
J Supercomput. manuscript No.
(will be inserted by the editor)

On-the-Fly Adaptive Routing for dragonfly interconnection
networks

Marina Garcı́a · Enrique Vallejo ·
Ramón Beivide · Cristóbal Camarero ·
Mateo Valero · Germán Rodrı́guez ·
Cyriel Minkenberg.

Published online: 16 December 2014

Abstract Adaptive deadlock-free routing mechanisms are required to handle vari-
able traffic patterns in dragonfly networks. However, distance-based deadlock avoid-
ance mechanisms typically employed in Dragonflies increase the router cost and com-
plexity as a function of the maximum allowed path length.

This paper presents OFAR (On-the-Fly Adaptive Routing), a routing/flow-control
scheme that decouples the routing and the deadlock avoidance mechanisms. OFAR
allows for in-transit adaptive routing with local and global misrouting, without im-
posing dependencies between virtual channels, and relying on a deadlock-free escape
subnetwork to avoid deadlock. This model lowers latency, increases throughput, and
adapts faster to transient traffic than previously proposed mechanisms. The low ca-
pacity of the escape subnetwork makes it prone to congestion. A simple congestion
management mechanism based on injection restriction is considered to avoid such
issues. Finally, reliability is considered by introducing mechanisms to find multiple
edge-disjoint Hamiltonian rings embedded on the dragonfly, allowing to use multiple
escape subnetworks.

Keywords Interconnection network · Dragonfly network · OFAR · Adaptive
routing · Deadlock avoidance

c©Springer, 2014. This is the author’s version of the work. The final publication
is available at Springer via http://dx.doi.org/10.1007/s11227-014-1357-9

M. Garcı́a, E. Vallejo, R. Beivide, C. Camarero
University of Cantabria
Tel.: +34-942-206770
E-mail: {marina.garcia, enrique.vallejo, ramon.beivide, cristobal.camarero}@unican.es

M. Valero
Barcelona Supercomputing Center and Universitat Politècnica de Catalunya
Tel.: +34-93-4137716
E-mail: mateo.valero@bsc.es

G. Rodrı́guez, C. Minkenberg
IBM Research Zurich
E-mail: {rod, sil}@zurich.ibm.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/147471407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Marina Garcı́a et al.

1 Introduction

This paper presents OFAR: an On the Fly Adaptive Routing for dragonfly networks.
Dragonflies [21] have been proposed as a cost-efficient solution for large-scale in-
terconnection networks. A dragonfly is organized in groups of routers. The inter-
connection between groups employs optical global links. Routers within groups are
connected using short local links, typically electrical. The topologies of the local and
global interconnects are typically low-diameter direct topologies that exploit high-
radix routers. For example, the IBM PERCS Interconnect [2] employs an all-to-all
topology (complete graph, Kx) in both the local and global interconnects, whereas
the Cray XC30 (codenamed “Cascade”, [8]) employs a complete graph for the global
interconnect and a K16×K6 topology within groups (where× represents the cartesian
product of graphs). For the rest of the paper we refer to the specific case of complete
graphs for both the local and global interconnect, but the results are general and can
be easily extended to any dragonfly.

The main dragonfly topological parameters, as defined in [21], are the number
of routers per group a, the number of processing nodes per router p and the number
of global links per router h. For a well-balanced network under uniform traffic, the
relations a = 2p = 2h must hold, [21]. A balanced dragonfly using 64-port routers
(h = 16) scales to more than 256K processing nodes.

The diameter of the dragonfly topology is 3, so any minimal path between two
routers will employ at most 3 hops. Minimal routing, as proposed in [21,2] is hier-
archical: a packet typically first traverses a local (l) and a global (g) link to reach
the destination group, and finally another local link at the destination group (path
l1 − g1 − l2). Each of these links can easily saturate under adversarial traffic pat-
terns, so nonminimal routing can be applied to randomize traffic and avoid satu-
rated links. Valiant routing [26], as used in [21,2], diverts traffic to an intermedi-
ate group before heading the destination group. This leads to paths of up to 5 hops
(l1−g1− l2−g2− l3). In such paths, the first two hops corresponding to global mis-
routing, this is, a nonminimal path to an intermediate group. This global misrouting
circumvents the potentially saturated global link in the minimal path. Similarly, con-
gestion in the intermediate or destination group requires of local misrouting, what
implies even longer paths. The different congestion scenarios and the corresponding
nonminimal routing solutions are presented with more detail in Section 2.

Cyclic routing dependencies can appear in Dragonflies, requiring a deadlock
avoidance strategy. Several proposals, [21,2], rely on a set of virtual channels (VCs)
visited in a predefined order, based on the original mechanism in [14]. The number
of VCs is bounded by the length of the longest path: minimal routing allows for paths
of length 3, whereas Valiant allows for length 5. However, as local links are used in
hops 1, 3 and 5 and global links are used in hops 2 and 4, it is enough to implement 3
VCs in local links and 2 VCs in global links; such VC configuration will be denoted
as 3/2. Shorter paths (e.g. l− g− g− l with Valiant) skip indexes corresponding to
missing hops. Tying the allowed path length with hardware resources is undesirable,
because it makes the use of longer paths (required for local misrouting or in-transit
adaptive routing) more complex to implement. This problem might become much

On-the-Fly Adaptive Routing for dragonfly interconnection networks 3

more significant if network routers are embedded within processor chips, as several
vendors have suggested in their roadmaps.

In summary, the main performance limitations in dragonfly networks come from
the different congestion issues and the capability to adapt in-transit to changing traf-
fic conditions. Additionally, the allowed paths have a direct impact on the implemen-
tation cost when a restrictive use of VCs is imposed for deadlock avoidance. The
mechanism presented in this paper addresses all of these issues.

OFAR is a flow-control/routing mechanism that decouples the use of the virtual
channels from the deadlock avoidance mechanism. It allows each router in the path
to dynamically misroute packets depending on the observed congestion, leading to
faster adaptation to transient traffic patterns and avoiding congestion in local links.
An escape subnetwork is employed for deadlock avoidance. Our evaluations show
that such a model improves throughput and response time under different traffic pat-
terns, even in the most adverse cases. To prevent congestion in the escape subnetwork,
we combine OFAR with a simple congestion management (CM) mechanism: injec-
tion throttling based on local information, which happens to be enough to prevent
congestion in the escape subnetwork. Finally, we also consider the use of multiple
disjoint escape subnetworks for fault tolerance. Two previous papers of the authors,
[11,12], provide more detail on the work described here. The current paper unifies
the OFAR proposal under a common framework, considers the “Valiant-any” routing
from [24,26] as a reference mechanism and introduces a novel mechanism to find
disjoint escape rings for fault tolerance. Evaluations with multiple escape rings with
different mappings lead to the conclusion that the new ring mappings introduced in
this paper provide better performance than previous alternatives thanks to a lower
network congestion.

In Section 2 we study the main performance limitations of dragonfly networks
caused by adversarial traffic patterns, and discuss how global and local misrouting to-
gether with in-transit misrouting efficiently avoid them. In Section 3 we detail OFAR
considering two alternatives for the escape subnetwork (a Hamiltonian ring with bub-
ble flow control, and a spanning tree with up-down routing), introduce mechanisms
to find multiple disjoint Hamiltonian rings for fault tolerance, and present two simple
congestion management mechanisms (denoted as BCM and ECM). Section 4 details
the simulation infrastructure and Section 5 presents the performance results. Finally,
Section 6 presents related work and Section 7 concludes the paper.

2 Performance limitations of dragonfly networks

In this section we survey the main performance limitations of a well-balanced drag-
onfly network with complete graphs in its local and global topologies; the issues are
similar for other variants of such a topology.

Saturation of global links: The transfer limit of each link is 1 phit/cycle (the phit
is the amount of information transferred through a link in one cycle) and up to one
global hop is required for each packet to reach its destination node with minimal
routing. Using h = p allows for maximum performance under uniform traffic, UN,

4 Marina Garcı́a et al.

p computing
nodes

p computing
nodes

Ri Ro

(a) Saturation under traffic local to a
group

intermediate group

Ri Ro

so
ur

ce
 g

ro
up

s

destination groups

l2

...

(b) Pathological saturation of the single local link, l2, connect-
ing Ri and Ro in the intermediate group.

