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Abstract  

An overall treatment process for the removal of nitrogen, methane production and obtention of valuable 

fertilizers from dairy manure has been investigated in laboratory scale. Solid and liquid fractions were 

separated by flocculation and screening. The solid fraction contained 81.6%, 84.4%, 58.6% and 85.2% of 

TS, VS, TKN-N and PT originally present in manure. Batch anaerobic digestion of this solid fraction at 

50ºC resulted in methane production of 29.0 L CH4/kg. The liquid fraction, free of suspended solids, was 

satisfactorily treated at 35ºC in an upflow anaerobic sludge blanket reactor operating stably at an organic 

loading rate of 40.8 g COD/(L·d) reaching a methane production of 10.3 L CH4/(L·d). Accumulation of 

volatile fatty acids did not occur. This volumetric methane production is much higher than that of 

conventional complete mix reactors treating dairy manure. Ammonia nitrogen concentration in the 

anaerobic effluent fluctuated between 850-1170 mg NH4
+-N/L and was reduced to values less than 100 

mg NH4
+-N/L by struvite precipitation.  

 

Keywords: Dairy manure; liquid fraction; UASB reactor; methane; struvite.  

 

 

1. Introduction 

Dairy manure is one of the most polluting agro-industrial wastewaters. Intensive dairy 

farming produces large amounts of manure which, when not properly managed due to 
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its high organic matter, nitrogen and phosphorous concentrations, can cause severe 

environmental problems such as eutrophication of water bodies (Carpenter et al., 1998), 

groundwater contamination (Hao and Chang, 2002), air pollution by volatilization of 

ammonia and other compounds (Ryden et al., 1987) and soil degradation when manure 

is applied in excess. High concentrations of hazardous heavy metals such as Cu2+, Zn2+ 

and Pb2+ are not usually present in dairy manure (Nicholson et al., 1999). 

 

Land application, the traditional dairy manure management strategy, is nowadays 

conditioned not only by nutrient requirements of the crops, amount and season, but also 

by the vulnerability of the near ecosystems and the energy cost for its application 

(Flotats et al., 2009). In areas with a higher dairy cattle number than available 

agricultural land for a correctly disposal of dairy cattle manure (one hectare for two 

milk cattle), another strategy will be necessary, such as treatment processes before 

deposition in the land. When the weather is rainy, and the ground shows pronounced 

slopes, as it happens in Cantabria, a region in Northern Spain with a bovine population 

of around 280,000 livestock units (mainly milk), the liquid fraction of dairy manure is a 

big problem due to run-off, facilitating grow pollution in near ecosystems.  

 

Anaerobic digestion of dairy manure has been demonstrated to be an attractive 

treatment that provides benefits such as pollution control, odour and pathogen level 

reduction, nutrient recovery and energy production (Amon et al., 2007; Hartmann and 

Ahring, 2005; Karim et al., 2005; Umetsu et al., 2006). Dairy manure, which has too 

much suspended solids (SS) content, presents low anaerobic biodegradability. The 

hydrolytic stage has been identified as the rate-limiting step in the anaerobic digestion 

of organic particulate slurries such as dairy manure (Gossett and Belser, 1982; 
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Pavlostathis and Giraldo-Gomez, 1991; Vavilin et al., 2002; Veeken et al., 2000). 

Separation of liquid (LF) and solid (SF) fractions of the waste is a desirable upstream 

operation in the treatment process. The separated LF, with much less SS content, will 

require lower temperatures and hydraulic retention times (HRT). However, screened 

manure presents merely a little more anaerobic biodegradability because only SS larger 

than mesh openings have been removed (Kalyuzhnyi et al., 1999). Since the SS content 

in the LF from screening is still high and only a small fraction of its COD is in soluble 

form, additional treatments must be performed on screened dairy manure to produce a 

LF suitable for handling by a high load anaerobic reactor (i.e. in this case HRT could be 

lower than 1 day). Rico et al. (2007) developed a procedure to obtain a LF from dairy 

manure to which the major possible quantity of organic matter was transferred, with 

high anaerobic biodegradability (84%) and free of SS. García et al. (2008) satisfactorily 

treated this LF in a high load anaerobic reactor (UASB), improving biomass retention 

into the reactor. 

