another (close) curve, and finding the locus of these
intersection points, that will define the envelope. GSP, although not having
a specific command to deal with envelopes, gives some related advice about
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Figure 3: The envelope of a family of ellipses in Cinderella (left) and Cabri
(right).

constructing envelopes13. There, the statement a geometric envelope can be
thought of as the limit or edge of the locus of a line or a circle is succesfully
applied to find some envelopes. This protocol catches the concept behind def-
inition E3, and it is a natural way to get the envelopes as curves. Yet there
are some difficulties that we will summarily describe through an example. For
instance, let us consider the construction from Figure 1, where the intersection
of two close perpendicular lines will be a point whose locus, in turn, will be the
sought envelope when both curves are infinitely close. Since taking such a limit
is unfeasible in current DGs, we conclude that we can only find an approximate
envelope through this strategy. Figure 4 shows a Cinderella construction where
the intersection D of two family lines is controlled by dragging point C. A
segment ending at C determines the distance between circle points B and B′,
and, thus, the selected pair of lines. The locus of D when B moves along the
circle approaches the envelope as the segment length approaches to 0.

If we intend to go beyond this approximate construction and if we (wrongly)
attempt to consider the limit case by selecting a 0-length segment, then no locus
is plotted, although Cinderella reports that such locus exists in its Construction
Text window. Since, in this construction, the locus has an identifying equation,
0 = 0, we should understand that the computed locus is the whole plane! This
answer, as a locus, is the correct one for the 0-length case, because we are asking
about the position of any point in the perpendicular line while this line sweeps
the plane. Obviously this is not the correct computation for the envelope, since
the limit of the intersection of two lines, when the lines get arbitrarily close, is
not the intersection of a single line with itself, as it happens here in the 0-length
case. Thus, the discussed strategy is not suitable for envelope computation and
can, at most, as a by-product of the approximate computation, reinforce the
belief of the user on an ellipse being the envelope.

13http://www.dynamicgeometry.com/Technical Support/FAQ/Constructions and Use/
Envelope Constructions.html
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Figure 4: An approximate envelope computed with Cinderella.

As a side remark, let us notice that correctly computing the limit of in-
tersection points, i.e. the characteristics points, requires considering, first, the
family Ft(x, y) = 0 and, then, considering the distance of the points of one of
the curves to a nearby one Ft+dt(x, y) = 0, such that this distance is greater
than dt. That is, finding those Ft-ordinary points satisfying that

F (x, y, t) = 0,
∂F

∂t
(x, y, t) = 0. (3)

In summary, the characteristic points of Ft are the ordinary points of Ft

such that their distance to Ft+dt is an infinitesimal of higher order than dt [4,
p. 37], which are the (x, y) values of the solutions of the above system.

Clearly, computing the loci of characteristic points returns correct envelopes,
as it has been illustrated in [5]. But computing the characteristic points it is not
an easy task. For instance, it should be noted that real characteristic points are
not always limit of real intersection points. A canonical example in [4] illustrates
this issue by considering a curve as the envelope of its osculating circles. These
circles have not real intersection for infinitely close points. Their intersections
are imaginary conjugated whereas their limit is a real point in the curve.

We do not discuss envelopes following definition E2 because the concept of
tangency is subsumed by the idea of studying intersections of nearby curves.
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Figure 5: An approximate envelope computed through definition E3 in GeoGe-
bra.