Fig. 1: Saturation problems in local links

with minimal routing. However, in an adversarial traffic pattern the 2h2 computing
nodes in one group could send traffic to the same destination group, competing for
the bandwidth of a single global link. We denote this traffic as adversarial-global,
ADVG+N, where every source node in group i selects a random destination node
in group (i+N) (mod G), (G is the number of groups). With minimal routing this
traffic would limit the maximum bandwidth to 1/(2h2) while leaving most of the
global links underutilized (with h = 16, throughput is limited to 1/512, less than
0.2% of its maximum). Global misrouting tries to avoid a congested global link by
sending traffic to another group, possibly requiring a local hop in the source group.
Valiant routing, as used in [21], employs global misrouting to equalize the use of the
global links in the network. Each packet is sent to a random intermediate group, and
then minimally to its destination. Because this implies two global hops for any packet
to reach its destination, on average, global links will limit the maximum throughput to
0.5 phits/(node · cycle). The problem is not the scarcity of global links (since p = h),
but their unbalanced use under minimal routing, caused by the traffic pattern.

Saturation of local links: Analogously, local links also saturate when all the p com-
puting nodes attached to a router Ri send traffic to the nodes in a neighbor router Ro
of the same group, as shown in Fig. 1a. We denote this traffic as adversarial-local,
ADVL. The p nodes attached to Ri offer a load of p phits/cycle to the only local link
between these two routers. As this link has a capacity of 1 phit/cycle, under minimal
routing the maximum traffic would be 1/p (for p = h = 16, this would limit traffic
to 6.25% of its maximum). Again, the problem is not the number of local links in a
group, but their unbalanced use caused by the traffic pattern. Local misrouting avoids
a saturated local link by sending packets to an intermediate router within the group,
and then to the destination router, using two local hops instead of the saturated one.

Pathological saturation of local links under adversarial-global traffic: Using global
misrouting requires up to 5 hops to get to destination , l1−g1− l2−g2− l3. The two
first hops l1−g1 lead to an intermediate group. The intermediate local hop l2 is only
required if the source and destination groups are not connected to the same router in

On-the-Fly Adaptive Routing for dragonfly interconnection networks 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
Lo

ad
 (

ph
its

/(
no

de
·c

yc
le

)

Offered load (phits/(node·cycle))

ADV+1
ADV+2
ADV+3
ADV+4
ADV+6
ADV+9

ADV+10
ADV+12

Fig. 2: Accepted vs. offered load in a h = 6 dragonfly with Valiant and different
Adversarial Traffic Patterns

the intermediate group. For certain traffic patterns, this local link l2 will saturate and
become the network bottleneck, even when this leaves global links partially idle.

Specifically, the worst case occurs with the adversarial pattern ADVG+h. Fig. 1b
shows two routers Ri and Ro of a given group Gi. Ri receives misrouted traffic through
its h global links, which has to be forwarded through the h subsequent global links.
Global wiring is typically consecutive, so all these links are in the next router, Ro. The
single link connecting Ri and Ro can only convey 1 phit/cycle, so even in absence of
any other throughput limit in the network, the localized saturation of certain local
links will limit throughput to 1/h phits/(node · cycle). The same happens for any
other ADV+(n · h) traffic pattern. For h > 2, the throughput limit imposed by the
saturation in these local links is more restrictive than the limit imposed by global
links with global misrouting, and such restriction grows with the network size.

The maximum throughput for adversarial traffic with global misrouting will de-
pend on the specific offset between the source and destination groups. Fig. 2 shows
how, with the Valiant routing used in [21], throughput varies notably depending on
this offset, even in a small dragonfly with h = 6 (5,256 computing nodes). ADVG+1
causes the lowest congestion, whereas ADVG+(n · 6) generates the highest. As with
ADVL traffic, local misrouting (now, in the intermediate group) would avoid this
pathological saturation. Interestingly, the original definition of Valiant routing in
[26] selects a random intermediate router (not a group), which has been denoted as
“Valiant Any” in [24]. This oblivious routing is roughly equivalent to performing a
global misrouting followed by a local misrouting in the intermediate group.

Adapting to traffic changes. Adaptive routing mechanisms select between minimal
and nonminimal paths depending on an estimation of the network congestion. Mul-
tiple adaptive mechanisms proposed for Dragonflies (such as UGAL [21], CRT or
Piggybacking [18]) employ source routing, selecting the path at injection. This re-
quires that congestion information extends throughout the network so that source
routers can properly sense it. To adapt quickly to traffic changes, in-transit adaptive
routing can switch from minimal to non-minimal (global misrouting) after injection

6 Marina Garcı́a et al.

of the packet1. This implies that two local hops can be required in the source group,
one minimal and one nonminimal (required for global misrouting).

In-transit adaptive routing supporting local misrouting in the intermediate and
destination groups leads to relatively long maximum paths: l− l−g− l− l−g− l− l.
Using the standard distance-based deadlock avoidance mechanisms described in [14],
this would require at least 6 virtual channels in the local links.

3 OFAR: On-the-Fly Adaptive Routing

OFAR differs in several key points with respect to previous ideas : i) Adaptive routing
is performed in transit, rather than being determined at injection time, with both local
and global misrouting; ii) Use of local information (the credit count of the output
ports of the local router) rather than remote information to select between minimal
and nonminimal paths, and to select the intermediate destinations for local and global
misrouting; and iii) The use of a deadlock-free sub-network for deadlock avoidance.

3.1 Dynamic misrouting in OFAR

In OFAR the path of each packet is not determined at injection; each router can for-
ward traffic non-minimally to avoid network congestion, adapting the packet path.
This misrouting can use either local or global links of the current router. In princi-
ple, our mechanism would allow for any number of misroutings without additional
cost, but a limit is set to prevent livelock: at most, one non-minimal global hop can
be applied per packet, and one non-minimal local hop per group. Two flags in the
packet header are used to limit misrouting. When packets do not travel on the escape
subnetwork that will be detailed in Section 3.3, the longest path is limited to 8 hops
(2 global and 6 local), as discussed in Section 2.

Each packet in an input buffer of a router always has a ‘minimal output’ according
to its minimal path to the destination. Depending on the credits of the minimal output
and the header flags, the router can misroute the packet using a nonminimal output
with more credits. When traffic is internal to a group, only local misroute is allowed.
When the destination is a remote group, both local and global misroutes are allowed.
In such case, when the packet is still in its source group only global misrouting is al-
lowed. In a group other than the source group, only local misrouting is allowed, and
only when the minimal output is a saturated local port. Both local and global mis-
routing are applied adaptively only when congestion is detected, so compared with
the oblivious “Valiant-Any” mechanism, OFAR can save the initial global misrouting
or the local misrouting in the intermediate group when there is no congestion.

Local misrouting always employs a local output port different than the minimal
one. For global misrouting we use the MM+L policy from [10] to determine which

1 We do not consider the opposite case (switching to minimal after a first nonminimal local hop which
corresponds to the global misrouting) because we model the MM+L global link selection policy [10]
which does not make a first local hop for global misrouting at injection. However, since OFAR decouples
the router resources and the path length, it would also support that case.

On-the-Fly Adaptive Routing for dragonfly interconnection networks 7

port to use. Under this policy, packets still in injection queues of their source router
are misrouted directly by global channels of this router. When using global misrout-
ing this saves the first local hop, minimizing path length. By contrast, packets switch-
ing from minimal to nonminimal routing after a first minimal local hop (which are in
local queues in the source group) always make a nonminimal local hop before their
nonminimal global hop. This avoids starvation under adversarial traffic if the current
node is the only one with a global link to the destination group.

3.2 Misrouting selection criteria

OFAR relies on the congestion observed in the minimal path to allow for non-minimal
routing and to select the specific output port used. We assume an input-buffered router
with a separable allocator. When a packet is in the header of an input queue, the rout-
ing subsystem will report its corresponding minimal path, along with the allowed
non-minimal paths (i.e., no misrouting allowed, misroute by any local link, or mis-
route by any global link). Depending on the measured network congestion, the input
unit of the allocator can request the minimal path or one of the non-minimal ones.
If the request is not assigned by the arbiter, subsequent requests can select different
output ports depending on the varying credit count.