 

The anaerobic digested LF still presents a high ammonia nitrogen concentration which 

must be diminished when land area of farm is lower than necessary according to current 

nitrogen limits under EU regulations (170 kg TKN / (Ha·yr)). Castrillón et al. (2009) 

achieved a removal efficiency of 75% for total Nitrogen by centrifugation of the liquid 

fraction of cattle manure followed by a two step biological treatment. Qureshi et al. 

(2008) reported that nitrifying systems treating high strength animal manure can 

possibly lead to unacceptably high levels of effluent nitrate and nitrite nitrogen.  

One simple and rapid process to remove and recover nitrogen is its crystallization in the 

form of struvite (magnesium ammonium phosphate, or MgNH4PO4·6H2O), which may 

be utilized as a valuable source of slow release fertilizer due to its solubility 
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characteristics (Nelson et al., 2003). The struvite precipitation technique has been 

applied to various wastewaters, such as swine waste, agro-industrial effluents, landfill 

leachate, calf manure, coke manufacturing, leather tanning and anaerobic digester 

sidestreams (Pastor et al., 2008, 2010; Uludag-Demirer and Othman, 2009; Uludag-

Demirer et al., 2005). Depending on wastewater composition, struvite precipitation can 

be used to recover either ammonia nitrogen, phosphorus or both. 

 

The separated SF from dairy manure, after a dry anaerobic digestion and optional 

composting processes, could be transported to agricultural zones that are deficient in 

organic matter and nutrients, to be used as fertilizer or land conditioner. Transport cost, 

since digested solid fraction is dewatered, will be lower than that for digested dairy 

manure.  

 

This study evaluates the separation process of dairy manure in solid and liquid fractions, 

its treatment by anaerobic process and ammonia nitrogen removal from anaerobic 

digested liquid fraction by struvite precipitation. The organic matter, nitrogen and 

phosphorous distribution in liquid and solid fractions were obtained. The performance 

of a UASB reactor treating the liquid fraction of dairy manure as the removed 

percentage of organic matter removal and methane volumetric production was studied. 

The effect of pH and Mg2+/PO4
3- molar ratio on the performance of struvite 

precipitation and ammonia nitrogen removal was evaluated. The specific methane 

production by anaerobic digestion of solid fraction was determined.  

 

2. Materials and Methods 

2.1. Collection and storage of manure 
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Fresh manure was taken directly from a dairy cow house of a farm located in Cantabria, 

on Spain’s northern coast. The manure was kept at indoor ambient temperature (18-

20ºC) for 4 weeks, in order to allow the hydrolytic and acidogenic stages to take place 

but preventing, as far as possible, the methanogenic (Rico et al., 2009). Vessels of 25 

litres were employed as controlled dung pits and were provided with hydraulic closing 

systems in order to avoid the entrance of air, to prevent volatile fatty acids (VFA) 

oxidation, and to allow the release of generated gas, to prevent an excessive increase in 

pressure. After this time, by a flocculation and screening process, solid and liquid 

fractions of dairy manure were separated. Fig. 1 represents the experimental set up 

scheme. 

 

2.2. Preparation of polymer and solid-liquid separation 

 

A prepared polyacrylamide solution (PPS) with concentration 3 g/L of commercial 

polyacrylamide emulsion (CPE), known as Praestol K144L, was employed in the 

separation of SF and LF of dairy manure. Details of the separation process carried out at 

laboratory scale are described in García et al. (2008).  

 

2.3. Analytical Techniques 

 

VFA were determined using a HP6890 GC instrument fitted with a 2m x 1/8 in. glass 

column, liquid phase 10% AT 1000, packed with the solid support Chromosorb W-AW 

80/100 mesh. Nitrogen was the carrier gas and a FID detector was installed. Biogas 

composition was measured on a 2m Poropak T column in a HP 6890 GC System with 
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helium as the carrier gas and a TCD detector. All other analyses (pH, TS, VS, COD, 

Total Kjeldahl Nitrogen (TKN-N), Ammonia Nitrogen (NH4
+-N) and Total 

Phosphorous (PT) were performed following the Standard Methods for the Analysis of 

Waters and Wastewaters. Determination of methanogenic activity was performed 

according to the method described by Field et al. (1988).  

