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Abstract: We obtain estimates for convergence rates of the eigenelements
(A, uf) for the Laplace operator in a domain Q C R? periodically perforated
along a plane v = QN {z; = 0}. The boundary conditions are of the Dirichlet
type on 99 and of the Robin type, involving a large parameter O(¢~"), on the
boundary of the cavities. The small parameter € denotes the period while the
size of each cavity is O(e®). Here we consider the most significant case where
a=kK=2.
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1. Introduction and Setting of the Problem

Let Q be a bounded domain in R3, with a smooth boundary 9. Assume that
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v=QnN{x; =0} # 0 is a domain on the plane {z; = 0}. We denote by Gy
the ball of radius 1 centered at the origin of coordinates. For a domain B, and
§ > 0, we denote by 6B = {z|d 'z € B}, and we set

G, = U (acGo +¢e2) = U Gg,

z€Z/ JEZ!

where Z/' is the set of points of the form z = (0, 29, z3) with integer components
22, 23; ae. = Cpe®, Cp is a fixed positive number, € > 0 is a parameter that we
make converging towards zero, and o > 1. We define

Ge: = U Gé

JEY:

where Y. = {j € Z' : GL C G., G C Q, p(9Q,G’) > 2¢}. The number of GZ
with index j € Y. is |Y.| = O(e72).

Let Q. be Q. = Q\ G., S. = 0G., 900, = IQ U S.. Let H' (9., 090) be the
space completion with respect to the norm of H'(€.) of the set of functions

u € C*(Qe), u vanishing in a neighborhood of 9f).
Let us consider the eigenvalue problem

—Auf = Nuf in Q,.,
u® =0 on 012, (1)
Oyuf +eFauf =0 on S,

where 0, denotes the derivative along the unit outward normal vector v to 9€).
on S., a = a(x) is a strictly positive continuously differentiable function in Q
and k € R. Throughout this paper, we set the value of the parameters a and &
at Kk =a =2.

The variational formulation of (1) is: to find A, u® € H(Qe, 09), u® # 0,
such that

/VuEVv dr + aﬁ/ausv ds = \° /usv dz, Vo € H'(Q.,00). (2)
Qe

Se Qe

For each fixed € > 0, problem (2) is a standard eigenvalue problem in the couple
of spaces H'(Q.,00Q) C L?(€).), with a discrete spectrum. Let us consider
{A.}22, the increasing sequence of eigenvalues, repeated according to their
multiplicities, and let {uj }3°, denote the associated eigenfunctions which are
assumed to form an orthonormal basis in L?(€2.).
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As stated in Gémez et al [1], for « = k = 2, the homogenized spectral
problem of (1) is:

—Au = lu in Q- UQT,
u=0 on 09, (3)
[u] =0, [Oyu] =47Cohu  on 7,

where h = h(z) is the strictly positive continuously differentiable function de-
fined by
h(x) = Mj
1+ a(z)Cy
Problem (3) has a discrete spectrum; let us consider {\;}32; the increasing
sequence of its eigenvalues repeated according to their multiplicities, and let
{ur}p2, denote the associated eigenfunctions which are assumed to form an
orthonormal basis in L?(£2).

The convergence of the spectrum of (2) towards that of (3) has been proved
in Gémez et al [1]. This result in Gémez et al [1] does not provide bounds for
convergence rates of eigenvalues and the associated eigenfunctions, since it is
obtained from general convergence results for nonlinear stationary problems,
and convergence rates for the solutions of these stationary problems rely on the
assumption of smoothness of the solution of the limiting problem. Since we are
dealing with eigenvalue problems, such an assumption makes no sense.