To select between minimal or nonminimal routing, OFAR observes the occupancy,
Qmin, of the queue in the minimal path (minimal queue), and the occupancy, Qnon−min,
in any non-minimal output of the appropriate type, local or global (non-minimal
queues). As these queues have different sizes for local and global links, we consider
the percentage of buffer occupancy rather than the actual occupancy in phits. We use a
misrouting threshold T hnon−min. Misrouting is allowed only when the minimal port is
not available (it is already assigned to another input or Qmin = 100%)2. In such case,
the output port is selected randomly among those available non-minimal ports that
fulfil the occupancy condition Qnon−min ≤ T hnon−min. This prevents misrouting pack-
ets to a group which is already congested. We consider a relative misrouting thresh-
old, which depends on the occupancy of the minimal queue: T hnon−min = 0.90×Qmin.

3.3 Deadlock avoidance based on escape subnetworks

When all minimal and nonminimal paths are unavailable, packets are diverted to a
deadlock-free escape subnetwork to avoid deadlock. If packets can reach their des-
tination through this escape subnetwork, the overall system is deadlock-free [7]. In
each output assignment any available VC can be selected because this solution does
not require virtual channels, although they help to mitigate Head-of-line blocking
(HoLB). The capacity of the escape subnetworks proposed for OFAR is very low as
compared to the canonical dragonfly. To avoid saturation, in each hop routers try to
forward traffic from the escape subnetwork back to a canonical link (minimal or not)
if possible, to reduce traffic in the escape subnetwork. Thus, regardless of the type of

2 A minimum occupancy might be also required in the minimal queue to allow for misrouting; we have
not considered such a threshold in this work.

8 Marina Garcı́a et al.

Canonical link

Escape

Root Router

Node

Group

Router

tree link

Fig. 3: dragonfly network h = 2 with an additional escape tree subnetwork

input port of a packet, routers will always use the following precedence order for the
output selection: minimal - nonminimal - escape. Since minimal and escape routes
typically follow different paths, livelock might arise; Section 5.7 studies this issue
and finds that it is not a significant problem, especially when considering one of the
congestion management mechanisms presented later in Section 3.4.

The escape subnetwork must interconnect all the routers in the network. It can
employ links separated from the ones in the canonical network, using extra ports
in the routers and interconnecting them with additional local and global links. Al-
ternatively, it can be embedded in the canonical dragonfly, adding one extra virtual
channel to each link forming the escape subnetwork. We will denote this extra VC
separately, for example 3/2(+1). Depending on the topology employed, the cost and
the performance will vary. We consider two alternatives next.

3.3.1 Tree

In this case one of the routers is chosen as a “root”, Rroot . We denote the group
containing Rroot as Groot . Rroot is connected to all the remaining routers in Groot .
Each router in Groot is globally connected with one or several remote routers, each
one in a different group. Finally, each remote router is connected with the remaining
routers in its group. An example is presented in Figure 3. The routing employed in
the tree is up-down, which makes it deadlock-free.

3.3.2 Hamiltonian ring

This escape subnetwork interconnects every router in the network, forming a ring.
With Virtual Cut-through, the ring is deadlock-free as long as there is space for at
least one packet in one of its buffers. To assure this, bubble flow control is applied to
the ring [5]. To inject a packet in the escape ring, free space for two packets is required

On-the-Fly Adaptive Routing for dragonfly interconnection networks 9

RinBRinA RoutB RoutA

0 1 2 3 4 5 6 7

Ring A

Ring B

Fig. 4: Paths of two disjoint Hamiltonian rings in a group of a dragonfly network with
h = 4. The remaining links have been omitted for simplicity

in the buffer, which preserves the previous condition. On the contrary, packets can
freely circulate without restrictions once they are inside the ring. Note that, in OFAR,
this only occurs when the canonical links are saturated, as discussed before.

A simple Hamiltonian ring, denoted as ring A, is generated as follows. The a= 2h
routers in a group are labeled from 0 (R0) to 2h−1 (R2h−1). Router i is connected to
routers i± 1 (mod a) in the same group, except for R0, and R2h−1. R0 in group j is
connected to R1 in group j and R2h−1 in group j− 1 (mod G), with G the number
of groups. R2h−1 in group j is connected to R2h−2 in group j and to R0 group j+ 1
(mod G). This ring is partially illustrated in Figure 4. The resulting Hamiltonian ring
connects all the routers in the network employing a minimal number of global links
equal to the number of groups. The large diameter of this Hamiltonian cycle will not
be a problem, because packets only travel a few hops in the escape subnetwork, as
will be studied in Subsection 5.7.

3.3.3 Fault tolerance and escape bandwidth

One or two link failures in the escape subnetwork (for a tree or ring respectively)
disconnect the escape subnetwork and potentially block the system. Additionally, the
bandwidth of the escape subnetwork is much lower than the one of the canonical
dragonfly, which can lead to congestion as detailed in Subsection 3.4. The use of
several disjoint subnetworks increases fault tolerance and total escape bandwidth.

Considering embedded subnetworks, it is impossible to find two disjoint trees
since the root of one tree must share local ports with the other tree. However, there
are multiple algorithms to recalculate a spanning tree in case of a failure, such as
those defined for bridges in IEEE 802.1D [16]. In the case of rings, it is possible to
find multiple disjoint instances, but the solution introduced next is not as obvious as
the one for ring A presented in Subsection 3.3.2.

Considering a Hamiltonian escape ring, for a dragonfly with h > 2 it is possible to
generate at least a second edge-disjoint ring B using the following methodology. On
each group, we build a path traversing all the a = 2h routers in the group. For h > 2
even, we select router h

2 as the first router Rin of this path, and router 2h−1− h
2 as the

end router Rout . Router i is connected to routers i± (h+ 1) (mod a), except routers
Rin (which in its group is just connected to router h

2 +(h+1)), and Rout (which in its

10 Marina Garcı́a et al.

Piggybacking OFAR Tree OFAR Tree+BCM OFAR Tree+ECM

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 l
a
te

n
cy

 (
cy

cl
e
s)

Offered load (phits/(node*cycle))

(b) Latency UN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

A
cc

e
p
te

d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

(c) Throughput UN.

Fig. 5: Latency and throughput under uniform traffic UN for OFAR with a tree escape
subnetwork and different Congestion Management alternatives

group is just connected to router 2h−1− h
2−(h+1) = h−2− h

2). This path employs
links which increase the index in±(h+1); for any h > 2 this path is disjoint with the
local links of ring A, which increase indexes by ±1. Additionally, this path exists for
any h > 2 since h

2 +(2h−1) ·(h−1)≡ 2h−1− h
2 (mod a) and it traverses all routers

in the group since h+ 1 is coprime with 2h. Finally, every router Rout in group j is
connected to router Rin in group j +(h2

2 + 2) (mod G), forming a ring with global
links between groups. The resulting ring B connects all the routers in the network
employing the same amount of local and global channels as Ring A. An example for
h = 4 is presented in Fig. 4.

For h > 3 odd, the path of ring B is built from Rin =
h+1

2 to Rout = 2h−1− h+1
2

using links which increase the index by ±(h+ 2). Additionally, a third disjoint ring
C can be built from Rin =

h−3
2 to Rout = 2h−1− h−3

2 using links which increase the
index by ±(h−2). The proof that these two Hamiltonian rings exist for any h > 3 is
similar to the one presented for h > 2 even.

3.4 Congestion management

In OFAR, the capacity of the escape subnetwork is lower than the capacity of the
canonical dragonfly network. If all the buffers of the canonical network were com-
pletely full, and only the escape subnetwork was used to deliver packets to their
destination, performance would drop significantly. Reaching such a condition should
be very uncommon as it must be provoked by the occurrence of multiple concur-
rent deadlocks that are not alleviated in time by the escape subnetwork. As discussed
in [23], deadlock is very infrequent when paths are short and there is a rich rout-
ing freedom, exactly the case of the dragonfly. Despite this situation being unlikely,
proper congestion management (CM) mechanisms have to be applied to the network
to guarantee that it does not happen in practice.

On-the-Fly Adaptive Routing for dragonfly interconnection networks 11

Fig. 5 shows the throughput and latency results obtained for OFAR under UN
traffic with an embedded tree as escape subnetwork, using only 2/1(+1) VCs. Sim-
ulation details are presented later in Section 4 and the results of Piggybacking are
shown only as a reference. With OFAR, if no congestion management mechanism is
applied (OFAR Tree), throughput drops significantly when the load is high and the
canonical network gets congested. In such case, the canonical network cannot handle
the traffic that receives, which is diverted to the escape subnetwork, and the overall
network throughput becomes that of the escape subnetwork. However, using a simple
congestion management mechanism (BCM or ECM, described next) the throughput
does not fall. Similar mechanisms have been studied before in other networks [22].