 

2.4. Experimental equipment 

 

A continuous liquid fraction operation was performed employing a lab-scale UASB 

reactor containing a total usable volume of 1.0 litre. The reactor was cylindrical, made 

of plexiglass and divided into three zones joined by clamps. The feed came into the 

lower zone, the middle area was jacketed and a temperature of 35ºC was maintained by 

recirculation of warm water inside the jacket. In the upper part, there was a gas-liquid-

solid separator similar to those described in the literature for UASB reactors. Treated 

wastewater left the reactor by means of an exit tube at the top of the reactor. The biogas 

generated was gathered by means of a bell placed in the top part and measured by 

means of a wet gas-meter. All the biogas production measurements are expressed at 0ºC 

and standard pressure of 760 mm Hg (NCTP). Details of experimental equipment are 

described in García et al. (2008). The separated solid fraction was stabilized, by 

anaerobic dry digestion in batch conditions, at 35ºC and 50ºC in cylindrical reactors 

made of PVC of 2.5 and 2.0 of total and useful volume, respectively.  

 

2.5. Seed sludge 
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The UASB reactor was seeded with dairy cattle manure that had been taken from the 

bottom of the dung pit of the farm. The dairy manure was sieved (20 mm mesh) to 

remove any straw, grass and large particles, and then was anaerobically digested in a 

CSTR laboratory scale reactor at 35ºC .The digested dairy manure was then treated with 

a PPS (dose of 20 mg CPE ·g-1 TS) to obtain the SF employed as biomass. García et al. 

(2008) reported that a UASB reactor with flocculated biomass treating the same kind of 

LF as that employed in the current study, showed better behaviour both in biomass 

retention and organic load removal than a similar UASB reactor whose biomass had not 

been flocculated, especially at low hydraulic retention times. In this study, 600 g of the 

flocculated SF of digested dairy manure, 47.29 g VSS/kg, were added to the UASB 

reactor.  

 

2.6. Setup of UASB reactor  

 

As the characteristics of the separated LF fluctuated a bit during the experiment, the 

UASB reactor was operated at different constant HRT. During start-up period for the 

seed biomass the HRT was 1.5 days, till biogas productions were stable ± 10%. For all 

the successive HRT, operating steady state conditions were assumed when the operation 

conditions were maintained for a minimum of three HRT and biogas production values 

were stable, then the UASB reactor was operated at that HRT until data for six days 

were obtained. This UASB reactor was operated with eight different HRTs from of 1.3 

to 0.22 days, so organic loading rate (OLR) was increased from 12.3 up to 72.5 g 

COD/(L·d).  

 

2.7. Struvite precipitation 
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Struvite precipitation from effluent anaerobically digested LF was performed at batch 

systems. The experiment was carried out at effluent pH value of 8.3 and also at pH of 

9.8 adjusted by NaOH addition. To identify the optimal conditions for struvite 

precipitation, several molar relationships Mg2+:PO4
3- from 0.75:1 to 1.2:1 were tested at 

constant molar relationship Mg2+:NH4
+ 1.2:1 at both pH values. MgCl2·6H2O and 

K2HPO4·3H2O were used as chemical reagents. The calculated amount of chemical 

reactives were added in 50 ml of samples, for both pH values. Then stirring was started 

for 5 minutes. After this time, the contents were allowed to settle for 10 minutes. 

Experiments were carried out by triplicate.  

 

2.8. Methane productivity tests 

 

To measure the methane productivity of manure, liquid and solid fractions, five 

cylindrical reactors, made of PVC, of 2.5 L total volume (2.0 L useful volume), were 

used. Reactors were placed in thermostatic baths and kept at the temperature selected. 

Seed biomass acclimatised to temperature tests was employed. No stirring was applied. 

Gas production was measured during 35 days by means of a displacement system using 

an alkaline solution to absorb the CO2 produced. All the measurements are expressed at 

20ºC and standard pressure of 760 mmHg (NCTP). 

 

3. Results and discussion 

 

3.1. Characteristics of liquid fraction and solid fractions 
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Distribution of TS, VS, TKN-N and PT for the lab scale separation process of dairy 

manure by flocculation and screening is shown in Table 1. TKN transferred to SF was 

58.6%, whereas for TS, VS and PT the percentage transferred to SF was comprehended 

between 81 and 85%. The relation VS/TS increased in the SF and diminished in the LF, 

which indicates mineralization of the latter. The mean characteristics of the LF from 

dairy manure employed as feeding of the UASB reactor are shown in Table 2. 

