
Manuscript 

A fuzzy stochastic multi-criteria model for the 
selection of urban pervious pavements 

 
Daniel Jato-Espino, Jorge Rodriguez-Hernandez*, Valerio Carlos Andrés-Valeri, 

Francisco Ballester-Muñoz 

 
GITECO Research Group, Civil Engineering School, Universidad de Cantabria, 39005 Santander, Spain 

E-mail addresses:  jatod@unican.es (D. Jato-Espino), rodrighj@unican.es (J. Rodriguez-

Hernandez), andresv@unican.es (V. C. Andrés-Valeri), francisco.ballester@unican.es (F. Ballester-Muñoz). 

* Corresponding author. Tel.: +34 942201550; fax: +34 942201703. 

 
 

ABSTRACT 
 

Multi-criteria decision making methods (MCDM) have been widely used throughout the 

last years to assist project contractors in selection processes related to the 

construction field. Sustainable urban drainage systems (SUDS) are an especially 

suitable discipline to implement these techniques, since they involve important impacts 

on each branch of sustainability: economy, environment and society. Considering that 

pervious pavements constitute an efficient solution to manage urban stormwater runoff 

as a source control system, this paper presents a multi-criteria approach based on the 

Integrated Value Model for Sustainable Assessments (MIVES) method to facilitate their 

proper selection. Given the lack of accurate information to shape the behaviour of the 

alternatives regarding some of the criteria defining the decision-making environment, 

a series of variables are modelled by executing stochastic simulations based on the 

Monte Carlo methods. Additionally, a group of ten experts from various sectors related 

to water management was requested to provide their opinions about the importance of 

the set of selected criteria, according to the comparison levels of the Analytic Hierarchy 

Process (AHP). These judgments are converted into triangular fuzzy numbers, in order 

to capture the vagueness that human attitude entails when making judgments. A case 

of study in which the three major types of pervious pavements (Porous Asphalt, Porous 
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Concrete and Interlocking Concrete Pavers) are evaluated is presented to demonstrate 

the potential of the model. 
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1. Introduction 
 

Sustainable urban drainage systems (SUDS) constitute a series of disciplines and 

techniques aimed to deal with several phenomena related to water management which 

impoverish both the state and quality of urban goods and services, like diffuse pollution, 

localized floods or loss of biodiversity (Fresno et al., 2005; Castro-Fresno et al., 2013). 

These systems, also known as Stormwater Best Management Practices (BMPs), have 

been classified in a considerably wide range of manners throughout the last years, 

according to different considerations and criteria. Some of them propose a division 

depending on the point where they are implemented, thus appearing source control as 

one of the most effective measures for treating runoff. Pervious pavements are in turn 

one of the preferred solutions within this group, due to the synergistic action of their 

component pervious layers, which enables them to adequately manage runoff at its 

earliest condition (Pratt et al., 2002). Such layers usually consist of the following, from 

top to bottom: (1) a surface, (2) a base layer, (3) a geotextile, (4) a subbase and (5) 

another geotextile or an impervious geomembrane which lies on the existent subgrade.  

 

These combinations of multilayered structures confer different properties to the 

pavement, raising doubts and misgivings when choosing among them for its 

implementation in a certain project. Since this process is no more than a decision-

making problem, in which a set of alternatives (pervious pavements typologies) is 

evaluated according to a series of criteria (the required features for these systems), a 



 

multi-criteria methodology is proposed both to automate and make the selection 

procedure more reliable. As pointed out by (Martin et al., 2007), the fundamental 

decision criteria that affect runoff management can be divided into technical, hydraulic, 

environmental, sociological, planning and economic aspects. Nonetheless, hydrology 

does not introduce significant differences in the decision-making process when the set 

of alternatives is limited to pervious pavements, due to their main typologies present a 

similarly adequate behaviour in this sense (CTC & Associates LLC & WisDOT 

Research & Library Unit, 2012; US Environmental Protection Agency (Greening EPA), 

2012). On the other hand, this paper proposes an inclusion of both technical and 

planning factors within the economic requirement, since this aspect comprises such 

implications too. In this respect, the fact that these systems are located within urban 

spaces also deserves to be highlighted, because this situation makes them especially 

sensitive to social and environmental factors.  

 

Many different multi-criteria approaches have been developed throughout the years 

with the intention to deal with decision-making problems belonging to the construction 

field (Hokkanen & Salminen, 1997; Al-Harbi, 2001; Wang & Elhag, 2006; Zavadskas 

et al., 2014). Among them, the Integrated Value Model for Sustainable Assessments 

(MIVES) has demonstrated its worth when managing sustainable problems in complex 

scenarios (San-José Lombera & Garrucho Aprea, 2010; Aguado et al., 2012; del Caño 

et al., 2012; Pons & Aguado, 2012; Pons & de la Fuente, 2013). Nevertheless, 

modelling the decision-making environment of urban pervious pavements involves 

several aspects, mainly related to the uncertainty and imprecision in data, which are 

unapproachable by a discrete methodology as MIVES. A support complement as 

Monte Carlo methods emerges to treat those variables that lack reliable sources of 

information, in order to assess the risk present when measuring them. Meanwhile, the 

set of criteria composing the decision-making problem are weighted by aggregating 

the opinions of a panel of experts in the field of study, according to the hierarchical 

levels of the Analytic Hierarchy Process (AHP). Since these comparisons are 

expressed in linguistic terms, the inclusion of Fuzzy sets is proposed to capture the 

ambiguity entailed by a human judgment. Considering all these elements, the resulting 

approach evolves to an integrated fuzzy stochastic MIVES method. 