3.4.1 Escape Congestion Management (ECM)

Network congestion increases the use of the escape subnetwork to prevent deadlock.
The Escape Congestion Management (ECM) mechanism employs the occupancy of
the local buffers of the escape subnetwork in the current router as an indicator of
congestion. No packets are injected from any of the end nodes connected to a router
when the occupancy Q of all the escape buffers exceeds a threshold:

Qi > T hECM ∀i ∈ {escape bu f f ers}

In such case, the nodes in the current router will have to wait for a subsequent cycle
to inject their traffic. The threshold used is chosen empirically, ranging from 0% to
100%. ECM does not take into account the occupancy of the queue in which the
packet should be injected, contrary to the following mechanism BCM.

3.4.2 Base Congestion Management (BCM)

The Base Congestion Management (BCM) mechanism forbids the injection of pack-
ets when the canonical (base) network is congested. This is implemented as a variant
of a bubble flow control mechanism [5]. A certain “bubble” is required for computing
nodes to inject packets in a buffer, which prevents traffic injection from introducing
deadlock in the canonical network. A packet at an injection queue can be injected in
the network only if the free space S in the destination buffer covers the packet size
plus the bubble size (in phits):

S≥ PktLength +Bubble×Max(PktLength)

Otherwise, the packet will have to wait for a subsequent cycle. The bubble size
can range from 1 to the buffer size in packets minus 1, and it is chosen empirically.
The BCM mechanism does not consider the occupancy of the escape subnetwork, it
only takes into account the state of the canonical network.

12 Marina Garcı́a et al.

Table 1 Parameters of the simulated dragonfly

Parameter Value

Ports per router 23
Global ports per router 6
Computing nodes per router 6
Inter- and intra-group topology complete graph
Routers per group 12
Groups 73
Overall computing nodes 5,256
Packet size 8 phits
Latency of local/global links 10/100 cycles
Buffer size, local/global ports 32/256 phits
Number of VCs 3/2; 3/2(+1) for OFAR
Switching mechanism Virtual Cut-through
Arbitration policy Least-Recently Served
Router speedup No
Allocation iterations 3
VC selection in OFAR shortest-queue
OFAR threshold T hnon−min 0.9 ·Qmin
ECM threshold T hECM 20%
BCM bubble 2 packets

4 Methodology

We have implemented the different routing proposals on FOGSim [9], a single-cycle
simulator developed in the University of Cantabria. Its results for existent routing
mechanisms are consistent with those published in previous works. We model a FIFO
input-buffered Virtual Cut-through (VCT) router, [20]. Unless otherwise noted in the
text, the parameters employed in the simulations are presented in Table 1. We do not
model router speedup, but employ an iterative allocator similar to [15] to compensate
the lack of speedup. We model different latencies for the different links on the system,
depending on them being short (local) or long (global). While we do not model the
router delay, the overall latency (in absence of network congestion) includes the sum
of both router delay and link latency; in our model, router delay can be considered to
be subsumed within link latency values.

We employ synthetic traffic to evaluate performance. Each source node generates
packets according to a Bernoulli process, with a controllable injection probability in
phits/(node · cycle). Packet latency is measured from its generation to its complete
reception in the destination node; the average latency is obtained by averaging across
all packets received in the network. Such latency includes injection buffering, link
latency, and additional cycles lost due to allocation or congestion issues. Throughput
is measured as the amount of phits received in the network, averaged by the number of
cycles and computing nodes, generating a result between 0 and 1 phit/(node · cycle).
We average 5 simulations to generate the results in the plots.

The destination node is selected randomly depending on the traffic model. We
have considered two corner cases:

– Uniform (UN): The destination is selected among all the network nodes, includ-
ing the source group but not the source node itself.

On-the-Fly Adaptive Routing for dragonfly interconnection networks 13

– Adversarial-global+N (ADVG+N): The destination is selected among all nodes
in the group i+N, where i is the source group. ADVG+1 causes the lowest con-
gestion on local links, while ADV G+n ·h generates maximum congestion.
We evaluate than ADVG+h (and not ADVL) because it is enough to evaluate the

problem of local link saturation as discussed in Section 2. Moreover, we want to
ensure that implementations do not fail on pathological situations.

We have considered the following routing mechanisms:
– Minimal (MIN): Minimal hierarchical path between the source and destination. It

only uses 2/1 VCs.
– Valiant (VAL): As used in [21,2], packets travel to a random intermediate group

(global misrouting), and then travel minimally to its destination.
– Valiant-any (VAL-any): As defined in [26], and employed in [24], packets travel

to a random intermediate router (roughly equivalent global and local misrouting),
and then travel minimally to its destination. It employs 4/2 VCs.

– Piggybacking (PB, [18]): The injection router selects between minimal and Valiant
paths as used in [21,2] based on remote congestion information broadcast among
all the routers of each group.

– OFAR: The base model presented in Subsection 3.
– OFAR-L: The same model, without allowing misrouting in local links. This is

used to expose the specific benefits of in-transit local misrouting.
PB is used as a reference, as it is the source routing mechanism with the best over-

all results in previous works, [18]. It always employs 3/2 VCs, which are required for
deadlock avoidance. In fact, OFAR is the only alternative which can employ a variable
number of VCs, as a trade-off between implementation cost and performance.

As with any other adaptive routing mechanism in dragonflies, OFAR employs
a variable misroute threshold which can be tuned to favor minimal or nonminimal
routing. The selected value T hnon−min = 0.9 ·Qmin allows misrouting if the minimal
queue is not available (it is assigned to another packet or without credits), only by
those queues that have less than 0.9 times the occupancy of the minimal one. This
threshold was selected empirically for our network configuration, by simulating mul-
tiple threshold values and selecting a reasonable trade-off between the performance
in adversarial and uniform traffic patterns. A similar study was performed for the
threshold values in PB, and for the Bubble in BCM and T hECM in ECM.

We employ the escape subnetwork and congestion management mechanisms de-
tailed in Subsection 3.4: OFAR Ring+BCM, OFAR Ring+ECM, OFAR Tree+BCM
and OFAR Tree+ECM. Each subnetwork is embedded in the canonical dragonfly by
adding an extra VC in the corresponding escape links. We prefer to show the results
of this design, to focus in the case which is more prone to congestion. It implies
a lower cost than a physical escape link using extra router ports, but in absence of
congestion the performance results are similar, since it is scarcely used.

5 Performance results

We first show the results for a base model of OFAR using a Hamiltonian ring without
congestion management, in three different scenarios: steady state, transient variations

14 Marina Garcı́a et al.

100

120

140

160

180

200

220

240

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Offered load (phits/(node*cycle))

(a) Latency UN

180

200

220

240

260

280

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Offered load (phits/(node*cycle))

(b) Latency ADVG+2

180

200

220

240

260

280

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Offered load (phits/(node*cycle))

(c) Latency ADVG+6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

PB
OFAR-L

OFAR

MIN

(d) Throughput UN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered load (phits/(node*cycle))

PB
OFAR-L

OFAR

VAL
VAL-ANY

(e) Throughput ADVG+2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered load (phits/(node*cycle))

PB
OFAR-L

OFAR

VAL
VAL-ANY

(f) Throughput ADVG+6

Fig. 6: Average latency (top) and throughput (down). Uniform (UN) and adversarial
(ADVG+2 and ADVG+6) traffic, without any congestion management

and traffic bursts. Next, we focus on the impact of the escape subnetwork topology,
congestion management mechanisms, unfairness issues and path length. Finally, we
present a study of performance with multiple escape subnetworks.

5.1 Steady state

After 50.000 cycles of warm-up, these tests measure the average latency and through-
put during a second period of 50.000 cycles, as described in Section 4. Fig. 6 shows
the results under uniform random (UN) and adversarial-global (ADVG) traffic pat-
terns: ADVG+2 which requires global misrouting,3 and ADVG+6 which additionally
requires local misrouting to avoid congestion. All simulations employ 3/2 VCs, ex-
cept for MIN (2/1) and VAL-any (4/2), and no CM is used for OFAR.