As it can be observed in Table 2, the supernatant chemical oxygen demand (CODsup) 

was 92.6% of total COD (CODT), whereas COD due to volatile fatty acids (CODVFA) 

reached 77.3% of the CODsup. The predominant VFA was acetic (AcH), with a 

concentration of 5009 ± 491 mg/L. Propionic acid (PrH) had the second highest 

concentration (1555 ± 223 mg/L) and butyric (BuH), the third (863 ± 224 mg/L). The 

rest of the VFAs had mean values lower than 200 mg/L. Patni and Jui (1985) and Rico 

et al., (2009) reported similar VFA distribution in dairy manure supernatant. With 

regards to nutrients content, the LF contained between 35-45% of the TKN initially 

present in the dairy manure. These are low values compared to those shown in Møller et 

al. (2002), who reported that LF separated from dairy manure by centrifugation or screw 

press contained TKN values of 51-73% and 92-96%, respectively. 78.2% of TKN was 

as ammonia nitrogen. Most part of total phosphorus ended up in the SF; the LF 

contained between 12-18% of the phosphorus present in dairy manure. These values are 

also low compared to those shown in Møller et al. (2002), who reported a transfer of PT 

to the liquid fraction of dairy cattle manure of 18-22%, when the separation was by 

centrifuge, and 85-92%, when the separation was by screw press. The differences 

between the results found in this work and those reported by Møller et al. (2002) have to 

be due to the employment of a flocculant agent and to that the separation process was 

carried out with a lab stationary sieve, which implies that the separated SF had lower 
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solids content than the one that could be obtained by means of an industrial screw press 

separator. 

 

3.2. Operation of UASB reactor 

 

Table 3 presents the mean values for removal efficiencies and methane yields obtained 

for all HRT. At an HRT of 1.3 days, COD reduction of 83.6% and methane production 

of 3.37 L CH4/(L·d) were achieved. By lowering the HRT, higher methane production 

rates were obtained, although COD removal efficiency tended to minimally decrease 

due to the higher OLR applied, in particular at HRTs lower than 0.74 days. A stable 

operation was performed at 0.35 days HRT (40.8 g COD/(L·d) OLR) without VFA 

accumulation and COD removal percentage of 73.9%, reaching a volumetric methane 

production of 10.3 L CH4/(L·d). HRTs lower than 0.35 days resulted in higher methane 

production rates but significant decrease in COD removal efficiency and high VFA 

accumulation in the effluent. The greatest drop in this percentage corresponds to the 

change to a HRT of 0.22 days. In this case, the increase in the OLR was the greatest, 

due also to a greater affluent COD value, as shown in Table 3. As indicated in Fig. 2, 

the OLR removed increased with the OLR affluent, although for the 0.22 days HRT, 

linearity was lost. This indicates that the highest value for removed organic loading rate 

in the UASB reactor had been reached. The Table 3 presents, as well, the mean values 

of COD, solids and VFA of affluent and effluent. The percentages of the CODsup 

removed were similar to that of the COD, though slightly superior for the shortest HRT. 

At 0.58 days HRT, the CODVFA in the effluent was 385 mg/L due to the fact that the 

methanogenic activity of the biomass had not yet reached a high level. At HRTs of 0.50 

and 0.35 days, CODVFA concentrations dropped to values slightly higher than 100 
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mg/L, being AcH and PrH the only VFAs present at concentrations of 60 and 30 mg/L, 

respectively. For the HRT of 0.26 days, AcH and PrH concentrations increased up to 

300 mg/L. As shown in Fig. 3, PrH was predominant initially. However AcH later 

became the VFA with the highest concentration. VFA concentrations continued rising, 

and small concentrations of isobutyric (iBuH) and isovaleric (iVaH) appeared. For the 

HRT 0.22 days, at day 138, the CODVFA reached a value of almost 4000 mg/L. At day 

139, the affluent flow into the reactor was halted and changed over to recirculate the 

effluent. At day 140, the CODVFA in the effluent was 59 mg/L, with a concentration of 

25 and 14 mg/L of AcH and PrH, respectively. With an HRT of 0.22 days, once the 

maximum capacity for the elimination of organic matter was reached, the 

experimentation with the UASB reactor was concluded. At the end of the operating 

period, there was 43.66 g VSS in the UASB reactor. At this point, the methanogenic 

activity of the biomass present in the UASB reactor was tested and reached a value of 

1.03 g COD/(g VSS·d). This value is a bit higher than the calculated taking into account 

the organic removal rate and the biomass content into the UASB reactor for the last 

HRT. 