 

 

2. Methodology 
 

2.1. Integrated Value Model for Sustainable Assessments (MIVES) 
 

The MIVES method, jointly developed by the Polytechnic University of Catalonia 

(UPC), Labein-Tecnalia and the University of the Basque Country (UPV/EHU), 

highlights for combining two powerful analytical concepts such as Multi-Criteria 

Decision Making Theory and Value Engineering (Miles, 1961; San-José Lombera & 

Garrucho Aprea, 2010). This feature enables the conversion of any kind of 

measurement unit, either quantitative or qualitative, into a standardized value index, 

which postulates MIVES as an especially suitable tool for a balanced analysis as a 

sustainable assessment. Indeed, its successful utilization throughout the years has 

motivated its inclusion within the Spanish Structural Concrete Instruction (EHE-08) with 

sustainable purposes (Ministerio de la Presidencia, 2008).  

 

The application process of this system to a generic problem comprises the design of a 

series of steps, which can be summarized in: 

 

(1) Define the decision-making problem, according to the boundaries, context and 

organizational structure in which it is framed; 

(2) Graphically depict the set of components and factors influencing the decision-

making procedure, usually shaped in a three-level hierarchical tree composed 

of requirements, criteria and indicators; 

(3) Determine the relative importance among the constituting elements at each 

level of the decision-making tree, by means of a weights assignment conducted 

either through the AHP method or by direct allocation; 

(4) Establish a set of alternatives able to provide a feasible solution to the problem; 

(5) Create the corresponding value function for each indicator by selecting the 

shape and parameters which suit best its nature, with the goal of transforming 

any likely value into a normalized index between 0 and 1; and 



 

(6) Assess the alternatives by aggregating the results calculated for the indicators 

until reaching the requirements level, thus obtaining an overall measurement of 

each alternative in sustainable terms. 

 

Delving into the decision-making tree structure, the requirements can be defined as 

the set of general aspects which delimit and characterize the problem at a primary 

level. Each of these, in turn, is governed by a series of more specific criteria, whose 

fulfilment guarantees the satisfaction of the requirements. Both first levels are not 

submitted to direct evaluation, but they drag the results obtained in the third level of 

the tree, formed by the elements known as indicators, in where really resides the 

essence of the MIVES methodology. 

 

The latter are evaluated using a mathematical formulation based on the concept of 

value function, which allows the conversion of any type of variable, regardless of their 

original nature, into a dimensionless value ranging from 0 to 1. Such scale indicates 

the degree in which a certain alternative satisfies the fulfilment of an indicator. Value 

functions can adopt either increasing or decreasing shapes, so that the upper and 

lower limits may indicate minimum or maximum satisfaction degrees, depending on 

the indicator. 

 

The analytical expression of these functions relies on five parameters, which define 

both their shape and type. Thus, the value of an indicator whose function evolves 

increasingly can be expressed as follows: 

 

Vind = B · �1 − e−Ki·�
|x−xmin|

Ci
�
Pi

� (1) 

 

In Eq. (1): xmin define the minimum value adoptable by the indicator; x is the response 

of the alternative to this indicator; Pi is a factor which determines the shape of the 

function; Ci and Ki represent the values of the abscissa and the ordinate in the 

inflection point of the function, respectively; and B (Eq. (2)) is an adjusting component 

aimed to prevent any input from exceeding the scale limits. 



 

 

B = �1 − e−Ki·�
|xmax−xmin|

Ci
�
Pi

�
−1

 (2) 

 

Where xmax is the maximum achievable value by the alternative for the indicator at 

issue. In the case of a decreasing function, the only variations to the procedure 

described above consist of swapping the values of xmin and xmax. 

 

Figure 1 represents the importance of being accurate when selecting the shape 

parameters of each indicator, since this decision determines how the satisfaction level 

varies according to the zone to which the input value belongs. Thereby, an indicator 

which behaves linearly presents a range of inputs directly proportional to their value 

index. By contrast, the non-linear behaviours show some areas in where the 

satisfaction degree varies considerably: the initial and final stretch in the case of 

concave and convex shapes, and the middle zone in S-shaped functions (Pons & 

Aguado, 2012).  

Figure 1. Different shapes and parameters of the MIVES method 

The overall sustainability index of an alternative is determined by the step-wise 

integration of the results obtained at the previous levels. Hence, the value index of an 

element in a certain level is calculated by aggregating the value indexes of its 

components at the previous level multiplied by their relative weight. The operation is 

implemented from the lower decision level, formed by the indicators, to the upper one, 

constituted by the set of alternatives (see Figure 2). 

Figure 2. Aggregation procedure of value indexes 

2.2. Stochastic simulations 
 

It is common that some of the variables defining a decision-making problem are hardly 

characterizable discreetly, normally due to the lack of accurate information required to 

deterministically express the behaviour of an alternative regarding a certain criterion. 



 

In fact, what usually happens in reality is that the variables are definable by a range of 

expected behaviours according to the likelihood of achieving them, which necessitates 

the use of mechanisms able to process information stochastically. These simulations 

are implemented within the MIVES framework to reflect the non-deterministic character 

which may govern the value functions of some indicators.  