For UN, using MIN as a reference, the OFAR models provide a competitive la-
tency under low loads, but they saturate significantly later. The latency of the adap-
tive mechanism PB, by contrast, is significantly larger, due to a higher number of
misrouted packets. Both OFAR models improve throughput over MIN and PB, but in
either case, the use of local misrouting does not make a significant difference.

3 We do not show results of ADVG+1 as it could be argued that the additional ring link between the
source and destination groups favors the OFAR models. However, since the escape network utilization is
only used to avoid potential deadlock situations and not to carry traffic to the destination, the results are
similar.

On-the-Fly Adaptive Routing for dragonfly interconnection networks 15

180

190

200

210

220

230

240

250

260

-50 0 50 100 150 200 250 300

A
ve

ra
ge

 la
te

nc
y

PB
OFAR

OFAR-L

cycle

PB

OFAR-L

OFAR

Fig. 7: Latency evolution under transient traffic. ADV+2 to ADV+6 traffic, load=0.12

For adversarial traffic patterns ADVG, OFAR provides the best latency and through-
put, both with ADVG+2 and ADVG+6. Under ADVG+6 without local misrouting
throughput is limited to 1/h = 1/6 = 0.166 phits/(node · cycle). Fig. 6f shows that
this occurs for VAL, PB and OFAR-L. VAL-any and OFAR reach around 0.36, confirm-
ing that local misrouting in the intermediate group compensates for the pathological
saturation problem. However, the latency results show that OFAR is more efficient
since it adaptively misroutes traffic only when required.

5.2 Transient traffic

The following experiments explore the response time when the traffic pattern changes.
The network is warmed up with ADVG+2 traffic with a load of 0.12 phits/(node · cy-
cle), which does not cause congestion even without local misroute. Once it reaches
the steady state, the traffic changes to ADVG+6. Fig. 7 shows the measured latency
of the packets that are sent each cycle, with the adaptive routing mechanisms. OFAR
makes the transition almost instantaneous thanks to in-transit routing decisions, while
the source-routing PB suffers from a clear adaptation period while the congestion in-
formation is propagated.

5.3 Traffic bursts

In parallel programs, communication and computation phases are typically synchro-
nized, so traffic bursts after barriers are common. We simulate such behaviour using
packet bursts. Each node injects a fixed amount of packets (2,000) as fast as possi-
ble, with a mixture of different traffic patterns. With h = 6, this figure corresponds to
around a million packets received. We measure the time to consume all the packets
in the network. The destination of each packet is variable according to a certain dis-
tribution. We have simulated UN, ADVG+2, ADVG+6 and three mixes of traffic with

16 Marina Garcı́a et al.

UN ADV+2 ADV+6 MIX1 MIX2 MIX3 Average

20%

40%

60%

80%

100%

120%

140%

PB

VAL

VAL-ANY

OFAR-L

OFAR

Fig. 8: Burst consumption time, normalized to PB, using 3/2 VCs. Lower is better

different rates of uniform and adversarial: In MIX1 80% of the traffic is UN, 10% is
ADVG+1 and 10% is ADVG+6. In MIX2 the rates are 60-20-20 and in MIX3 they are
20-40-40.

Fig. 8 shows the burst consumption time normalized to the result of PB. Com-
pared to PB, the execution time of OFAR ranges from a 43.1% to a 81.5%. On aver-
age, the time to consume traffic for OFAR is 0.695 the time for PB, which corresponds
to a speedup of 1.438×. The complete OFAR model always finishes sooner than all
the others, including its -L counterpart.

5.4 Number of virtual channels

With OFAR, VCs are not employed for deadlock avoidance, but they help mitigate
Head-of-Line Blocking (HoLB). A higher number of VCs improves performance,
until a point at which there is another factor that limits performance more than HoLB.
Past that point, a higher number of them can degrade performance, because routers
have to handle a higher number of VCs and there are more packets in the network,
which can make allocation more complex and increase congestion.

As OFAR can be prone to congestion, especially with a low number of VCs as dis-
cussed in Section 3.4, we employ the BCM mechanism with a bubble size of 2 packets
in these evaluations. BCM will be evaluated with more detail in Section 5.5. Fig. 9
shows the average latency and throughput results obtained for OFAR Ring+BCM with
a different number of VCs under uniform (UN) and adversarial (ADVG+2) traffic.
The number of VCs ranges from 1/1(+1) to 4/4(+1). PB is also shown as a reference.

In general OFAR always obtains better performance than PB (3/2 VCs) when
using the same or more VCs. Even with a lower number of VCs, 2/2(+1), OFAR
results are better. Only when OFAR employs fewer VCs, 2/1(+1) or 1/1(+1), and with
ADVG+2 traffic, PB outperforms OFAR. When the traffic is uniform, Fig. 9a and
9c, OFAR 1/1(+1) obtains a result very close to that for PB. All other configurations
present a better performance, very close to each other. OFAR with 3/3(+1) VCs is the
configuration that achieves the best overall performance for all the traffic patterns.
Further increase of the number of VCs does not provide a better performance: OFAR
4/4(+1) obtains worse results, especially for latency when the traffic is adversarial.

A problem of network unfairness appears when the VC count is low. With 2/1(+1)
VCs and adversarial traffic, the average latency of OFAR rockets at around 0.15

On-the-Fly Adaptive Routing for dragonfly interconnection networks 17

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 l
a
te

n
cy

 (
cy

cl
e
s)

Offered load (phits/(node*cycle))

(a) Latency UN

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

A
v
e
ra

g
e
 l
a
te

n
cy

 (
cy

cl
e
s)

Offered load (phits/(node*cycle))

(b) Latency ADVG+2
OFAR 2/1(+1)
OFAR 2/2(+1)
OFAR 3/2(+1)
OFAR 3/3(+1)
OFAR 4/4(+1)
Piggybacking

OFAR 2(+1)1/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

A
cc

e
p
te

d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

(c) Throughput UN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

A
cc

e
p

te
d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

(d) Throughput ADVG+2

Fig. 9: Latency and throughput under uniform and adversarial traffic (ADVG+2) for
PB and OFAR varying the number of VCs. Ring escape subnetwork with BCM con-
gestion management

phit/(node · cycle). However, its throughput reaches 0.3 phit/(node · cycle). This ef-
fect is typical for unfairness issues, when some specific nodes of the network suffer
from starvation: their latency is much higher than the rest, which increases the aver-
age latency values. In this case, the problem arises from localized congestion, as will
be studied in more detail in Subsection 5.6.

With the same amount of resources, or even less, OFAR outperforms PB. Only
under ADVG+2 traffic with a reduced number of VCs, 2/1(+1) or lower, OFAR can-
not match PB due to HoLB issues. Next subsections will only focus on this specific
OFAR configuration with few resources, 2/1(+1), to study the effects of congestion
and alternative ways to cope with it.

5.5 Congestion management and escape subnetwork

This Subsection explores how the escape subnetwork and congestion management
mechanisms affect the performance of OFAR with few resources, 2/1(+1) VCs; when
more VCs are used, no significant congestion issues arise, as studied in Subsection
5.4. The performance of OFAR Ring and OFAR Tree is studied with BCM and ECM

18 Marina Garcı́a et al.

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5

A
v
e
ra

g
e
*l
a
te

n
cy

*(
cy

cl
e
s)

Offered*load*(phits/(node*cycle))

(a) Latency ADVG+2

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5

A
v
e
ra

g
e
*l
a
te

n
cy

*(
cy

cl
e
s)

Offered*load*(phits/(node*cycle))

(b) Latency ADVG+6
OFAR Ring+BCM
OFAR Ring+ECM
OFAR Tree+BCM
OFAR Tree+ECM

Piggybacking

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1A
cc

e
p
te

d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

(c) Throughput ADVG+2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1A
cc

e
p
te

d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

(d) Throughput ADVG+6

Fig. 10: Latency (up) and throughput (down) under adversarial traffic for PB (with
3/2 VCs) and OFAR with few resources that lead to congestion, 2/1(+1) VCs

congestion management. Under UN traffic there are no differences, because the es-
cape subnetwork is hardly ever used. The latency and throughput steady state results
under adversarial patterns are show in Fig. 10. The variants with ECM obtain higher
throughput than those with BCM. Under ADV G+2 traffic, the maximum throughput
with BCM is slightly lower than with PB, while with ECM it is higher.

