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Abstract Usually, the Wöhler field of a material is obtained from fatigue lifetime data resulting from testing 

specimens of reduced size in the laboratory. This basic information finds subsequent application in lifetime 

prediction of larger structural and mechanical components. Thus, an important question arises: how can the 

S-N field be transformed into an ideal one referred to a characteristic size (length, area or volume) subjected 

to a constant stress distribution in order to achieve a safe structural integrity design? 

In this work, the influence of specimen geometry and variable stress state on the fatigue lifetime distribution 

for constant amplitude fatigue tests is investigated. An experimental program has been carried out with 

unnotched specimens of nominally the same material but differing in length, diameter, and shape.  

The experimental data is fitted to a newly developed fatigue model, capable of describing the S-N-field in a 

probabilistic manner accounting for both the specimen geometry and the variable stress state of the 

specimens. As the estimated Wöhler field is referred to an elemental surface, loaded by a constant stress level 

∆σ, the extrapolation of the fatigue resistance to different specimen geometries is possible. Additionally, 

problems encountered due to scatter of the material properties are discussed. 
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1. Introduction 
 

It has been observed that fatigue lifetime depends on the size of the structural element, whereby 

larger specimens present lower fatigue lifetime than smaller ones when loaded by the same stress 

range. This so-called size effect stems from the higher probability of larger specimens to contain a 

critical crack, capable of initiating the fatigue process, compared to smaller specimens. 

Investigations on the size effect in fatigue have been done, amongst others, by Weibull [1] on ball 

bearing steel, by Picciotto [2] on yarn, by Köhler [3] on wires and flat specimens, by 

Fernández-Canteli et al. [4] on prestressing wires and by Shirani et al. [5] on wind turbine castings. 

Understanding the size effect is crucial to extrapolate fatigue data from small specimens tested in 

the laboratory to real structures. Additionally, specimen geometries used in fatigue experiments 

sometimes present a cross-section with varying diameter along their lengths (see Fig. 2). The 

experimental results (∆σ versus lifetime N) obtained from testing these specimens are usually 

evaluated considering the maximum nominal stress range ∆σ0 acting in the smallest cross section 

and the stress ratio R=σmin/σmax. While the stress ratio R is the same for all cross sections, ∆σ varies 

along the specimen length. Thus, even if a specimen is likely to fail in the section with the highest 

∆σ, the remaining sections with lower ∆σ influence the overall failure probability. That is why for a 

specimen as depicted in Fig. 2 it is statistically not correct to refer the results only to the surface or 

volume with the smallest radius (central section). Though there are models to account for the pure 

length effect, e.g. [6], the variable stress in the specimen is in general not accounted for. 

The present investigation proposes a new model to evaluate fatigue test data considering both size 

effect and variable stress state of the test specimens. This allows, on one hand, a comparison of 

fatigue data obtained for different specimen sizes and, on the other hand, to establish a new method 

to extrapolate fatigue life results from laboratory tests to different specimen sizes and real 

structures. The applicability of the model is checked by evaluating three experimental fatigue data 
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sets corresponding to three specific specimen geometries of the same material: the aluminium alloy 

AlMgSi1-6082. 

 

2. Model proposal 
 

In this section a new method to evaluate fatigue data is presented which extends the applicability of 

the probabilistic fatigue model presented by Castillo and Fernández-Canteli [6] for a more general 

description of the fatigue behaviour considering specimen geometry, i.e. size effect and variable 

stress state. 

 

2.1. Probabilistic model 

 

The Weibull regression model described in [6] is based on physical and statistical assumptions. The 

compatibility condition between the probability distributions present in the Wöhler field, i.e. the 

probability distribution Pf (∆σ|Ν) of ∆σ for constant N and the probability distribution Pf (N|∆σ) of 

N for constant values of ∆σ, plays an important role, manifesting that the values of the failure 

probability for every combination of ∆σ and N must be equal for Pf (∆σ|Ν) and Pf (N|∆σ). The 

model describes the Wöhler field in a probabilistic way by means of percentile curves, i.e. curves 

representing a constant failure probability, and computes the failure probability Pf (N, ∆σ) for a 

combination of stress range ∆σ and number of cycles N by 

 

����, Δ�� 	 1 � exp �� ���ln � � ���ln Δ� � �� � 	�	�� ���,  (1) 

 

which corresponds to a three-parameter Weibull distribution of the variable � 	 �ln � ���	�ln Δ� � �� with location parameter λ, shape parameter β, and scale parameter δ [7]. V 

represents a normalizing variable and could be interpreted as a damage parameter. B and C are the 

threshold parameters for lifetime and stress range, respectively. Fig. 1 gives an example of the 

model depicting the SN field on the left and the normalized variable on the right. A detailed 

description of the model can be found in [6]. 