 

2.2.1. Monte Carlo methods 
 

The Monte Carlo methods are non-deterministic techniques usually employed to find 

approximate solutions to complex problems which are beyond the resources of 

theoretical mathematics by experimenting with random numbers. They have been 

used in many different disciplines throughout the last decades, among which 

operational research highlights for being one of the fields in which these methods are 

more widely applied (Hammersley & Handscomb, 1964; McLeish, 2005). As a result of 

their versatility, several different derivations of the original concept have been 

developed according to the boundary conditions of each application branch, but, in any 

case, they all are characterized by the handling and interpretation of random numbers 

to solve a given problem. 

 

Its implementation within the MIVES architecture is proposed for examining the effect 

that the uncertainty of some variables produces in achieving sustainable goals. In other 

words, the Monte Carlo method operates in this paper as a risk management tool 

aimed to show how likely is the consecution of a series of different sustainable 

performance degrees for a certain alternative. Such analysis could also be tackled by 

applying fuzzy techniques, but given the nature of the data, the authors considered 

stochastic simulations as the most effective approach (del Caño et al., 2012). 

 

The set of indicators requiring an uncertainty analysis are easy to define by their most 

likely value, obtained from expertise and knowledge acquired from bibliography, and a 

lower and upper limit corresponding to the minimum and maximum values they might 

adopt. To develop the Monte Carlo method, a distribution function to model such data 

has to be chosen. The usefulness of the simulations is limited by the accuracy in which 



 

the selected distribution function fits the data defining the model, as well as by the 

quality of the estimates that have led to obtain the inputs.  

 

From a range of estimates as the above explained, the generation of random numbers 

can be modelled by means of several different distribution functions. Thus, the 

triangular appears as the simplest option to design a probability distribution tending to 

favour the most likely value, by associating each of its vertices with the minimum, mode 

and maximum values (Vose, 1996). However, the presence of such vertices involves 

harsh inflections and, therefore, a lack of adjustment to the real distribution in these 

areas. In order to smooth them, the use of the Beta distribution based on the PERT 

(Program Evaluation Research Task) technique, also known as Beta-PERT distribution 

is proposed here. Since introduced by Malcolm et al. (Malcolm et al., 1959), many 

authors have dealt with the derivation of the Beta parameters (α, β) when developing 

a PERT simulation (Clark, 1962). 

 

Let xmin, xm.l. and xmax be the three values defining a certain variable; the mean (µ) and 

variance (σ2) for a Beta distribution can be respectively expressed as follows: 

 

µ = xmin − (xmax − xmin) ∙ �
α

α + β
� (3) 

 

σ2 =
α · β · (xmax − xmin)2

(α + β)2 · (α + β + 1) (4) 

 

On the other hand, the PERT mathematical model calculates them as: 

 

µ =
xmin + λ · xm.l. + xmax

λ + 2
 (5) 

 

σ2 =
xmax − xmin

(λ + 2)2  (6) 

 



 

where the default value for λ is usually equal to 4 (Castro Fresno & Aja Setién, 2005). 

Thus, taking λ = 4, both pairs of expressions can be combined to obtain the Beta 

parameters α and β for a PERT model: 

 

α =
2 · (xmax + 4 · xm.l. − 5 · xmin)

3 · (xmax − xmin) · �1 + 4 ·
(xm.l. − xmin) · (xmax − xm.l.)

(xmax − xmin)2 � (7) 

 

β =
2 · (5 · xmax − 4 · xm.l. − xmin)

3 · (xmax − xmin) · �1 + 4 ·
(xm.l. − xmin) · (xmax − xm.l.)

(xmax − xmin)2 � (8) 

 

As pointed out by (Davis, 2008), from Eqs. (7) and (8), one infers that 4 ≤ α + β ≤ 8 in 

any case. Moreover, the maximum value (i.e. α + β = 8) is only reached when the mode 

coincides with the mean. Figure 3 illustrates the effect of varying the parameters (α, β) 

on the tendency of a Probability Density Function (P.D.F.) defined on an interval [0, 1], 

with xm.l. = {0.1, 0.2, …, 0.9}. 

Figure 3. Beta-PERT PDFs for the 3-tuple [xmin, xm.l., xmax] on the interval [0, 1] 

Hence, given a non-deterministic variable defined by the 3-tuple [xmin, xm.l., xmax], the 

proposed Monte Carlo model consists of the generation of random numbers according 

to the Beta-PERT distribution above described, in order to obtain a range of occurrence 

probabilities of achieving different sustainable performances. Simply stated, once the 

simulation has finished, a set of possible N sustainability indexes is returned, being N 

the number of iterations compiled (del Caño et al., 2012). Tests show that from values 

of N close to 1000 results begin to converge with low computational cost (less than two 

seconds). Such results can be statistically used to plot both frequency histograms and 

cumulative probability curves, from which the decision-maker must ponder over the 

duality of risk and determine the most convenient course of action. 

 

2.3. Fuzzy weights assignment 
 

The aim at this stage is to establish the priorities among the elements governing the 

MIVES structure. This process can be carried out by various different methods, being 



 

the selected for this paper the Analytic Hierarchy Process (AHP). However, since this 

technique is not capable of capturing the vagueness present in a subjective 

comparison, its utilization is combined with Fuzzy Sets to deal with such ambiguity. 

Nevertheless, even taking into account aspects as uncertainty and imprecision, the 

quality of a judgment is still directly proportional to the knowledge of the person issuing 

it. For this reason, leaving the execution of this process to one single person is not 

recommendable, being more expedient to gather the views of a group of people with 

expertise in the evaluated subject, whose assessments can be integrated by using the 

said fuzzy AHP method, in order to reach a commitment result which really reflects the 

interrelationships among the components of the decision-making problem.  