Some anomalies caused by load imbalance are present. The latency of OFAR
Ring+BCM with 2/1(+1) in Fig. 10a above load 0.1 keeps increasing, up to reach-
ing the throughput saturation load. Also, the throughput for OFAR Tree+ECM at low
adversarial traffic loads is slightly lower than for the other configurations. This con-
figuration also presents high latency values before saturation. These are also caused
by load imbalance, and both will be discussed in detail next in Subsection 5.6.

Fig. 11 shows results for the traffic burst experiments for PB and the different
OFAR configurations. An additional traffic pattern is included, in which traffic is sent
according to an All-to-all global communication primitive. The number of messages
sent in each case is similar. In every case, OFAR Ring consumes traffic faster than
OFAR Tree. Both are faster when the congestion management mechanism is ECM,
although, on average, the difference in time is not very large. As a result, OFAR
Ring with ECM is the fastest OFAR configuration, followed very closed by OFAR
Ring with BCM. The only case in which PB using 3/2 VCs is faster than the OFAR

On-the-Fly Adaptive Routing for dragonfly interconnection networks 19

All-to-all UN ADVG+2 ADVG+h Average
0

20

40

60

80

100

120

140
Piggybacking
OFAR Ring+BCM
OFAR Ring+ECM
OFAR Tree+BCM
OFAR Tree+ECM

T
ra

ffi
c

C
on

s u
m

pt
io

n
T

im
e

(x
10

00
 C

yc
le

s)

Fig. 11: Traffic consumption time for PB and OFAR with 2/1(+1) VCs

UN ADV2 ADVh
0

5000

10000

15000

20000

25000

30000

Ring Group 0

Tree Group 0

Tree Group Root

P
ac

ke
ts

 In
je

ct
ed

 p
er

 R
o u

te
r

(A
ve

ra
ge

)

Fig. 12: Average number of packets injected per router in groups 0 and Root with an
offered load of 1 phit/(node · cycle), when BCM and only 2/1(+1) VCs are used

configurations with 2/1(+1) is when the traffic is ADVG+2. Even in that case, the
running time of OFAR Ring with ECM is very close to that of PB.

5.6 Network fairness

In the experiments in Fig. 10, OFAR obtains very similar throughput results with
the ring or the tree escape subnetworks, regardless of the congestion management.
However, as shown in Fig. 11, OFAR Ring consumes adversarial traffic faster than
OFAR Tree. This behavior of OFAR Tree is due to a load imbalance introduced by the
asymmetry of the escape subnetwork. Fig. 12, obtained with BCM, shows this effect.
It depicts the total number of packets injected in the network by nodes in group G0
and Groot for OFAR Tree and OFAR Ring in 50,000 cycles, after warm up, when
the applied load is 1 phit/(node · cycle). Results for UN, ADVG+2 and ADVG+h
are presented. Groot is the group containing the root router Rroot when the escape
subnetwork is a tree. G0 is a group chosen as a baseline for comparison. As there is
no root in a ring, for OFAR Ring only results for G0 are shown.

20 Marina Garcı́a et al.

For OFAR Tree, the number of packets injected by nodes in Groot is significantly
lower than in G0. When a packet is injected into a tree escape subnetwork, the prob-
ability that it has to pass through the root router Rroot is very high. As a result, Rroot
and its group Groot receive more traffic than the rest of the routers and groups of the
network. There is a small part of the network, Groot , that concentrates a large part
of the escape traffic. This does not happen with an escape ring, as it is a symmetric
topology that balances the load among all the groups in the network. With the tree
escape subnetwork, packets in the injection queues of routers in group Groot have to
wait longer to be injected in the network. Therefore, in the same amount of cycles,
nodes in Groot inject less packets than nodes in the rest of the groups. This explains
the slightly lower throughput in Fig. 10c and 10d especially with ECM. Also, in the
traffic consumption experiments, the consumption time increases because nodes in
Groot have difficulties injecting packets.

This asymmetry of the tree escape subnetwork is also responsible for the high
average latencies at low traffic loads for OFAR Tree+ECM when the traffic is ad-
versarial (Figures 10a and 10b). With that configuration, OFAR only injects packets
if the escape subnetwork is not saturated. Although at low traffic loads the escape
subnetwork should not be saturated, this occurs in Groot , due to the concentration of
traffic in that group. Routers in Groot detect the escape subnetwork as congested, pro-
hibiting packet injection, and increasing average packet latency. A solution for this
problem might come from using multiple escape trees, in order to distribute the traffic
generated by the escape subnetwork.

Apart from load imbalance between groups, there could also exist imbalance be-
tween routers within the same group. This problem occurs for OFAR Ring+BCM in
Figures 10a and 10b. Specifically, under an adversarial-global traffic patterns all the
packets in a source group would leave it minimally through a single router. If this
router also happens to have a global link of the embedded escape topology, it will re-
ceive much more traffic than other routers in the group. BCM will then prevent local
traffic injection due to the congestion in the links of this router.

The experiments in this subsection show that both topologies, the tree and the
Hamiltonian ring, cause load unbalance in the dragonfly network. In the case of the
tree, the root group is the one in which traffic concentrates and routers in that group
are not able to inject as many packets as routers in other groups. For the Hamiltonian
ring, there is one specific router per group that finds difficulties to inject packets in the
network. However, whereas with OFAR Tree the traffic unbalance appears for every
traffic pattern, for OFAR Ring the unbalance only appears under adversarial traffic
and low traffic loads.

5.7 Length of network paths

The maximum path length in the canonical dragonfly network with local and global
misrouting is 8 hops (6 local and 2 global). If a packet enters the escape subnetwork,
this length can increase significantly. If a packet followed the escape subnetwork up
to its destination, the number of hops would be much higher if the escape subnetwork
was a Hamiltonian Ring (up to N/2 hops, being N the total number of routers in the

On-the-Fly Adaptive Routing for dragonfly interconnection networks 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

100.00000%

OFAR Ring+BCM

OFAR Ring

OFAR Tree+BCM

OFAR Tree

Fig. 13: Hops histogram under adversarial traffic (ADVG+h) using 2/1(+1) VCs

network), than if it was a tree (up to 6 hops). However, the escape subnetwork is used
in few occasions, only to escape from potential cyclic dependencies, and packets re-
turn to the canonical network as soon as possible. Therefore, packets can enter and
leave the escape subnetwork multiple times, making the maximum path length un-
bounded. Although it would be easy to limit the path lengths by employing a counter
of the times a packet can move between the canonical and escape subnetworks, we
have preferred not to include ti, to study in depth such issue. This subsection studies
this concern when a congestion management mechanism is used, and observe that, in
practice, unbounded paths do not happen.

Fig. 13 shows a histogram of the path lengths in traffic consumption experiments
as shown in Subsection 5.5 under ADVG+h traffic, with and without BCM, and with
log scale on the vertical axis. Interestingly, under ADVG+h traffic, OFAR Ring pro-
vides shorter paths than OFAR Tree, pointing out that an escape subnetwork with
longer average and maximum distances does not necessarily lead to longer paths.

Fig. 13 shows that long paths are really infrequent when congestion management
is used. In the simulations carried out, the longest path with OFAR Tree+BCM was
20 hops, and with OFAR Ring+BCM only 14 hops. Bigger differences appear when
there is no congestion management. In that case, in the simulations carried out for
this work, whereas for OFAR Ring the longest path took 24 hops with OFAR Tree one
of the packets had to make 217 hops, many of them in the escape subnetwork. OFAR
Ring+BCM presents the overall best performance.

Multiple injections can occur in the escape subnetwork. When a packet is in the
source group and congestion is detected in the canonical network, it goes into the
escape subnetwork. If the next group following the escape subnetwork is also con-
gested, the packet will have to wait long to advance to it. As a result, whenever there
is space, the packet will return to the canonical network; then, congestion is detected
again and the packet is injected once more in the escape subnetwork. This process
will be repeated as long as congestion remains. As explained in Subsection 5.6, with
the tree escape subnetwork, group Groot is more prone to congestion than the rest of
the groups. Therefore, in this case multiple injections in the escape subnetwork are
more likely.