 

The percentages of VS eliminated were lower than those expected based on the COD 

and CODsup for all the HRTs. This can be explained by the fact that VS determination 

includes drying (105ºC) and incineration (550ºC). According to Derix et al. (1994), 

depending on the pH of the sample, during the drying phase, up to 75% of the VFA in 

the samples can be lost. In the affluents, the concentration of VFAs was high, and for 

this reason the VS found values were lower than the real values. Meanwhile, for the 

effluents, in which VFA levels were very low, this loss in the determined values did not 

occur. For this reason, the values obtained for percentages of VS removed were lower 
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than those expected from calculations based on removed COD values. The mean ratio 

VS/TS in LF affluent was only 58.9% in current study.  

 

The volumetric production of methane, values shown in Table 3, increased with 

increasing OLR. As seen in Fig. 2, there was a linear relationship for all HRT except for 

0.22 days. The value of the methane volumetric production value according to the slope 

of the regression line was 0.230 L CH4/g COD affluent. As for the volumetric 

production of methane with respect to the removed organic rate (g CODrem/L·d), there 

was a linear relationship for all HRTs. The equation of the regression line was y = 0.343 

x -0.0285, with R2 = 0.997, indicating a specific production in the range of 0.343 L 

CH4/g CODrem. The values of methane volumetric production for all HRTs, were 

significantly higher than the nearly 1 L CH4/L·d produced with unscreened or screened 

dairy manure in a conventional type CSTR digester. This fact is especially remarkable 

for 0.22 days HRT when a maximum value of 14.1 L CH4/L·d was reached. The mean 

percentage of methane in the biogas for each HRT of operation remained between 80.6 

and 84.6%. Due to the limitation of CO2 solubility in the liquid phase, the percentage of 

CO2 was higher, and that of CH4 was lower, in the biogas when OLR increased. 

 

Methane production of the UASB reactor in the current study was notably higher than 

that reported in other works. Typical methane yields ranging from 0.075 to 0.223 L 

CH4/g VS have been reported for dairy manure with up to 7% TS in various digester 

configurations (Ogejo and Li, 2010). Table 4 summarizes the results of past studies 

reporting methane production from dairy manure employing conventional CSTR 

reactors and a UASB reactor. Dugba and Zhang (1999) obtained a maximum of 0.82 L 

CH4/L·d when treating screened dairy manure with two-stage (thermophilic-
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mesophilic) anaerobic sequencing reactor systems. Karim et al. (2005) reported methane 

production rates of 0.45 L CH4/L·d in the digestion of dairy manure slurry at 

mesophilic conditions in CSTR lab scale reactor. The removal percentage of CODT was 

50%, also lower than the one obtained in this work. Demirer and Chen (2005) reported a 

maximum methane production of 1.2 L CH4/L·d in two-phase anaerobic digestion of 

unscreened dairy manure under extreme conditions of OLR (12.6 g VS/L day). Wen et 

al. (2007) reported 0.88 L CH4/L·d for the anaerobic digestion of liquid dairy manure 

using a sequential CSTR system. Kavacik and Topaloglu (2010) obtained 0.60 L 

CH4/L·d in the mesophilic co-digestion of a mixture of dairy manure and cheese whey 

in CSTR reactors. With regards to the performance of UASB reactors, diluted decanted 

cattle manure (4-6 g VS/L) was successfully treated in a UASB reactor by Kalyuzhnyi 

et al. (1999). The maximum OLR applied was 6 g COD/L·d at an HRT of 1 day. The 

total COD reduction was a mere 41.5% and methane production was 0.70 L CH4/L·d. 