3.2.1 An illustration concerning differences between definitions E3

and E4

Let us reconsider the envelope of ellipses with foci A(4, 0), B(0, t),−3 ≤ t ≤ 3,
and major axis 5 (see Figure 3). The above approach of computing the loci of
intersection points of nearby curves shows a result which is similar to the one
obtained through the approach to the envelope computation as the boundary
of some region traced by the curves of the given family. But there are some,
albeit small, important differences. Figure 5, left, illustrates the approximate
envelope when the distance between parametric points B,B′ is set to 0.5. There,
the envelope is computed as the loci of intersection points L,M of blue and red
ellipses corresponding to positions B and B′ of the variable focus. Note that if B
is at an extremum position, say (0, 3), the blue ellipse degenerates into a double
line (Figure 5, right). The intersections of this fixed (although degenerated)
ellipse with nearby ones are two points: L, lying on the approximated envelope,
and M , which is not part of it. Approaching B′ to B (by dragging the red point
in the construction), we get a sequence of points M , all lying in the degenerated
ellipse, with limit A. In other words, A is an isolated characteristic point, and,
as such, A should be also considered as part of the envelope.

3.2.2 Contradictory results in Cabri and Cinderella

Let F (x, y, t) = x − t be a family of vertical lines in the plane. Its envelope,
according to definition E1, consists of the real points satisfying {x− t = 0,−1 =
0}, i.e. the empty set. Besides the mentioned set containment Ei ⊂ E1, i =
2, 3, 4, it is clear that this family occupies the entire plane, so the E4 envelope
must be empty, as expected. On the other hand, the lines do not intersect, and,
thus, the E3 envelope is also empty.

The Envelope command in Cabri does not return any object for this family,
elementary constructed with a semifree point moving along the x axis and the
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Figure 6: The point at the infinity as envelope of vertical lines in Cinderella.

perpendicular lines through these points. Nevertheless, Cinderella, although
not showing any new graphic element, computes a point as result of its Locus
command (recall that the Cinderella command claims to return envelopes if
selected a point on a linear path and a curve parametrically depending on the
point). This new point C (see Figure 6) is a point at the infinity, so we guess
that Cinderella follows, partially at least, definition E3 for envelope searching.
Note also that Cinderella provides native support for other geometries than
Euclidian. So, considering the point at infinity as intersection of parallel lines
seems to be natural inside this system.

Things change for Cabri if we restrict the values of the parameter. Instead
of being unconstrained, we consider now a point gliding on the unit circle, and
vertical lines passing through it. Now, the graphic envelope is correctly drawn.
However, asking for the equation of the found envelope we get a wrong result
(Figure 7). Cabri ability for returning loci equations, up to degree six, is not
robust enough to deal with this simple envelope, which can be described by the
conjunction of two equations. Cinderella, in turn, is not able to detect the new
situation, returning again the point at the infinity.

3.3 Envelopes as discriminants

Neither if tracing some curves of a given family, nor when computing the locus
of intersection points of nearby family curves, do DG environments provide, in
general, further information about envelopes. For instance, a user gets no idea
at all about the expression of the computed curve(s) in the envelope displayed
of Figures 3 and 5. Even simple envelopes, such as the one in Figures 1 and
4, cannot be easily managed if ignoring their analytical expressions. Thus, a
naive GeoGebra user, once convinced he/she is dealing with an ellipse, could
attempt to construct five points on it and use the Conic command in order to
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Figure 7: The correct graphic envelope in Cabri and its wrong equation.

obtain the corresponding analytic equation. But, as it is well–known, numerical
inaccuracies will severely determine the final equation. Even worse, if there is
no sound conjecture about the actual degree of the graphically presented curve,
this interpolation procedure is just a non reliable guessing.

The reader will have observed that, for the construction we are discussing,
Cinderella correctly labels as an ellipse the obtained locus, and that its equation
is accessible in the Construction Text window. Unfortunately, this characteristic
is not universal in Cinderella. When searching for loci, the system gets a list of
locus points after sampling the path. This list is tested in order to see if their
members are in a line, circle or general conic. This test is applied not only to
the current instance of the construction, but to an extensive number of similar
instances, in a probabilistic setting. If the tests are successfull, the equation
of the line, circle or conic is returned for describing the object and for easier
rendering. Concerning envelopes, it seems that Cinderella uses definition E3,
thus reducing envelopes to loci. Furthermore, intersections are only computed
in the case of families of straight lines. If the curves of the family are different,
the strategy is limited to a smart sampling of the parameter path and plotting
some curves of the family.