 

2.3.1. Analytic Hierarchy Process (AHP) 
 

The Analytic Hierarchy Process, created by Saaty (Saaty, 1980), has been widely 

utilized within the construction sector (Ei-Mikawi & Mosallam, 1996; Kalamaras et al., 

2000; Lin et al., 2008; Zavadskas et al., 2011), often as a system for weighting the 

relative importance among the set of criteria that compose a decision-making problem 

(Saaty, 1990). Generally, the structure of these problems comprises a series of 

stepped levels, so that several pairwise comparisons are established to obtain the 

inner hierarchy among its constituting elements, depending on their contribution 

degree to the higher level to which they are linked. To quantify this, (Saaty, 1980) 

proposed a comparison scale whose values are shown in Table 1.  

Table 1. Saaty’s comparison scale 

If element i has one certain value with respect to another element j, then j has the 

reciprocal value when compared with i. To state it in a different manner, by applying 

Saaty’s scale, a nxn reciprocal comparison matrix [A] can be obtained, whose 

elements verify the expression aij * aji =1. Thus, the top right triangle of the matrix is 

formed by a series of elements which are the reciprocals of the ones belonging to the 

bottom left triangle (Skibniewski & Chao, 1992). The consistency of the comparisons 

made is measured through the calculation of the maximum eigenvalue of the matrix 



 

(λmax), whose corresponding eigenvector determines the relative priorities among the 

analyzed criteria. 

 

In this manner, the comparison matrix is totally consistent when λmax is equal to n, 

whilst the inconsistency increases as the eigenvalue grows. In order to appraise this 

aspect, (Saaty, 1980) developed the concept of consistency ratio (C.R.), which, in turn, 

consists of two more elements: consistency index (C.I.) and random consistency index 

(R.I.). The first one is expressed as follows: 

 

C. I. =
λmax − n

n − 1
 (9) 

 

Meanwhile, the random consistency index is the measure of all the consistency 

indexes of a comparison matrix which has been randomly generated. Thereby, it only 

depends on the size of the matrix (n) and takes the following values according to it 

(see Table 2). 

Table 2. Random Consistency Index 

Finally, the consistency ratio is defined as the ratio between both of them. A matrix can 

be considered as consistent when the value of this ratio is less than 0.1 (see Eq. (10)). 

This limit indicates that the inconsistency must not exceed 10% of the average 

inconsistency of the whole set of comparison matrices: 

 

C. R. =
C. I.
R. I.

< 0.1 (10) 

 

2.3.2. Fuzzy sets 
 

Given its discrete nature, the traditional AHP approach above explained entails a 

series of weaknesses which have been thoroughly discussed under several different 

points of view. In other words, the capacity of the conventional AHP method to capture 

decision-makers real perceptions and opinions is limited. Inherent aspects of human 

judgments as vagueness and imprecision are difficult to be expressed by using the 



 

crisp scale shown in Table 1, which has motivated a development in fuzzy decision-

making methods (Buckley, 1985; Cheng, 1999). From this point, several fuzzy AHP 

approaches have been carried out throughout the last years (Pan, 2008; Jaskowski et 

al., 2010; Fazel Zarandi et al., 2011).  

 

Fuzzy logic was originally introduced by (Zadeh, 1965) to deal with the uncertainty and 

ambiguity that surround real world problems. One of the most significant and intuitive 

ways to handle fuzziness is the use of fuzzy numbers, whose definition includes the 

concept of membership degree. (Zadeh, 1965) proposed that the range of membership 

values of an element to a set may vary within the interval [0, 1], instead of having to be 

limited to one of the pair of values {0, 1}. Thereby, given a fuzzy set F, a fuzzy number 

can be characterized by a membership function μA (x) which represents the grade of 

membership of x in F (Lin, 2010). Thus, a triangular fuzzy number, which is the selected 

type to be used in this paper, is defined as ãij = (α ij, β ij, γ ij), being its membership 

function the following:  

 

µA (x;α,β, γ) =

⎩
⎪
⎨

⎪
⎧

  

x − α
β − α

, α ≤ 𝑥𝑥 ≤ 𝛽𝛽

γ − x
γ − β

, β ≤ 𝑥𝑥 ≤ 𝛾𝛾

0,                 otherwise

 (11) 

  

where α, β and γ are the lower, middle and upper values of the triangular fuzzy 

number ã. By applying these concepts, the original Saaty’s pairwise scale is derived 

as shown in Table 3. 

Table 3. Fuzzy comparison scale 

The conversion from crisp to fuzzy is not a rigid procedure, which means that the 

decision-maker is able to choose both the limits and the value of δ which best fit their 

specific problem. In this paper, a value of δ = 2 has been adopted as a wide enough 

margin to represent fuzziness consistently. Besides, unlike some authors who only 

used odd fuzzy numbers (Cheng, 1997; Deng, 1999), the proposed model also 



 

includes their intermediate values (denoted by adding + or - to the adjacent linguistic 

term, as appropriate), in order to provide a continuous range of comparison degrees 

(Srdjevic & Medeiros, 2008). 

 

Thus, given the crisp judgments provided by a group of experts according to Saaty’s 

scale (see Table 1), a set of comparison matrices formed by triangular fuzzy numbers 

can be generated by applying the conversion rules described in Table 3. Their level of 

consistency must be ascertained by checking Eq. (9). As pointed out by (Csutora & 

Buckley, 2001), if the crisp comparison matrix is consistent, then the fuzzy matrix is 

consistent.  