The aim of this paper is to obtain precise bounds for discrepancies of the
eigenvalues of (1) and (3) and for the associated eigenfunctions in terms of
the eigenvalue number and the parameter . We emphasize that obtaining
these bounds proves to be essential in order to determine, e.g., estimates of
time in terms of €. That is, the time in which certain solutions of the associ-
ated evolution problems can be approached through time-dependent functions
constructed from (3) (see Pérez [5] and Pérez [6] in this connection). Associ-
ated evolution problems arise, e.g., in Ecology: see Gémez et al [1] for further
references on the model and related works in the literature. For the proofs,
we use a strong result from the spectral perturbation theory (cf. Lemma 2)
for e-dependent Hilbert spaces and operators, which provides convergence for
the spectrum when a certain convergence for associated stationary problems is
known.

In this paper, since we are dealing with a linear problem, we can obtain
the required smoothness for the solution of the stationary problem (8) (cf.
Lemma 3). Consequently, avoiding the assumptions on smoothness of solutions
in Gomez et al [1] we obtain lower order powers of € in the bounds for the dis-
crepancies but in these bounds we can control the dependence on the data f in

x e Q.
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the norm of L?(£2) which is a usual topology for the spectral problems here con-
sidered (cf. (13) and (14)). To prove the above mentioned smoothness, we use a
variant of results on interior estimates of Sobolev norms for solutions of second
order elliptic equations with Dirichlet boundary conditions (cf. Shaposhnikov
[7]), and Sobolev embedding theorems which also imply some restriction on the
dimension of the space under consideration.

It should be noted that the critical case here considered where k = o = 2
provides the most singular limiting problem among all the possible relations
between the parameters o and x in Gémez et al [1]: it appears a nonlinear
dependence on the data a(z) on the transmission condition on =y (see (3)).
Also, it should be emphasized that the technique here developed extends, for a
three dimensional domain, to all the cases where o > 1 and x € R. The cases
different from k = o = 2 are considered in Gémez et al [2]. In these problems,
different test functions are used and different homogenized spectral problems
are obtained: either the average on 7 depends linearly on a(z) or it does not
contain any dependence on a(zx).

We note that the spectral problem here considered differs from others in the
literature: in this respect, we refer to Gémez et al [2] for comparison. Finally, we
mention that Section 2 contains some notations and preliminary results used to
prove the convergence in Section 3. Theorem 4 contains the convergence results
for the stationary problems and Theorem 5 contains the spectral convergence.

2. Preliminary Results

For the sake of the completeness, we introduce some lemmas bellow; in these
lemmas, and in what follows, C' and C), denote constants independent of e.
Lemma 1 provides sharp general estimates for thin domains; Lemma 2 provides
results from the spectral perturbation theory. Lemma 3 provides bounds in
W4 and L norms for solutions.

Lemma 1. Let II; be Il. = QN {—¢/2 < x; < ¢/2}. Then, for all
w € HE(Q), we have

w2y < Ce¥?| Vw2 and  |w]pagry < CeV8 |Vl p2@).  (4)

Sketch of the proof. See, e.g., Lemma 2.6 in Gémez et al [1] for the first
inequality in (4). The second one can be obtained from the Holder inequality
lwll sy < Il lw] 7y, > the first inequality in (4), and the embedding

of H}(Q) into L5(Q). We refer to Gémez et al [2] for further explanation. O
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Lemma 2. Let H. and Hy be two separable Hilbert spaces with the scalar
products (-,-). and (-,)o respectively. Let A° € L(H.) and A° € L(Hy). Let
W be a subspace of Hy such that Im A° = {v ‘ v=A% : ue Hy} CW. We
assume that the following properties are satisfied:

(C1) There exists an operator R® € L(Hy, H.) such that, for any f € W,
IREflle = Il fllo as e — 0.

(C2) Af and AV are positive, compact and self-adjoint operators on H. and H
respectively. Besides, the norms ||A%||;(y.) are bounded by a constant
independent of €.

(C3) For any f € W, |A*Ref — REAf||- — 0 as e — 0.

(C4) The family of operators A® is uniformly compact, i.e., for any sequence
f€ in H. such that sup, ||f¢||c is bounded by a constant independent of
e, we can extract a subsequence f¢ verifying |A% f& — R w|. — 0, as
e’ — 0, for certain w® € W.