22 Marina Garcı́a et al.

Livelock might occur if packets bounced consecutively from the escape to the
canonical subnetworks. Nevertheless, this situation is not so common as to pose a
significant problem. In the worst configuration of OFAR Tree under ADVG+h traf-
fic in Fig. 13, more than a 99.99% of the packets need less than 30 hops to reach
their destination. Additionally, a traditional alternative to mitigate the potential live-
lock issue is to employ a counter of injections into the escape path; after the counter
exceeds a given threshold (for example, 15 for a 4-bit counter) the packet is not al-
lowed to leave the escape subnetwork again. Since the amount of packets with such
a high number of injections is very low, this would not have a significant impact in
performance.

5.8 Single vs. multiple escape subnetworks

This subsection studies the use of multiple escape subnetworks, specifically two dis-
joint Hamiltonian rings added to a dragonfly of size h = 6. Both rings are embedded
employing one extra virtual channel per subnetwork. The first ring, ring A is the
one described in Section 3.3.2, with Rin = 0 and Rout = 11. Ring B is the second
ring described in Section 3.3.3 with Rin = 3 and Rout = 8. Ring B connects router i
with router i+7 (mod a) within the same group, where a = 2h = 12 is the number of
routers per group. Each group j is connected to group j+20 (mod G), where G= 73
is the total number of groups in this network.

In our implementation, when a packet is generated, it is assigned one of the two
escape rings. This means that a packet can only employ that assigned ring for dead-
lock avoidance. Although not studied in this work, in case of a link failure in a ring,
all packets should be automatically assigned the remaining ring.

OFAR performance is compared when employing one and two escape rings using
2/1(+1) VCs. In addition, the different performance results depending on how the sin-
gle Hamiltonian ring is mapped in the canonical dragonfly are studied. Fig. 14 shows
the latency and throughput results for OFAR with BCM when the escape subnetwork
is the single ring A (OFAR with Ring A), the single ring B (OFAR with ring B), and
when both Hamiltonian rings are employed (OFAR with 2 rings). Three adversarial
traffic patterns are considered: ADVG+2, ADVG+h and ADVG+2h. In the last case,
the global link which minimal paths use to leave the group does not contain a virtual
channel for any escape ring.

Each of the three OFAR configurations achieves a similar maximum throughput
of w 0.3 phits/(node · cycle). However, Fig. 14a and 14b show that the latency for
OFAR with ring A and OFAR with two Rings rises earlier than for OFAR with ring
B. OFAR with Ring A presents the same latency curve as in Subsection 5.5, saturating
at around 0.1 phits/(node · cycle) when the traffic is ADVG+2, and 0.15 phits/(node
· cycle) when the traffic is ADVG+h (h = 6). This effect is due to starvation of some
of the routers in the network, as explained in Subsection 5.6. This pathology does not
show up when the ring is mapped in the canonical dragonfly in a different way: OFAR
with Ring B. For that configuration, latency rises at approximately 0.27 phits/(node ·
cycle) in both cases, a value close to the maximum throughput achieved. For adver-
sarial traffic ADVG+2, OFAR with two Rings improves the latency results of OFAR

On-the-Fly Adaptive Routing for dragonfly interconnection networks 23

OFAR with Ring A OFAR with Ring B OFAR with 2 Rings

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

ila
te

nc
yi

(c
yc

le
s)

Offerediloadi(phits/(node*cycle))

(a) Latency ADVG+2

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Offered load (phits/(node*cycle))

(b) Latency ADVG+h

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Offered load (phits/(node*cycle))

(c) Latency ADVG+2h

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(d) Throughput ADVG+2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

Offered load (phits/(node*cycle))

(e) Throughput ADVG+h

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

Offered load (phits/(node*cycle))

(f) Throughput ADVG+2h

Fig. 14: Latency (up) and throughput (down) under different adversarial traffic pat-
terns (ADVG+2, ADVG+h and ADVG+2h) for OFAR with different Hamiltonian
ring escape subnetworks when applying BCM and using 2/1(+1) VCs

with Ring A, although it cannot reach those for OFAR with Ring B, due to the load
unbalance caused by Ring A. However, when the traffic is ADVG+h, a more adver-
sarial traffic for Ring A, OFAR with the two rings presents the same behavior as OFAR
with ring A. The second ring in that configuration, Ring B, is not able to mitigate the
load unbalance caused by Ring A.

When the traffic is adversarial ADV+12 (ADV+2h), Rout in OFAR with Ring A
(R11) is not the router through which packets leave the group when using the mini-
mal path (R10). As a result, starvation in Rout disappears. Fig. 14c and 14f show the
performance results.

The results in this subsection show that employing more than one embedded
Hamiltonian ring does not provide performance improvements. On the contrary, the
way in which the ring is mapped in the canonical dragonfly does make a difference,
as some congestion situations due to certain traffic patterns can be avoided. Arguably,
the alternative rings introduced in Subsection 3.3.3 are better options, since it is more
unlikely that adversarial traffic coincides with the global links of such rings due to
their higher hop in terms of group indexes. In any case, the use of several rings instead
of a single one still improves fault tolerance.

24 Marina Garcı́a et al.

6 Related work

Significant details about the dragonfly architecture and routing can be found in [21,
18,2]. The problem of saturation of global links was introduced in [21,2]. Local link
saturation with inter-group traffic was first evidenced in [19] and the pathological
saturation in local links was introduced in [11]. Saturation in local links could be,
arguably, more frequent than the saturation of global links, since the applications
typically try to exploit the locality between neighbor processes usually allocated se-
quentially in the same group. Bhatele et al. study how mapping choices can impact
performance in [3], suggesting random task placement. With such placement local
links do not get saturated, at the cost of locality loss.

The simplest routing mechanisms are oblivious to the network status. Minimal
routing hierarchically follows the shortest path between each pair of nodes. Valiant
routing, as used for the dragonfly in [21], applies global misrouting to each packet
regardless of the network status, by selecting an intermediate group. PERCS allows
the programmer to specify the intermediate group for each packet [2]. This differs
from the original definition from Valiant [26], which would select an intermediate
router. This is roughly equivalent to global misrouting followed by local misrouting
in the intermediate group. Such a definition is the one employed in the Cray Cascade
[8] to avoid pathological congestion issues similar to the case with our ADVG+h
traffic, and it has been evaluated as “Valiant-any” in [24].

Adaptive routing mechanisms select the path of each packet depending on the
network conditions. Two types of adaptive routing mechanisms have been proposed:
source and in-transit (or on-the-fly) routing. Source routing mechanisms determine
the path of each packet at injection time. Examples of source-routing mechanisms are
UGAL, Piggybacking (PB) or CRT [18]. These mechanisms need to estimate the con-
gestion in the global links of the group to select between a minimal or non-minimal
routing for each packet. This estimation typically relies on indirect information (for
example, the credit count in the outputs of other routers in the group). For this rea-
son, they are relatively complex and slow in adapting to traffic changes. Progressive
Adaptive Routing (PAR, [18]) introduced in-transit adaptive routing for Dragonflies.

Günther introduces in [14] the use of an increasing order of buffer classes to
prevent deadlock, which is employed in multiple previous routing mechanisms for
Dragonflies. This strict policy of ordering virtual channels does not permit in-transit
misrouting, which would require re-injecting the packet into the first virtual channel,
VC0, potentially generating a cyclic dependency. The PAR mechanism [18] addresses
this limitation by implementing an additional VC.

Our proposal relies on a deadlock-free subnetwork to avoid packet deadlocks, [7].
Based on this idea, Silla and Duato proposed a general deadlock-free mechanism in
[25] based on duplicating the number of virtual channels in the network. Their mech-
anism is not specific to the Dragonfly network and their escape network topology
equals the original topology, what would require a larger number of VCs in the case
of the Dragonfly. In our proposal we study two different escape topologies: a tree,
and a Hamiltonian ring to which injection restriction is applied to avoid deadlock.
Seminal deadlock avoidance mechanisms relying on restricting packet injection can
be found in [4,6].

On-the-Fly Adaptive Routing for dragonfly interconnection networks 25

Multiple congestion control mechanisms have been studied and proposed for dif-
ferent networks. A survey of their application in HPC can be found in [13]. Virtually
every mechanism relies on injection throttling, such as the transmission window in
TCP [17] or Quantized Congestion Notification (QCN, [1]) in Datacenter Bridging.
The differences rely on how they detect network congestion.

In this work we study two open-loop local congestion control mechanisms, BCM
and ECM, which apply source throttling based on the occupancy of the local queues.
Similar mechanisms have been studied in other networks, [22].