 

Analytically, let Ãij,k = [(α ij, β ij, γ ij)] be the fuzzy comparison matrix between two criteria 

i and j obtained from the original crisp matrix Aij,k = [β ij] provided by an expert k (k = 1, 

2, 3, … n). By applying Eqs. (9) and (10), it is checked if the calculated C.R. for Aij,k is 

less than 0.1, in which case the fuzzy matrix Ãij,k can be considered as consistent. 

Otherwise, the expert must review his original assessments until they show a 

sufficiently high consistency level. 

 

2.3.3. Defuzzification 
 

After checking the consistency of the fuzzy matrices, their resulting components must 

be defuzzified to finally obtain a set of discrete values. This process can be developed 

in several different ways, being the selected one for this paper the proposed by 

(Opricovic & Tzeng, 2003), known as the Converting Fuzzy data into Crisp Scores 

method (CFCS). The reasons why this method has been chosen are based on its 

intuitive character and ease of application. 

 

The principles of this methodology can be synthetized algorithmically, which results in 

the following sequence of steps: 

 

1. Normalize the fuzzy matrices: 

 



 

xαij,k =
αij,k − minαij,k

Δminmax  (12) 

 

xβij,k =
βij,k − minαij,k

Δminmax  (13) 

 

xγij,k =
γij,k − minαij,k

Δminmax  (14) 

 

where     Δminmax = maxγij,k − minαij,k (15) 

 

2. Calculate the lower and upper normalized values: 

 

xαsij,k =
xβij,k

1 + xβij,k − xαij,k
 (16) 

 

xγsij,k =
xγij,k

1 + xγij,k − xβij,k
 (17) 

 

3. Obtain the total normalized crisp values: 

 

xij,k =
xαsij,k · �1 − xαsij,k� + xγsij,k

1 − xαsij,k + xγsij,k
 (18) 

 

4. Compute the crisp values: 

 

aij,k∗ = minαij,k + xij,k · Δminmax (19) 

 

5. Integrate the crisp values: 

 

aij∗ = �� aij,k∗
m

k=1

�

1 m�

 (20) 



 

 

From this point, an overall pairwise comparison matrix containing the set of crisp values 

obtained from the synthesis of the individual assessments provided by each expert can 

be established: 

 

Aij
∗ = �aij∗ � (21) 

 

The final weights which will be used to perform the analysis are obtained by applying 

Eq. (22): 

 

wi =
�∏ aij∗n

j=1 �
1 n�

∑ �∏ aij∗n
j=1 �

1 n�n
i=1

 (22) 

 

3. Application to pervious pavements 
 

In order to address a general situation, the proposed MIVES methodology was applied 

to select the most suitable pervious pavement type for the rehabilitation of a light traffic 

urban road placed in the north of Spain and not surrounded by special conditions in 

both architectural and environmental terms; i.e. a case in which the conditions are 

similar for any alternative, with the aim of establishing an unbiased and equable 

comparison. Moreover, although transport distances do not introduce significant 

deviations either, they have been also included in the analysis. 

 

The following subsections are structured to apply the steps of MIVES listed in Section 

2.1 to the selection procedure of urban pervious pavements: 

 

3.1. Design of the decision-making tree 
 

Designing the requirements tree is a crucial aspect within the MIVES procedure. A 

poor selection at this stage would surely lead to a bad reflection of the decision-maker’s 

original prospects. To avoid such circumstance, a vast array of bibliography was 



 

consulted (ACI Committee 522, 2008; National Asphalt Pavement Association (NAPA), 

2008; US Environmental Protection Agency (Greening EPA), 2012; Interlocking 

Concrete Pavement Institute (ICPI), 2014). As a result, the decision-making tree 

represented in Table 4 emerged. 

Table 4. Proposed decision-making tree 

A good indicator must be both representative and discriminant; i.e. regardless how 

enlightening a certain variable may be, it will not provide any additional information if 

each of the different alternatives presents a similar performance in this respect. Under 

this premise, the decision-making tree depicted in Table 4 is composed of a total of 

nineteen indicators, each of which is considered descriptive and exclusionary enough. 

 

The economic requirement includes nine indicators, from which those related to cost 

and efficiency issues have been elaborated from the data contained in several Spanish 

Construction Budgetary Bases (Consejería de Fomento, Vivienda, Ordenación del 

Territorio y Turismo del Gobierno de Extremadura, 2012; Atayo, 2013; Consejería de 

Fomento y Vivienda de Andalucía, 2013). Considering the uncertainty that a set of 

fixed values as these involves, they have been slightly altered according to market 

tendencies in order to obtain a separate 3-tuple as minimum, most likely and maximum 

values, thus forming stochastic variables [xmin, xm.l., xmax]. Same situation occurs with 

I 1.3.1, whose inputs oscillate between a lower and upper limit obtained from material 

properties and experience. The remaining indicator of time, I 1.3.4, adopts a discrete 

value based on the curing age of the surface materials in each case. Finally, I 1.2.1 

and 1.2.2 describe the flexibility degree of the alternative in terms of economy. The 

first, which also has a deterministic quantitative nature, refers to the minimum needs 

of material supply for each alternative, whilst I 1.2.2 varies in accordance with a 

punctuation scale which reflects the sensitivity of the alternative against climate 

conditions at the construction stage. 