Let {us}2, ({ud}e2,, respectively) be the sequence of the eigenvalues of A¢ (AY,

respectively) with the usual convention of repeated eigenvalues. Let {w5}°,

and ({w?}2,, respectively) be the corresponding eigenfunctions which are as-

sumed to be an orthonormal basis in H. (Hy, respectively). Then, for each

fixed k there exist a constant C} and a ¢, > 0 such that, for ¢ < g,

g, — 1] < Csup [ A7 R u — RE A%l , ()

where the sup is taken over all the functions u in the eigenspace associated with
19, w such that ||luljo = 1.

In addition, for any eigenvalue ,ug of AY with multiplicity s (ug = ,u2+1 =
c++ = 4 1), and for any w eigenfunction corresponding to pf), with ||lw|jo = 1,

there exists w®, w® being a linear combination of eigenfunctions {w$ }?j:ﬂ*l
of A% corresponding to {,uj};iiﬂ_l, such that
w® — REwl| < Cl| A*RFw — RE A w|)... (6)

We refer to Theorems 1.4 and 1.7 in Chapter III of Oleinik [4] for the proof
of Lemma 2.

Let us define H¢ = L?(€2.) and H° = L?() with the usual scalar products.
Let us introduce the operators A : H — H¢ and A° : H® — HO. For f¢ € H°,
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we set A°f¢ = u. where u. € H'(Q.,09) is the unique solution of

/VuEVv dx + z-:_“/augv ds = /fev dx, Yo e HY(Q.,00Q). (7
Qe Se Qe

Consequently, the eigenelements of A° are {((A\f) ™1, ug ) }52, with {(AL, u5)}2,
the eigenelements of (2). In the same way, for f € H°, we set A’f = u where
u € H}() is the unique solution of

/VUVU dx +47TC0/huv dz = /fv dx, Vo € Hy (), (8)
Q 0% Q

and, the eigenelements of A% are {((Ag) ™, ug) 132, with {(Ag, ug)}32, the eigenele-
ments of (3). Above 2 denotes & = (z2,23). We also set W = HE}(Q).

Finally, we define R® : L%(Q) — L?(f).) the restriction operator; namely,
(REf)(z) = f(x) if x € Q..

Let us introduce the extension operator P. from H'(Q.,d9Q) into H(9),
such that for w € HY(Q,08) we set P.w = w the function which satisfies:
w(z) = w(x) for x € Q, and

[0l @) < Cllwllm.y and  [[Vwlp2q) < C[Vwl|p2q.)- 9)

This allows us to prove the estimates for u. = A°(R°f) (see Lemma 2.7 and
Theorem 2.1 in Gémez et al [1]):

IVuell 2.y + e ?|lucllr2s.y < Clfllrz.)s

(10)
el ) < Cllfllz2.)-
Lemma 3. Let u be the solution of (8) with f € L?(2). Then,
ull ) < Cllfllz2 @),
lullwra@) < ClIfllL2@) (11)

[ulle @) < Cllfll2@)-

Sketch of the proof. From the Poincaré inequality, taking v = u in (8),
we get the first estimate in (11). For the second estimate, we consider the
function ¢ (z) = u(z) exp(g(x)) where u is the solution of (8) and g is defined
by g(z) = —4nwCoh(0,z)x; if 1 > 0 and g(x) = 0 otherwise. Then, we show
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that ¢ satisfies the equation —0y, (c 0y, 0+bitp) = f in €, for certain functions
c € C%(Q) and b; € L>®(Q), i = 1,2,3, and the Dirichlet condition 1) = 0 on
0. Then, using an adaptation of the proof in Theorem 1 in Shaposhnikov [7]
for n = 3, ¢ = 4 and p = 12/7 (see also Section V.5 in Morrey [3]) we have
[Yllwra) < C[Yllzr@) + 1 fll 127 ))- We refer to Gémez et al [2] for further
explanation.