 

  

Figure 1. SN field and normalized variable V 
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2.2. Consideration of size effect and variable stress state 

 

In principle the fatigue life depends not only on the material, the stress range, and the stress ratio, 

but also on the specimen length, as found for example in [4]. This means that the longer a specimen 

the higher the failure probability if the same stress range ∆σ is applied. This phenomenon, called 

statistical size effect, is due to the fact that a larger specimen is more likely to contain a large critical 

crack than a smaller specimen, cracks being considered to originate fatigue failure. Furthermore, 

specimen geometries used in fatigue experiments frequently present a cross-section with varying 

diameter along their lengths (see Fig. 2). The experimental results (∆σ versus lifetime N) stemming 

from testing these specimens are usually evaluated considering only the maximum stress range ∆σ0, 

acting on the smallest cross section, and the stress ratio R=σmin/σmax. While the stress ratio R is the 

same for all cross sections, ∆σ is varying along the specimen length. To extrapolate from those test 

results to structural elements or specimens of different size it is advantageous to obtain a 

“normalized” Wöhler field. To accomplish this task a new method is developed, based on the 

following assumptions:  

a) Fatigue failure initiates from surface flaws. Therefore the size effect is related to the stressed 

surface area, i.e. the larger the stressed surface the higher is the failure probability for the same 

combination of ∆σ and N. 

b) Validity of statistical independence and weakest-link principal implying that the survival 

probability ��,� of a surface S = n ⋅Si composed of n surface elements of size !" is given by the 

product of the individual survival probabilities ��,�# of the subelements each loaded by a stress 

range ∆σi, i.e. 

��,���, Δ�� 	 $ ��,�#��, Δ�"�.&
"'(   (2) 

 

Accordingly, if all surface elements have the same size Si and are loaded by the same stress range 

∆σi one gets  

��,���, Δ�� 	 )��,�#��, Δ�"�*+ �#⁄ .  (3) 

 

c) For the moment, only the uni-axial load case is considered, so that Eq. (1) describes the failure 

probability ��,∆� for a uni-axially tensioned surface element ∆S.  

 

With those assumptions and ��,∆� 	 1 � ��,∆� we can combine Eqs. (1) and (3) to obtain the 

survival probability for a uni-axially tensioned surface element of size !" 	 ." ∙ ∆! as 

 

��,�#��, Δ�� 	 )1 � ��,∆���, Δ��*�# 0�⁄ 	 exp �� !"∆! ��ln � � ���ln Δ� � �� � 	�� ���	  (4) 

 

Thus, for an arbitrary structure under fatigue load with tensioned surface S = n ⋅Si composed of n 

surface elements of size Si, each loaded by a different stress level ∆σi , combining Eqs. (2) and (4) 

one gets 
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����, Δ�1� 	 1 � $ exp&
"'( 	 �� !"Δ!	��ln � � ���ln Δ�" � �� � �δ ���

	 1 � exp �� 3 !"Δ! ��ln � � ���ln Δ�" � �� � �� ��&
"'( �  (5) 

 

For a specimen with circular cross section and variable diameter d(x) over its length, being d0 the 

minimal diameter in the section loaded by the maximum stress level ∆σ0, the summation can be 

extended to an integral. With Si= π d(x) dx, we get 

 

����, Δ�1� 	 1 � exp 4� 2ΠΔ! 7 8�ln � � �� )ln )Δ	�1	 9:;9�<�;	* � �* � �� =�>?
1 @ A�B�AB.  (6) 

 

Due to symmetry, the integration is carried out over half the specimen length starting in the centre 

of the specimen, being the upper integration bound UB the x-coordinate, where 

(lnN−B)(ln(∆σ(x))−C)=λ. 

 

2.3. Effective surface area 

 

For a specimen under variable stress state an effective specimen surface Seff can be defined having 

the same failure probability as the whole specimen but subjected to a constant stress range ∆σ. The 

normalizing variable for the nominal maximum stress ∆σ0 acting in the central section of the 

specimen with diameter d0 is represented by �1 	 �ln	� � ���ln	Δσ1 � ��. For different specimen 

sections with diameter d(x) we have ��B� 	 �ln	� � ���ln�Δσ1 ∙ A1D A�B�D⁄ � � ��. An analytical 

expression for Seff is obtained equating Eqs. (5) (with Si =Seff) and (6): 

 

!E�� 	 2	Π F ���B� � λ�HA�B�dxJK1 ��1 � 	λ�H .  (7) 

 