7 Conclusions

This paper has identified and addressed the key performance limitations of dragon-
fly networks. These limitations are mainly the saturation of local and global links
and the inefficiency of source routing. We have presented OFAR routing, which is an
efficient alternative which selects the misroute output port in-transit, rather than at
injection time. This adaptive misrouting is enabled by employing an escape subnet-
work to prevent deadlock, rather than a fixed order of visiting virtual channels. To
avoid congestion, the combination of OFAR with simple injection throttling has been
evaluated. This alternative solves the main limitations of the base OFAR model: con-
gestion problems and the appearance in practice of very long paths. To tolerate faults,
a mechanism that finds multiple disjoint escape rings has been presented. Eventually,
such a mechanism can also help avoid network unfairness by avoiding the coinci-
dence of traffic flows with the escape ring paths.

Compared to alternative proposals, OFAR only relies on local information, achieves
higher performance thanks to its support of local and global misrouting without in-
creasing the number of VCs, and adapts faster to traffic changes. When the cost in
terms of VCs is similar, OFAR clearly outperforms alternatives such as PB which
employ source routing (so they are slower adapting to changes) and do not support
local misrouting.

Implementations with a very low number of VCs suffer from congestion and un-
fairness issues. In such cases, two congestion management mechanisms, BCM and
ECM, and two escape subnetwork topologies, a Hamiltonian ring and a tree, have
been evaluated. Congestion management avoids escape network saturation that could
lead to a severe performance drop. The effect of the topology of the escape subnet-
work on the network load imbalance and performance has been analyzed. Despite
path lengths with OFAR could be unbounded in theory, results have shown they are
relatively short in practice and that the use of a congestion management mechanism
reduces them. Finally, the use of multiple escape subnetworks helps improve fault-
tolerance, but not performance; our evaluations highlight that escape subnetworks
should be designed so they do not overlap with frequent traffic patterns. Thus, the al-
ternative escape rings introduced in this work appear as the best option for the escape
subnetwork.

26 Marina Garcı́a et al.

Acknowledgements

This work has been supported by the Spanish Ministry of Education, FPU grant
AP2010-4900; the Spanish Science and Technology Commission (CICYT) under
contracts TIN2010-21291-C02-02, TIN2012-34557 and TIN2013-46957-C2-2-P; the
European Union FP7 under Agreements ICT-288777 (Mont-Blanc) and ERC-321253
(RoMoL); the European HiPEAC Network of Excellence and the JSA no. 2013-119
as part of the IBM/BSC Technology Center for Supercomputing agreement.

References

1. IEEE standard for local and metropolitan area networks - virtual bridged local area networks - amend-
ment: 10: Congestion notification, 802.1Qau (2010)

2. Arimilli, B., Arimilli, R., Chung, V., Clark, S., Denzel, W., Drerup, B., Hoefler, T., Joyner, J., Lewis,
J., Li, J., et al.: The PERCS high-performance interconnect. In: 2010 18th IEEE Symposium on High
Performance Interconnects, pp. 75–82. IEEE (2010)

3. Bhatele, A., Gropp, W.D., Jain, N., Kale, L.V.: Avoiding hot-spots on two-level direct networks. In:
High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Confer-
ence for, pp. 1 –11 (2011)

4. Brookes, S., Roscoe, A.: Deadlock analysis in networks of communicating processes. Distributed
Computing 4(4), 209–230 (1991)

5. Carrion, C., Beivide, R., Gregorio, J., Vallejo, F.: A flow control mechanism to avoid message dead-
lock in k-ary n-cube networks. In: High-Performance Computing, 1997. Proceedings. Fourth Interna-
tional Conference on, pp. 322 –329 (1997). DOI 10.1109/HIPC.1997.634510

6. Cidon, I., Ofek, Y.: Metaring-a full-duplex ring with fairness and spatial reuse. Communications,
IEEE Transactions on 41(1), 110–120 (1993). DOI 10.1109/26.212370

7. Duato, J.: A necessary and sufficient condition for deadlock-free adaptive routing in wormhole net-
works. Parallel and Distributed Systems, IEEE Transactions on 6(10), 1055–1067 (1995)

8. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson, T., Kopnick, J.,
Higgins, M., Reinhard, J.: Cray cascade: a scalable HPC system based on a dragonfly network. In: Intl
Conf on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp. 103:1–103:9.
IEEE Computer Society Press, Los Alamitos, CA, USA (2012)

9. Garcı́a, M., Fuentes, P., Odriozola, M., Vallejo, E., Beivide, R.: FOGSim Interconnection Network
Simulator. University of Cantabria (2014). URL https://code.google.com/p/fogsim/

10. Garcı́a, M., Vallejo, E., Beivide, R., Odriozola, M., Camarero, C., Valero, M., Labarta, J., Rodrı́guez,
G.: Global misrouting policies in two-level hierarchical networks. In: Interconnection Network Ar-
chitecture: On-Chip, Multi-Chip, pp. 13–16 (2013)

11. Garcı́a, M., Vallejo, E., Beivide, R., Odriozola, M., Camarero, C., Valero, M., Rodrı́guez, G., Labarta,
J., Minkenberg, C.: On-the-fly adaptive routing in high-radix hierarchical networks. In: Intl. Confer-
ence on Parallel Processing (ICPP) (2012)

12. Garcı́a, M., Vallejo, E., Beivide, R., Valero, M., Rodrı́guez, G.: OFAR-CM: Efficient dragonfly net-
works with simple congestion management. In: High-Performance Interconnects (HOTI), 2013 IEEE
21st Annual Symposium on, pp. 55–62 (2013). DOI 10.1109/HOTI.2013.16

13. Garcia, P.J.: Congestion management in HPC interconnection networks. HPC Advisory Council Eu-
ropean Workshop (2011)

14. Gunther, K.: Prevention of deadlocks in packet-switched data transport systems. Communications,
IEEE Transactions on 29(4), 512 – 524 (1981). DOI 10.1109/TCOM.1981.1095021

15. Gupta, P., McKeown, N.: Designing and implementing a fast crossbar scheduler. Micro, IEEE 19(1),
20–28 (1999)

16. IEEE 802 LAN/MAN Standards Committee: IEEE 802.1d-2004 MAC bridges (2004)
17. Jacobson, V.: Congestion avoidance and control. In: ACM SIGCOMM Computer Communication

Review, vol. 18, pp. 314–329 (1988)
18. Jiang, N., Kim, J., Dally, W.J.: Indirect adaptive routing on large scale interconnection networks. In:

ISCA ’09: 36th International Symposium on Computer Architecture (2009)

On-the-Fly Adaptive Routing for dragonfly interconnection networks 27

19. Kerbyson, D.J., Barker, K.J.: Analyzing the performance bottlenecks of the POWER7-IH network.
In: CLUSTER, pp. 244–252. IEEE (2011)

20. Kermani, P., Kleinrock, L.: Virtual cut-through: A new computer communication switching technique.
Computer Networks (1976) 3(4), 267–286 (1979)

21. Kim, J., Dally, W., Scott, S., Abts, D.: Technology-driven, highly-scalable dragonfly topology. In:
Proceedings of the 35th Annual International Symposium on Computer Architecture, pp. 77–88. IEEE
Computer Society (2008)

22. Lam, S., Reiser, M.: Congestion control of store-and-forward networks by input buffer limits–
an analysis. Communications, IEEE Transactions on 27(1), 127–134 (1979). DOI
10.1109/TCOM.1979.1094280

23. Pinkston, T.: Deadlock characterization and resolution in interconnection networks. Deadlock Reso-
lution in Computer-Integrated Systems pp. 445–492 (2004)

24. Prisacari, B., Rodriguez, G., Garcia, M., Vallejo, E., Beivide, R., Minkenberg, C.: Performance im-
plications of remote-only load balancing under adversarial traffic in dragonflies. In: 8th International
Workshop on Interconnection Network Architecture: On-Chip, Multi-Chip, INA-OCMC ’14 (2014).
DOI 10.1145/2556857.2556860

25. Silla, F., Duato, J.: High-performance routing in networks of workstations with irregular topol-
ogy. IEEE Trans. Parallel Distrib. Syst. 11(7), 699–719 (2000). DOI 10.1109/71.877816. URL
http://dx.doi.org/10.1109/71.877816

26. Valiant, L.: A scheme for fast parallel communication. SIAM journal on computing 11, 350 (1982)