No standard DG system is currently able to automatically compute equa-
tions of loci or envelopes in a sound manner, i.e. by using definition E1 of
envelopes as discriminants. In this direction let us mention that there has been
some proposal about linking DG environments with Computer Algebra Systems
(CAS) in order to enrich the former with symbolic capabilities. Also, academic
prototypes have been developed showing the feasibility of these ideas. As a
sequel of [6], JSXGraph, a Javascript library for DG computations, and GeoGe-
bra, incorporated a symbolic approach allowing the knowledge of loci equations.
A similar proposal related to envelopes was described in [7]. Both works were
based on algebraic elimination via Gröbner bases, used special CAS packages,
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such as CoCoA and Singular, and implemented a protocol to communicate them
with a DG system. The idea, for envelopes, is straightforward: construct in the
DG system the family of curves depending on a point, translate the family and
the point to an adequate algebraic description, and apply definition E1 via poly-
nomial elimination. Once the elimination is done, incorporate the result into
the geometric environment as a new object whose equation is now known.

Let us note that this procedure is only defined for the purely algebraic set-
ting (that is, limited to dealing with constructions that involve just equality
constraints). So, no guarantee of success exists if applying it to semialgebraic
constructions (i.e. if inequalities are involved). For instance, the above men-
tioned family of moving ellipses with a variable focus can be not considered as
an algebraic one, since the focus is constrained to belong to a segment and, thus,
one of the variables is subject to inequalities expressing it should be limited by
the extremes of the segment. Lacking of an efficient proposal for dealing with
the semialgebraic case, let us consider this family in a purely algebraic fash-
ion, even if then its description includes some other, unexpected, curves. Thus,
let us apply the standard construction for an ellipse of foci at points A(4, 0)
and B(0, t) and major axis of length 5, yielding that an ellipse of the family is
described by

4y2t2−4yt3−36x2−100y2+t4−32xyt+16xt2+164yt−82t2+144x+81 = 0, (4)

and the elimination of this polynomial and its partial derivative with respect to
t is, once factorized,

(2x+ y2 − 9)(18x− y2 + 9)(x2 − 8x+ y2 + 16) (5)

that is, two parabolas and the point A(4, 0). We observe that point A, also
found following definition E3, is, as expected, also included into the output for
envelope E1. Here, the new knowledge provided by this algebraic approach is
about the borders of the region where the ellipses move, which are now clearly
defined by the pair of parabolas. Note that these parabolas envelope not only
the ellipses, but also do with the hyperbolas that the family equation defines
when the variable focus B lies out of the segment, i.e. when t < −3 or t > 3.

Besides the algebraic vs. semialgebraic setting, the elimination approach
deals with a second difficulty, since it does not return projections, but their
closure in a Zariski topology, i.e. it always returns algebraic sets and not just
some parts of them. Yet, our definition of E1 explicitly requires a projection
(as expressed by the ∃ symbol included in the definition). Thus, when looking
at a family of curves F (x, y, t) = 0 as a surface, its envelope is the surface
projection on the (x, y)–plane, and eliminating t we get an algebraic variety
containing perhaps strictly the sought projection, since the algebraic variety
can include some spurious points or sets that are not part of the envelope.
Finally, degenerate instances of the construction can also introduce, through
their projection, other spurious factors into the elimination result. Consider, for
example, finding the deltoid as the envelope of Simson-Wallace lines. Given a
triangle ABC and a point P moving on its circumcircle, construct the orthogonal
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projections of P on sides AB and AC, M and N , and find the envelope of lines
MN when P describes the circle. As shown in [7, p. 8], the elimination result
includes a quartic curve, the Steiner deltoid, and an extra linear factor which
corresponds to a degeneracy. When P and A coincide, both points M and N
are identical, and no line MN is defined. Thus, the case of P = A should
be excluded in order to get a sound envelope. An expert user could explicitly
remove this degeneration when defining the polynomial system for elimination
by using the trick of Rabinowitz, but currently there is no way to automatically
detect them.