As can be observed from Eq. (7) Seff is independent of δ but depends on the parameters B, C, λ and β 

of the Weibull model and also on the number of cycles N and the stress range ∆σ. For given values 

of N and ∆σ0 and known material parameters B, C, λ and β the effective surface and the failure 

probability can be computed. However, for a specific specimen Seff cannot be calculated directly 

from the failure data, since the Weibull parameters are still unknown. Thus, an iterative process, as 

explained in [8], is used for the parameter estimation. Firstly, the n test data are fitted to the model 

given by Eq. (1), then the normalized values V0 are assigned their accumulated failure probabilities 

by �� 	 �L � 0.3� �. O 0.4�⁄ . To refer the data to the surface element ∆S, those failure probabilities 

are shifted by using ��,",∆� 	 1 �	)1 � ��,",�QRR*∆� �QRR,#⁄
. The �1," and their corresponding ��,",∆� 

are fitted to a three-parameter Weibull distribution. The obtained values for λ and β are used to 

update the effective surface given by Eq. (7) in each iteration loop. Those steps are repeated until 

the Weibull parameters converge. 
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3. Material and experimental programme 
 

To investigate the influence of the size effect and the variable stress state on the fatigue behaviour, 

specimens with different geometries have been tested until complete fracture at EMPA-Dübendorf 

(Swiss Federal Material Testing and Research Laboratories). All specimens whose dimensions are 

given in table 1 and refer to Fig. 2 have been machined by the same manufacturer from rods of the 

aluminium alloy AlMgSi1 6082-T6 with chemical composition given in table 2. The d3 and d8 

specimens were machined from rods of diameter 25 mm and the d22 specimens from rods with 

diameter 45 mm. The corresponding yield and ultimate strengths are given in table 2 as the mean of 

three values obtained from static strength tests using normalized specimens. 

 

 

Figure 2. Specimen geometry 

 

Table 1. Tested specimen geometries 

Name d0 [mm] L0 [mm] L1 [mm] R [mm] 

d3 3 0 22.4 24 

d8 8 24 88.6 90 

d22 22 240 385.0 245 

 

Table 2. Chemical composition and strength of AlMgSi1 6082-T6 

d 

[mm] 

Si 

[%] 

Fe 

[%] 

Cu 

[%] 

Mn 

[%] 

Mg 

[%] 

Cr 

[%] 

Zn 

[%] 

Ti 

[%] 

Pb 

[%] 

Rm 

[MPa] 

Rp0.2 

[MPa] 

25 1.002 0.499 0.091 0.749 0.831 0.032 0.186 0.063 0.026 410 402 

45 0.850 0.280 0.060 0.430 0.710 0.050 0.050 0.030 N/A 369 350 

 

Since the static strength of the specimens differs for the different rods, additionally micrographies 

were taken (one from each rod) as shown in Fig. 3. It can be observed that the microstructure 

happens to be quite similar for both samples, thus, justifying a direct comparison of the fatigue test 

data. 

The constant amplitude fatigue tests were carried out in pure tension with a stress ratio R=0.1. For 

the tests of the d3 and d8 specimens resonance frequency machines (Rumul) equipped with 5 kN 

and 100 kN load cells, respectively, were used, whereas the d22 specimens were tested by a 

servo-hydraulic machine (Schenck) with 630 kN load cell. The forces were calculated taking into 

account the measured diameters in the central section of each specimen and the stress ranges ∆σ, to 

be applied in this section. For all specimens the difference between measured and nominal diameter 

was less than 0.03 mm. The predominant role of the surface flaws has been corroborated by ocular 
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and microscopic inspection of the failure sites revealing that the practical totality of the fatigue 

failures started from the specimen surface. In the exceptional case that a failure could be identified 

to have its origin in a volume defect, it was not considered in the present analysis. 

 

  

a) Rod d=25 mm (used for d3 and d8 specimens) b) Rod d=45 mm (used for d22 specimens) 

Figure 3. Microstructure of AlMgSi1 

 

4. Results and model application 
 

The experimental data sets for each specimen geometry were individually fitted to the model given 

by Eq. (6) of section 2.2. to obtain the parameters referred to ∆S=9 mm
2
 as shown in table 3. The 

choice of ∆S is free, so that larger values of ∆S will only result in smaller values of δ, remaining the 

other parameters unchanged. 

 

Table 3. Parameter estimates for each data set 

dmin [mm] ∆S [mm
2
] B exp(B) [cycles] C exp(C) [MPa] λ β δ 

3 9 11.57 105873 5.40 221 0.01 2.42 0.16 

8 9 9.95 20952 5.27 194 0.21 4.31 1.65 

22 9 10.63 41357 5.27 194 0.00 3.41 4.09 

 

The fatigue test data and their corresponding Wöhler fields are represented in Fig. 4 for the 

specimen geometries d3, d8, and d22. The percentiles are computed replacing into Eq. (6) the 

parameter estimates referred to the area ∆S given in table 3 and the specimen geometries of table 1. 