Consequently, by definition of v, the smoothness of h, the embedding of
the spaces L™ with 1 < r < oo, and the first estimate in (11), we obtain the
second estimate in (11). The last estimate in (11) can be obtained directly
from the second estimate, namely the estimate for the W4(Q2)-norm, and the
embedding of W14(Q) into L>(1). O

Finally, in order to prove the convergence, we introduce the test function
W.. Let P! be the center of the ball GZ and we denote by T? the ball of radius
£/4 with center P/. Let us consider the functions w! (j € T.) as the solutions
of the following problems

Aw? =0 in Tg'\G_Z, w! =1on 0GL, w! =0on dT?. (12)

We define the function W, € H L(R™) by extending by 1 for z € G. and by 0

forz e R\ | T¢. Asis well-known (see, e.g., Gémez et al [1]), the solution
JEY:

of (12) can be constructed explicitly, 0 < W, < 1, and the weak convergence

W. — 0 in H}(2), as e — 0, holds.

3. Convergence Results when o = k = 2

Theorem 4. Let W, and h be the functions defined by (12) and (3)
respectively. For f € L*(Q), let u be the solution of (8) and let u. be the
solution of (7) for f¢ equal to the restriction of f to Q.. Then, we have

lus —ut+ Wehul3 g, + e 2 ue —ut hullras,, < CeV¥If |20 (13)

and
[[ue — u”%%ﬂg) < Cffl/S”f”%%Q)' (14)

Proof. Let us consider (7) and (8) with v = u. — u+ W.hu € HY(Qe,09)
and v = U, —u + Wehu € HLH(Q) as test functions, respectively. Subtracting
both equalities, we obtain

IV (ue —u+ Weh u)||%2(Q€) 472 / a(ue—u+hu)?ds = S; + So + S3,
Se
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where

Slz/VuV(ﬂs—u—f—Wghu)d:c, ng—/f(ﬂs—u—i—WEhu)dx,
Ge Ge

Sy = /V(Wghu)V(uE —ut Wohu)da
Qe

+47Cy / hu(ue —u+ Wohu)d

v

—52/a(1—h)u(u6 —u+ hu)ds.
Se

Now, considering the volume of G., the definition and the boundedness of W,
in H(Q), the smoothness of h, (11), (10) and (4), we obtain

1S1] < I Vull i (e | G VIV (T —u + Wehw) || 120y < Cel| fl172q)  and

18] < 1112y IV (e~ + Wehw)[ 20y < V2] f (-

Let us estimate S3. Using

/V(Wghu)Vw dx = /VWEV(huw) d:):—/VW€V(hu)wdx
Qe Qe Qe

+/W5V(hu)de:c
Qe
for w = us — u + Wehu, the Green formula in the first integral on the right

hand side above, and the definition of W, we have that S3 = S3, + S3, + S3¢
where

S3, = Z 8,,wgh u(ue —u+ Wehu)ds
1€ e

+47C) / hu(tu: —u+ Wehu) di,

Y



ON CORRECTORS FOR SPECTRAL PROBLEMS IN... 317

Sap = Z dywlhu(u: —u + Wehu)ds

1€ ey01
—5_2/ a(l1=h)u(u: —u+ hu)ds,
Se
S3. = —/VVVEV(hu)(u8 —u+ Wehu)de
Qe

+ / WV (hu)V(u: —u+ Wohu) de.

- Taking into account the explicit computation of the normal derivatives of
wl, the estimate

(Z /wds—%/wdfc

1€ ey gl

< CeY?||Vuwl|p2iq), Yw € H(Q)

(see Lemma 2.5 in Gémez et al [1] for the proof), and the trace theorem in
H'(), we have

|S3a] < CY2(|V(hu(@e —u+ Wehu))l| 12 (q)-

In addition, from the smoothness of h, the embedding theorem of H{(Q) into
L5(9), the boundedness of W, in H(Q), (10) and (11), it follows that
[S3al < CVA(|Vull gl —u+ Wehul| i)
+ [l oo (@) IV (@ = w4+ Wehu) | 12() < Ce2(|f1[72(q)-

Finally, by the definition of W, and h, we can rewrite Ss3; as

4

S3p = ———
S — 4Cpe?