 

Due to the development of a complete Life Cycle Assessment (LCA) would exceed the 

proportions of this paper, the environmental requirement comprises a simplified view 

of three of LCA’s fundamental aspects, which are Consumptions, Emissions and 



 

Recyclability. Thus, the Pavement Life-cycle Assessment Tool for Environmental and 

Economic Effects (PaLATE), created at the University of California (Berkeley) 

(Horvath, 2004), was used to measure both the Energy consumption and the CO2 

emissions corresponding to each of the pavement types under analysis for a same 

period of 30 years. Since this tool was developed in 2003, it was considered 

appropriate to adjust their reference values with those proposed in the Inventory of 

Carbon & Energy database (ICE) (Hammond & Jones, 2011). This lack of update is 

also the reason why other consumption and emission categories have not been 

included, such as water consumptions or NOx, PM10 and SO2 emissions. Meanwhile, 

the criterion defined as Recyclability focuses on the duality between raw and recyclable 

materials, pointing to the required mass for the first ones and the admission degree of 

the latter, respectively. 

 

The social requirement is a synergy among the three following criteria: Aesthetics, 

Comfort and Safety. Regarding the first, I 3.1.1 refers to the range of shapes, colours 

and textures in which the paving can be fabricated, whereas I 3.1.2 indicates the 

degree in which the solution is adapted to the urban environment. Meanwhile, I 3.2.1 

shows the impact of roughness in citizens’ comfort, either by the noise or the 

discommodity in transit that a rugged paving implies. The next indicator is the only 

within the social requirement which is measured quantitatively, specifically through the 

Albedo coefficient (Heat Island Group, 2014). Thus, the Urban Heat Island effect is 

estimated by means of the reflecting power of each surface of the incident radiation 

upon it. As far as the last criterion is concerned, I 3.3.1 shows how susceptible the 

different pavements are to be affected by vandalism (e.g. their ease of disassembly or 

the sensitivity to be ruined during their curing phase). Lastly, possible damages to 

labour and users, whether physical or atmospheric, are contained in the indicator I 

3.3.2. 

 

3.2. Weighting of the decision-making tree 
 

Once the hierarchical structure of the tree was defined, a group of ten experts was 

requested to give their assessments regarding the relative importance among their 



 

components. Moreover, such panel of experts was composed by representatives from 

all sectors, from private companies to public administration to research groups, in order 

to obtain a balanced view of the problem. Thereby, a series of questionnaires was 

elaborated based on the decision-making tree (see Table 4), so that the experts who 

agreed to participate sent back their pairwise comparisons relating to each of the three 

decision levels. Starting from the linguistic terms of the crisp scale originally proposed 

by (Saaty, 1980), questions such as “How important is element i compared to element 

j?” were the base of these inquiries. The results thus obtained are shown in Table 5. 

Table 5. Experts’ judgments regarding each of the three decision-level 

3.3. Description of alternatives 
 

Experience and bibliography show that three major pavement typologies are the most 

commonly selected alternatives to perform as stormwater management systems: 

porous asphalt, porous concrete and interlocking concrete pavers. According to the 

specifications contained in specialized literature (ACI Committee 522, 2008; Minnesota 

Stormwater Steering Committee, 2008; National Asphalt Pavement Association 

(NAPA), 2008; US Environmental Protection Agency (Greening EPA), 

2012; Interlocking Concrete Pavement Institute (ICPI), 2014), the cross sections 

illustrated in Figure 4 are selected to develop the model. 

Figure 4. Proposed cross-sections of the three major pavement types 

3.4. Definition of the value functions 
 

Some of the indicators defined in Table 4 are difficult to value deterministically, 

because they measure properties on which there is no certain knowledge, but rather 

an expected response. As pointed out in Section 3.1, these indicators are those 

dependent on both economic and materials-related factors. In this context, expressing 

them by discrete values is far from being an accurate and methodologically adequate 

approach. Instead, their variable nature can be properly model through a distribution 

function tending to favour their most-likely values as Beta-PERT. 

 



 

A summary of the characteristics of each indicator is represented in Table 6, where 

“Type” indicates how their level of satisfaction evolves (D = Decreasing / I = Increasing) 

and “Nature” the type of variable they are in statistical terms (D = Deterministic / S = 

Stochastic). Most likely values for stochastic indicators are provided for each 

alternative (PA = Porous Asphalt; PC = Porous Concrete; ICP = Interlocking Concrete 

Pavers). 

Table 6. Descriptive characteristics of the set of indicators 

3.5. Assessment of alternatives and discussion 
 

The data contained in Table 5 was processed by the fuzzy AHP methodology 

previously described to obtain the set of relative weights of each of the components of 

the decision-making tree represented in Table 4. Then, the MIVES procedure was 

introduced to calculate the value indexes of each indicator by applying Eqs. (1) and 

(2), according to the parameters depicted in Table 6. Both sets of results were finally 

integrated to determine the overall value index for each of the alternatives, as shown 

in Figure 5. Since partial results are also a valuable source of information, the 

performances of the three pavement types regarding the three requirements are also 

displayed in such illustration. 