4 A symbolic approach to envelope computation
in GeoGebra 5.0

As shown in the previous section, there are different problems that need to be
circumvented concerning the elimination-based approach to envelope computa-
tion. An improvement in this direction is the new Envelope command in the
desktop version of GeoGebra 5.014. Following some ideas by the authors of the
present paper, among others [3], instead of performing standard ideal-theoretic
elimination, the polynomial system is seen as a parametric one, where here we
think that x, y are parameters and t or t1, . . . , tn are variables (note the change
of the usually assigned meaning). Thus, parametric polynomial system solving
can be applied to study the solutions for given parameter values. Being more
specific, GeoGebra uses the recent GröbnerCover algorithm [8] to discuss and
classify the system attending to its number of solutions (finite, infinite and no
solution). The envelope of Figure 1, for A(3, 0), is computed by this algorithm
as the difference of two varieties

V(7x2 + 16y2 − 112) \ V(9y2 + 49, 3x+ 16). (6)

Note that points (−16/3,±7i/3) should be excluded for the envelope output;
nevertheless, being non-real points, just the ellipse 7x2+16y2 = 112 is returned
as an implicit curve (Figure 8) and GeoGebra shows a correct result. If the
points to exclude were real, GeoGebra would currently return the complete
ellipse without removing any point, because its data structure is not able to
manage constructible sets, i.e. sets described as difference of varieties. Users
must be aware of this fact, as well as that internal computations are performed
in the complex field, not the real one, that is, what is actually computed is the
complex, algebraic envelope, not the real or semialgebraic one.

Dragging A to (4, 0) the algebraic computation of the envelope outputs now
the equation x2+8x+y2 = 16 and no plot is shown. Note that the curve reduces
now to the real point (−4, 0), and that current plotting features of GeoGebra
are not able of graphing such (degenerated to a point) implicit curves. For such
an instance of this envelope construction, solving the associated parametric
polynomial system we get two types of solutions:

14http://download.geogebra.org/installers/5.0
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Figure 8: An envelope correctly computed in GeoGebra5.0.

• t1 = 4 and t2 = 0 for parameter values in V(y) \ V(y, x+ 4), and

• t21 + t22 = 16 for parameter values in V(y, x+ 4).

Note that the first one corresponds to a degeneration (when point B(t1, t2)
coincides with (4, 0), being undefined the line AB and so its perpendicular).
Since the line y = 0, a 1–dimensional object, corresponds to a 0–dimensional
set of values (t1, t2), this solution is to be discarded. On the contrary, the second
part exhibits the opposite behavior. For any other position of B in the circle
than (4, 0), we get x = −4, y = 0. Having in mind the importance of caustic
curves for the historical development of the theory of envelopes (see [9]), one
would say that the family lines burned the point (−4, 0) .

As this example roughly shows, it is crucial for envelope computation to
compare dimensions of solution sets for different pieces of the parameter space.
Thus, the envelope protocol currently followed by GeoGebra performs such com-
parison, accepting as (part of the) envelope the parameter values that yield to
solutions of dimension verifying certain conditions, involving sophisticated al-
gebraic computations [10]. Think, for instance, that there are constructions
where an envelope factor has dimension 1 and it comes from a finite set of ti
values, being not a degeneracy. Recall, for example, the case of the envelope
of the family of vertical lines. We concluded in a preceding section that this
family has no envelope at all, since the contradiction −1 = 0 is included into
the system one has to solve to compute the envelope. GeoGebra answers as
expected, returning the empty implicit curve 0 = −1 (Figure 9, left). But if the
family of vertical lines is now defined as the collection of vertical lines passing
through a moving point in the unit circle, the envelope is not anymore empty