 

The mean value of TKN concentration in the affluent for all HRT was 1140 mg/L, 

being the mean percentage as ammonia nitrogen of 78.2%. In the effluent, the TKN 

mean concentration value was 1044 mg/L, 100 mg/L lower than that for the 

corresponding affluent. In the effluent, ammonia nitrogen mean concentration was 906 

mg NH4
+-N/L, 86.8% of TKN. This change is due to ammonification process, ammonia 

nitrogen use in cellular synthesis processes, struvite precipitation and gaseous emissions 

of ammonia nitrogen due to pH increases. Mean values for PT present in the affluent 

and effluent were 86 and 24 mg/L, respectively. The decrease in effluent total 

phosphorus concentration was caused by the precipitation of various phosphates: 

magnesium ammonium phosphate (struvite), calcium phosphate. Noticeable difficulties 
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in the UASB reactor performance, such as excessive foaming or sludge flotation were 

not observed. 

 

3.3. Ammonia nitrogen removal by struvite precipitation 

 

Experiments were carried out by triplicate. Struvite precipitation was conducted at 

UASB effluent pH value (8.3) and also at a pH of 9.8 adjusted by NaOH addition. Due 

to thefact that the concentration values of NH4
+-N and PO4 

3--P of anaerobic effluent 

were 6.47·10-2 M and 7.75·10-4 M, respectively, to force the formation of struvite Mg2+ 

and PO4
3- ions were added by using MgCl2·6H2O and KH2PO4·3H2O. Fig. 4 shows the 

removal percentage of ammonia nitrogen at a constant molar ratio Mg2+:NH4
+ of 1.2:1 

and a molar ratio Mg2+:PO4
3- from 0.75:1 to 1.2:1. When PO4

3-:NH4
+ was higher than 1, 

the removal efficiency of NH4
+ by struvite precipitation increased but PO4

3- -P 

concentration in the supernatant obtained after the precipitation also increased. There 

was a sudden decrease in the pH of solution after addition of chemicals (MgCl2·6H2O 

and KH2PO4·3H2O) at the beginning of each experiment as it was reported by Uludag-

Demirer et al. (2005). This decrease can be due to the release of H+ cations from 

H2PO4
-, HPO4

2 - and Cl- originated in the precipitation of struvite. For the samples 

whose pH was not adjusted, pH decreased from 8.3 to 7.8 and for the other samples, 

initial pH of 9.8 decreased down to 8.6. In all the experiments stirring was maintained 

for five minutes after reactives addition, and then it was allowed to settle for another ten 

minutes. Afterwards, pH maintained the values reached after chemicals addition. Under 

these conditions of pH it can be assumed that the majority of the ammonia nitrogen 

removed was due to struvite precipitation. When pH values were adjusted to 9.8, the 

percentage of N-NH4
+ removed was higher than that for the same molar rate 
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Mg2+:PO4
3- at pH 8.3. When the molar ratio Mg2+:PO4

3- increased from 0.75:1 to 1.2:1, 

for the non-pH-adjusted samples, the removal percentage of NH4
+ decreased from 

82.6% to 70.8%, whereas for the pH-adjusted samples, the removal percentage of NH4
+ 

decreased from 92.7% to 80.2%. 

 

During all the operating conditions of UASB reactor, the effluent ratio NH4
+-N/TKN-N 

ranged between 0.82 and 0.94 and decreased with lowering HRT. When the effluent 

contained 1170 mg NH4
+-N/L, the NH4

+-N/TKN ratio was 0.87. After struvite 

precipitation, the ammonia nitrogen concentration decreased down to 87 mg NH4
+-N/L. 

The characteristics of the solid containing struvite obtained for a molar ratio 

Mg2+:NH4
+:PO43- 1:1:1 are presented in Table 5. In this case, struvite was not the only 

compound that precipitated; due to the use of K2HPO4 as source of phosphorus, it also 

precipitated MgKPO4·6H2O, known as potassium struvite (Pastor et al., 2010). Besides 

struvite and potassium struvite other phosphates and magnesium and calcium 

carbonates precipitate (Uludag-Demirer and Othman, 2009). The experimental 

processes employed enabled us to reduce the TKN concentration of over 4500 mg 

TKN-N/L, found in dairy manure, to a value of less than 200 mg TKN-N/L in the final 

liquid fraction effluent. The significance of this is that the land required to apply the 

final LF effluent from the processing line, in accordance with Directive 91/676/CEE, 

would be reduced to an area 20 times smaller. Thus, intensive dairy farms would have 

enough land to handle the TKN disposal needs in the LF after struvite precipitation.  