/hu(u€ —u+ hu)ds.
Se

Thus, computing the area of S; and using (11) and (10) we get

| S3p|

IN

Ce™ (||ull poo () [Se 2 |ue L2(s.y + [l 200 () 1S 1)
Cellf172(0-

IN
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In a similar way,

1S3¢] < IIVWell L2 IV (hw) || pa oy e —u+Weh || pag)
IV (Bl pa oy |V (0 —ut Wehw)| 2,
and by the boundedness of W, in H(Q), (11), (10) and (4) we get
|Sae] < CeY8|If11320-
Now, gathering all the above estimates, we conclude that
IV (ue —u+ Wehu) |2,y +e 2 llus —u+ hulZag,
< O IZ2(0y. (15)
To obtain (13) from (15), we consider the Poincaré inequality for the H'-
extension of uz —u+ Wehu to Q, P.(us —u+ W-hu) € H} (Q), which satisfies
(9) for w = ue — u+ W-hu.

Finally, from (13), the definition of W, the smoothness of h, (4) and (11),
we can write

lue =l < lue —ut Wehulagq,) + IWehullag,)

< 0(51/8”f”%2(9) + Hu|’%2(ng))
< CEYH 72 + el Vuliay) < Ce8IF1172 (-
Consequently, (14) holds and the theorem is proved. O

Theorem 5. Let {\;}72, and {\;}}2, be the eigenvalues of problem
(1) and (3), respectively. Then, for each fixed k there exists a constant Cj,
independent of € such that

IS — Akl < Cre'/16, (16)

holds for sufficiently small . In addition, for any eigenvalue A\ of (3) with
multiplicity s (A = Ag+1 = -+ = Ag+s—1), and for any u eigenfunction corre-
sponding to A, with |ul[z2q) = 1, there exists 4, u° a linear combination of
eigenfunctions {ui}:ziﬂfl of (1) corresponding to {\j, :zgﬂfl, such that

@€ — ul| 2.y < Cre'/16. (17)
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Proof. On account of (10) and (14), it is self-evident that the properties
(C1)~(C3) of Lemma 2 are satisfied. Let us prove property (C4) in Lemma 2.
In order to do this, for the f € L?(€2.), as stated in property (C4), we consider
f¢ € L?*(Q) the extension of f¢ by zero inside G.. We have that ||f5||L2(Q
is bounded by a constant independent of ¢ and consequently, there is a sub-
sequence ¢/ — 0 and a certain fo € LQ(Q) such that f& — f0 in L2(9).
Considering u. = AR f and w° € HE(Q) solution of (8) for f = f0, we
rewrite the proof in Theorem 4 with minor modifications, and we obtain that
l|luer — /LUOHLQ(QE) — 0, as ¢’ — 0. Consequently, property (C4) also holds.

Now, applying Lemma 2, we have that for each fixed k,

|(AD) ™" = (M) 7 < Crsup [lue ke — uokll 120, (18)

where the sup is taken over all the functions f; in the eigenspace associated
with (Ag)~!, fx such that Il fellL2) = 1, uek and ugy are ucp = A°R® fj, and
ug . = REA° fi, respectively. But, (14) allows us to assert

ek = ol 72y < Cre'Pllfellf() < Cre'/® (19)
for C a certain constant independent of e. From this last inequality, (18) reads

(M)~ — () 7Y? < Ciel/® which ensures the boundedness of (A\{)~! by a
constant independent of ¢ and consequently the estimate for the eigenvalues

(16) holds.
Finally, let us note that the estimate for the eigenfunctions (17) also holds
applying (6) and (14). O
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