Figure 5. Overall and partial value indexes of each alternative 

The results support the competition between these three types of pavement because, 

as it can be observed, their differences in overall terms are small. Furthermore, while 

interlocking concrete pavers’ alternative falls slightly behind the rest, porous asphalt 

and porous concrete stay closer, to the point of sharing a common area of sustainable 

performance. To reinforce the final decision-making, it is advisable to also address the 

performance of each alternative with respect to the requirements. In this regard, each 

of the alternatives highlights over the rest in one of the three main aspects. Thus, 

porous asphalt appears as the most economical solution, mainly due to its low 

construction cost in comparison with the other alternatives. Also in this sense, despite 

of its excellent ratings in several economic indicators (e.g. “Minimum batch size”, 

“Sensitivity to climate conditions” or “Longevity”), the interlocking concrete pavers’ 



 

alternative is strongly penalized by its commonly large installation costs. On the other 

hand, this solution reaches the highest value in the second requirement thanks to its 

balanced behaviour in each of the three environmental criteria, although experience 

with porous asphalt in terms of recyclability puts it very close to that. Finally, porous 

concrete clearly outperforms the other alternatives in regard to the last requirement, 

because of its extremely regular response to the whole set of social indicators. In 

contrast, both Porous Asphalt and Interlocking Concrete Pavers exhibit poor 

performances in relation indicators such as “Appearance” or “Urban heat island” and 

“Roughness” or “Susceptibility to vandalism”, respectively. 

 

4. Conclusions 
 

This paper proposes and validates a new multi-criteria model based on the 

combination of several existing decision making tools. The core of this model resides 

in the MIVES methodology, whose step-wise architecture is improved here by including 

some auxiliary complements such as Monte Carlo Simulations, Fuzzy Sets and the 

AHP method. Thereby, the variability of indicators values can be stochastically 

modelled through Beta-PERT distribution functions when needed, whilst the weights 

assignment stage is carried out by synthetizing the opinions of a group of experts by 

integrating a Fuzzy AHP approach with the CFCS method. The synergic performance 

of these elements is aimed to provide an added quality when facing decision making 

problems involving conflicting criteria under uncertain environments, especially when 

the assessment is performed in sustainable terms.  

 

The inputs used for the application of this methodology to the selection of pervious 

pavements are (1) a specific decision-making hierarchy tree, (2) the value functions 

defining the features of the pavements and (3) the pairwise comparison judgments 

provided by a group of ten experts. The output is a probability density function of the 

likely overall value indexes for each of the three studied alternatives. The results show 

the usefulness of the model and the clairvoyance that provides decision-makers to 

select the most suitable pavement type. Furthermore, although properly choosing the 

most adequate pervious pavement can make a difference in the standard of living of 



 

an urban space, there is no similar application destined to the selection of these 

structures, which further increases the importance of the proposed approach. 

Undoubtedly, this methodology can be also implemented in any other decision-making 

activity involving uncertainty and expert knowledge, regardless of the field to which it 

belongs. In addition, the conception stage presented in this paper is subject to 

discussion, both concerning the design of the hierarchical structure of the problem and 

the definition of the value functions and the weights comparison scale. Such aspects 

also depend on the specifics of each case of application.  

 

Due to the success of this model, a research line is being developed to implement its 

underlying methodology in the pavement rehabilitation of entire cities. The aim is to 

improve the hydrologic efficiency of these urban areas by proposing the most suitable 

pervious pavement structure to be installed in each current section of road 

infrastructure susceptible of being rehabilitated. 
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Figures 

 

Figure 1. Different shapes and parameters of the MIVES method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 2. Aggregation procedure of value indexes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 3. Beta-PERT PDFs for the 3-tuple [xmin, xm.l., xmax] on the interval [0, 1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 4. Proposed cross-sections of the three major pavement types 



 

 

Figure 5. Overall and partial value indexes of each alternative 



Tables 

Table 1. Saaty’s comparison scale 

Linguistic term Numerical value 

Equally important 1 

Slightly more important 3 

More important 5 

Much more important 7 

Absolutely more important 9 

Intermediate values 2, 4, 6, 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 2. Random Consistency Index 

Matrix size (n) 2 3 4 5 6 7 8 9 10 

R.I. 0 0.58 0.9 1.12 1.24 1.32 1.41 1.25 1.49 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 3. Fuzzy comparison scale 

Crisp Linguistic term Fuzzy 

1 Equally important (1, 1, 1) 

3 Slightly more important (3-δ, 3, 3+δ) 

5 More important (5-δ, 5, 5+δ) 

7 Much more important (7-δ, 7, 7+δ) 

9 Absolutely more important (9-δ, 9, 9) 

2, 4, 6, 8 Intermediate values (x-1, x, x+1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 4. Proposed decision-making tree 

R # REQUIREMENT C # CRITERIA I # INDICATOR 

R 1 ECONOMIC 

C 1.1 Costs 

I 1.1.1 Construction cost 

I 1.1.2 Maintenance cost 

I 1.1.3 Demolition cost 

C 1.2 Flexibility 
I 1.2.1 Minimum batch size 

I 1.2.2 Sensitivity to climate conditions 

C 1.3 Time 

I 1.3.1 Longevity 

I 1.3.2 Construction efficiency 

I 1.3.3 Demolition efficiency 

I 1.3.4 Time before opening to traffic 

R 2 ENVIRONMENTAL 

C 2.1 Consumptions I 2.1.1 Embodied energy 

C 2.2 Emissions I 2.2.1 Embodied carbon 

C 2.3 Recyclability 
I 2.3.1 Required amount of raw materials 

I 2.3.2 Admission degree of recycled materials 

R 3 SOCIAL 

C 3.1 Aesthetics 
I 3.1.1 Appearance 

I 3.1.2 Urban integration degree 

C 3.2 Comfort 
I 3.2.1 Roughness 

I 3.2.2 Urban heat island 

C 3.3 Safety 
I 3.3.1 Susceptibility to vandalism 

I 3.3.2 Risk for labour & users 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 5. Experts’ judgments regarding each of the three decision-level 

Pairwise 
comparison 

Expert number 
C.R. 