  

 

3.4 Methane productivity of manure and liquid and solid fractions.  
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Determination of methane production of dairy manure and its fractions was carried out 

in batch reactors at 50ºC and 35ºC. For manure, methane productivity at 50ºC was a bit 

higher than at 35ºC. At day 35 methane productions were 19.3 and 17.7 L CH4/kg dairy 

manure, at 50 and 35ºC, respectively. From data in Table 1 it can be calculated a 

specific methane production of 212 cm3 CH4/g VS at 50ºC. Møller et al. (2004) 

estimated a specific methane production of 190 cm3 CH4/g VS for dairy manure. Higher 

methane production at 50ºC is due to the fact that hydrolysis is the rate-limiting step in 

anaerobic digestion of waste slurries such as dairy manure and higher temperatures 

improve hydrolysis stage. However, for dairy manure no big differences were observed 

between digestion at 35ºC and 50ºC. For the separated LF, methane production at 35ºC 

finished at day 15, being 4.92 L CH4/kg dairy manure (4.38 L CH4/kg LF).  

 

In Fig. 5 the evolution of methane production at 35 and 50ºC for the SF is represented. 

At day 35, methane production for the SF was 15.2 and 14.2 L CH4/kg dairy manure, at 

50ºC and 35ºC, respectively (29.0 and 27.1 L CH4/kg SF). That is in accordance with 

Møller et al. (2004), who reported that the separation of manure was a way to produce 

manure solid fractions with higher gas potentials based on volume, since solid fractions 

present higher VS concentration. For the SF, temperature had more influence on 

methane production kinetics, showing a faster rate of methane production at 50ºC, since 

at day 15 at 50ºC 90.7% of the final methane production had been reached, but at 35ºC 

only 56.1%. For the solid fraction the higher temperature promoted the hydrolysis stage, 

due to the high solids content (19.0% DM) which resulted in higher methane 

productivity.  
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Separated digestion of solid and liquid fractions at 50ºC and 35ºC respectively, would 

allow a better energetic balance and lower digester size, although two digesters would 

be needed. Taking into account the conventional HRTs employed in the anaerobic 

digestion of dairy manure and solid fractions of manure (20-30 days) and that of the 

liquid fraction in this work (0.35 days), a global reactor volume size reduction of 45% 

could be achieved. The digested SF, due to high content in organic matter and nutrients, 

could be exported to other agricultural lands with a deficit in them. The cost of transport 

will be cheaper due to its low humidity content.  

 

4. Conclusions 

 

The results from the present study demonstrated that the anaerobic digestion of liquid 

and solid fractions of dairy manure separated by flocculation and screening allows 

reducing digester size requirements. This is possible because of the low HRT required 

for the anaerobic digestion in UASB reactors of the highly biodegradable separated 

liquid fraction. A stable operation was performed at 0.35 days HRT (40.8 g COD/(L·d) 

OLR) without VFA accumulation and COD removal percentage of 73.9%, reaching a 

volumetric methane production of 10.3 L CH4/(L·d). HRTs lower than 0.35 days 

resulted in higher methane production rates but significant decrease in COD removal 

efficiency and high VFA accumulation in the effluent. UASB effluent was subjected to 

a precipitation process to remove NH4
+ by formation of struvite. Better NH4

+ removal 

efficiencies were obtained at an adjusted pH of 9.8 rather than at pH of the UASB 

effluent, 8.3. The best results in terms of NH4
+ removal efficiency were achieved at a 

molar ratio Mg:N:P of 1.2:1:1.6, 82.6% and 92.7% for the samples at pH 8.3 and 9.8, 

respectively. The final liquid effluent presented such a low nutrients content (NKT-N < 
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200 mg/L; PT < 25 mg/L) that would only need twenty times less farming land than 

dairy manure to its application. Thermophilic anaerobic digestion of the solid fraction 

separated by flocculation and screening showed higher methane yield and faster kinetics 

than that at mesophilic conditions, 29.0 L CH4/kg SF at 50ºC. Solid fraction, after 

digested, will be an appreciated fertilizer due to its stabilized organic matter and 

nutrients content and together with the precipitate containing struvite could be exported 

to other agricultural lands with a deficit in nutrients.  
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