13



Figure 9: A family of lines without envelope (left), and the envelope of vertical
lines passing through a point in the unit circle (right) computed with GeoGebra
version 5.0.18.

but, at least, it contains the lines x = 1 and x = −1, following definition E4.
Computing in this case the envelope E1 with the GröbnerCover algorithm (for
parametric polynomial system elimination [3]), we get t1 = x and t2 = 0 for
parameter values in V(x− 1)∪V(x+1). That is, the 1–dimensional set of lines
x = 1 and x = −1 corresponds to t1 = ±1 and t2 = 0. According to the current
protocol implemented in GeoGebra, both lines should be removed from the en-
velope, thus giving a wrong result. Note that none of the lines comes from a
degeneration, but they are ordinary members of the family for (±1, 0) positions
of the moving point in the unit circle. As a consequence, the criterium on the
dimensions of variables and parameters spaces needs to be filtered by studying
whether an envelope part emerges from degeneration. This filter is not available
in current versions of GeoGebra 5.0. Depending on the selected version, users
will get either such components (Figure 9, right), or nothing. We expect to
find this new approach included and thoroughly documented in a forthcoming
subversion of GeoGebra.

GeoGebra users have been advised about being aware of the complex (as
opposite to real) character of the computed envelopes in the current version of
GeoGebra. At the beginning of this Section a discussion involving the envelope
of Example 1 shows that the final result lies in the complex field. The curve is
an ellipse without two imaginary points, so being also correct in the real plane.
Nevertheless, it is easy to find constructions where working within the complexes
leads to cognitive difficulties for non experts users. Consider, for instance, the
following construction: a point A sliding in a circle c is the center of another
circle with radius BC, and D is a common point to both circles. The envelope
of lines AD is the inner circle in Figure 10, with equation x2 − 10x+ y2 − 4y =
−26. The original circle and the one centered at A do not share real points
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Figure 10: A circle as the envelope of lines AD when A moves along circle c.

whenever length of BC is greater than 4, but the Implicit Curve object denoting
the envelope persists in the Algebra window of GeoGebra as a complex circle
(Figure 11), despite the environment labels the intersection point D and the
line AD as undefined. There is no way to remove such inconsistencies while
using GröbnerCover to compute envelopes. Future work to deal only with real
solutions will imply the use of techniques from real algebraic geometry, such as
Cylindrical Algebraic Decomposition.

A final issue related to GeoGebra computations deals with timing con-
straints. Since GröbnerCover uses sophisticated algebraic algorithms, some
envelopes can require an amount of time which is clearly excessive for a true
interactive system. The construction in Figure 12 illustrates such a case. The
envelope of dotted lines when C moves along line AB cannot be determined
within the system default time (5 seconds), returning undefined as result. A
future GeoGebra version should employ concurrent tactics. Given an enve-
lope to be computed, it should simultaneously perform classical elimination and
GröbnerCover. If the slot time for GröbnerCover is not fulfilled, return the
classical result, stating that spurious factors could perhaps be included in the
output. Figure 12 includes both results: e is the unsuccessful output of the
envelope computation through GröbnerCover, and f is the envelope computed
through standard elimination.

5 Conclusion

We have reviewed abilities and shortcomings of standard dynamic geometry en-
vironments such as Cabri, Cinderella, GeoGebra and The Geometer’s Sketchpad
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Figure 11: The envelope is still a complex circle x2 − 10x + y2 − 4y = −34
despite there is no family of real lines.

Figure 12: The envelope of lines b cannot be computed with GröbnerCover (e)
but standard elimination returns an equation (f) containing it.
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when dealing with envelopes of families of plane curves. These approaches are
related to the different envelope definitions. Special attention has been given
to describe the current efforts concerning the recent GeoGebra version where
remote symbolic computations are performed to output more reliable envelopes
and with more associated information, both in geometric as well as in analytic
terms.
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