In a second step, the SN fields for the d3 and d22 specimens are predicted based on the parameter 

estimates, found by fitting the data of another specimen geometry, by substituting the corresponding 

radii and lengths in Eq. (2). Figs. 5a and b show the Wöhler fields for the d3 and d22 specimens 

using the parameter estimates obtained by fitting the d8 data. The extrapolations from the d3 to the 

d22 specimen and from the d22 to the d3 specimen are given in Figs. 5c and d, respectively. 
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a) dmin = 3 mm b) dmin = 8 mm 

 

c) dmin = 22 mm 

Figure 4. AlMgSi1 fatigue data and percentile curves for 1, 50 and 99 % failure probability 

 

5. Discussion 
 

As can be observed in Fig.4, the percentile curves for all three specimen geometries provided by the 

model describe the fatigue data well, both in terms of median curve and data scatter. As the 

estimated parameters for each data set are referred to the same surface area ∆S, they should coincide 

for all three data sets. Nevertheless, as can be seen in table 3, this is only the case for the threshold 

parameter C for the d8 and d22 specimens. According to the model, a comparison of the Weibull 

parameters λ, β and δ requires the parameters B and C to be coincident to compute the normalized 

variable V. 

The extrapolation from the d8 estimates to the d3 Wöhler field overestimates both the median curve 

of fatigue life for constant stress levels and the data scatter. A possible reason could be that for such 

small specimens statistical independence, as is an assumption of the model, is not fulfilled in this 

case. As reference for other practical cases, in [6] it was also observed that the fatigue behaviour of 

the shortest prestressing wires could not be described based on the estimates for the longer wires. 

Therefore, the statistical dependence [9] based on considerations related to the defects from which 

fatigue initiation arises together with experimental work should be further investigated in order to  
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a) d3 extrapolated from d8 estimates b) d22 extrapolated from d8 estimates 

  

c) d22 extrapolated from d3 estimates d) d3 extrapolated from d22 estimates 

Figure 5. Extrapolation to different specimen geometries (1, 5 and 99 % percentile curves) 

 

improve the model. Different surface quality can also be excluded, as all specimens were machined 

in the same workshop, therefore supposedly having undergone the same surface treatment. In 

particular, both the d3 and d8 specimens were fabricated from 25 mm diameter rods. Although, this 

implies that the surface of the d3 specimens is closer to the centre of the rods than the surface of the 

d8 specimens and possibly having experienced both different cooling rates, the difference is 

negligible bearing in mind the original rod diameter. 

One could also question the existence of a size effect. Though this assumption might be true for the 

d3 and d8 specimens, it is obvious from Fig. 6 that the d22 specimens have lower lifetimes than the 

d3 and d8 specimens for the same stress ranges. Nevertheless, in the region of low stress ranges, the 

d3 specimens tend to present higher fatigue lifetimes than the d8 specimens.  

On the other hand, the prediction for the d22 specimens based on the d8 estimates (Fig. 5b) is quite 

good lying almost all failure data for the d22 specimens between the 1 and 99 % - percentiles. 

However, a tendency to underestimate the fatigue strength is noticeable since by the extrapolation 

the data with highest lifetime are assigned to failure probabilities higher than 99 %. 
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Figure 6. AlMgSi1 fatigue data for the tested specimen geometries 

 

The extrapolation to the d22 specimen geometry based on the d3 estimates (Fig. 5c) leads to an 

underestimation of the data scatter and of the median curve. In this context, it has to be noted that 

the threshold parameters for the d3 data set were estimated in higher values than those for the d8 

and d22 data sets. In fact, the threshold stress exp(C) for the d3 specimens results in 221 MPa which 

represents a higher value than the lowest stress range in the fatigue results for the d8 and d22 

specimens equal to 220 MPa. Therefore, failure data lying below the threshold stress of the 

estimated model cannot be represented by the model. In contrast, the prediction of the SN field for 

the d3 geometry based on the d22 estimates (Fig. 5d) results in a noticeable overestimation of mean 

curve and data scatter.  

 

6. Conclusions 
 

A new model for the evaluation of fatigue test results under simultaneous consideration of size 

effect and variable stress state along the specimens is presented. The model, describing the SN field 

by means of percentiles, has been applied to three sets of fatigue data for AlMgSi1, each set 

obtained on specimens with different size. The estimated SN fields fit the experimental data well. 

As the parameters of the fatigue model are referred to a uni-axially and uniformly tensioned surface 

element, extrapolation to different specimen geometries can be performed. However, extrapolation 

to different specimen geometries is only satisfactory from the d8 to the d22 specimens. For the 

other presented cases, an extrapolation of the model from larger to smaller specimens overestimates 

the lifetimes of the smaller specimens and vice versa, an extrapolation from smaller to larger 

specimens tends to underestimate the fatigue behaviour. Thus, further research will be undertaken to 

get a deeper understanding of the size effect, and the role played by the defect distribution and the 

statistical independence assumption in order to improve the model. 
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