1 2 3 4 5 6 7 8 9 10 

R 1 vs R 2 EI- EI EI- MI AMI EI LI EI LI MI 

0.001 R 1 vs R 3 SLI- MI SLI- MMI MMI+ EI SLI- EI LI MI 

R 2 vs R 3 SLI- SMI SLI SMI SLI EI SMI EI EI+ EI+ 

C 1.1 vs C 1.2 SMI+ MMI EI- MMI AMI EI- LI- MI SLI- MI 

0.001 C 1.1 vs C 1.3 MI+ MMI+ SLI- EI MI+ EI- EI+ SMI SLI- MI 

C 1.2 vs C 1.3 EI+ SMI LI MLI SLI- EI- MI SLI EI+ EI+ 

C 2.1 vs C 2.2 EI LI SLI MMI SMI SMI EI MI SLI- SI 

0.003 C 2.1 vs C 2.3 EI SLI LI- SMI+ SMI MI+ EI EI SLI- EI+ 

C 2.2 vs C 2.3 EI SMI LI SLI- EI MI EI LI EI- SLI- 

C 3.1 vs C 3.2 EI- LI EI- SLI- EI+ EI LI- MI SLI MI 

0.005 C 3.1 vs C 3.3 LI MLI EI- MLI MI MLI LI EI LI EI 

C 3.2 vs C 3.3 LI SLI EI- SLI- MI MLI- EI SLI SLI- LI 

I 1.1.1 vs I 1.1.2 EI- SLI- EI- SMI AMI EI- LI- EI SLI SMI 

0.015 I 1.1.1 vs I 1.1.3 SLI- MI LI MMI MI+ MMI SMI MMI+ MMI MMI 

I 1.1.2 vs I 1.1.3 SLI- MMI+ LI MI+ SLI- MI+ MMI MMI+ MMI+ MI 

I 1.2.1 vs I 1.2.2 SMI MMI LI- MLI MLI SMI MLI- EI MLI MI 0.000 

I 1.3.1 vs I 1.3.2 MI EI- EI- SMI MMI MI+ MLI MI SMI+ EI 

0.019 

I 1.3.1 vs I 1.3.3 MI MI LI AMI AMI MMI+ SMI+ AMI MMI SMI 

I 1.3.1 vs I 1.3.4 MI EI LI- MI MI MMI SMI MMI MI+ SLI 

I 1.3.2 vs I 1.3.3 SMI MI EI- MMI EI+ SMI MMI+ MMI MI SMI 

I 1.3.2 vs I 1.3.4 SMI MI LI- MI LI SMI+ MI EI SMI EI 

I 1.3.3 vs I 1.3.4 EI+ LI LI- LI- MLI- EI- EI- LI SLI- SLI- 

I 2.3.1 vs I 2.3.2 SMI EI EI- MMI EI MI MLI- MI+ EI EI 0.000 

I 3.1.1 vs I 3.1.2 SMI EI EI- MLI EI EI- MLI LI SLI- EI- 0.000 

I 3.2.1 vs I 3.2.2 LI- MI LI- EI SMI+ LI- SLI- SMI LI MI 0.000 

I 3.3.1 vs I 3.3.2 MLI LI LI- LI SMI+ EI- MMI LI MLI MLI 0.000 

 
 
 
 
 
 
 
 
 



 

Table 6. Descriptive characteristics of the set of indicators 

# I Units of 
measurement Type Nature xmin xmax xm.l.PA xm.l.PC xm.l.ICP Ci Ki Pi 

I 1.1.1 €/m2 D S 0 50 (11.48) (22.12) (34.13) 15 0.025 2 
I 1.1.2 €/m2/yr D S 0 8 (4.94) (4.60) (2.13) 3 0.075 2.5 
I 1.1.3 €/m2 D S 0 10 (2.65) (4.46) (5.80) 3.5 0.025 2 
I 1.2.1 m2 D D 0 50 - - - 30 0.01 5 
I 1.2.2 point I D 0 100 - - - 35 0.2 2 
I 1.3.1 years I S 0 40 (17) (23) (27) 15 0 1 
I 1.3.2 h/m2 D S 0 0.75 (0.07) (0.10) (0.48) 0.1 0.005 2 
I 1.3.3 h/m2 D S 0 0.25 (0.088) (0.101) (0.164) 0.075 0.005 2 
I 1.3.4 hours D D 0 200 - - - 150 0.001 6 
I 2.1.1 MJ/m2 D D 0 1000 - - - 300 0.1 2 
I 2.2.1 kgCO2/m2 D D 0 50 - - - 35 0.9 0.75 
I 2.3.1 kg/m2 D D 0 1000 - - - 300 0.2 4 
I 2.3.2 % I D 0 50 - - - 15 0,15 3 
I 3.1.1 point I D 0 75 - - - 20 0.5 1 
I 3.1.2 point I D 0 100 - - - 40 0.2 4 
I 3.2.1 point I D 0 100 - - - 35 0.25 1 
I 3.2.2 Albedo I S 0 1 (0.05) (0.30) (0.35) 0.15 0.1 3.5 
I 3.3.1 point D D 0 100 - - - 25 0.025 2 
I 3.3.2 point D D 0 100 - - - 40 0.2 3 
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