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Classroom note

Computing bisectors in a dynamic geometry environment

Francisco Botana*
(Received 00 Month 200z; final version received 00 Month 200z)

In this note an approach combining dynamic geometry and automated deduction techniques
is used to study the bisectors between points and curves. Usual teacher constructions for bi-
sectors are discussed, showing that inherent limitations in dynamic geometry software impede
their thorough study. We show that the interactive sketching of bisectors and an automatic
treatment of the algebraic problem involved can give a reasonable knowledge about them.
Since some cases are currently out of computational scope, despite the simplicity of the bi-
sector problem, we sketch an alternative method for dealing with them.

Keywords: bisector; geometric loci; dynamic geometry

1. Introduction

Most of Dynamic Geometry (DG) environments incorporate primitive predicates
for computing the perpendicular bisector of two points or a segment, and the
parabola defined by a point and its directrix. These cases are particular instances
of general bisectors. The bisector of two geometric elements is the locus of a point
that moves while remaining equidistant respect to those elements. Since its defini-
tion is so simple, it is not surprising that DG users, both teachers and students,
frequently deal with bisector constructions. However, most of these constructions
are limited to exhibit a graphical trace of the sought locus and there is no algebraic
knowledge about them. The aim of this note is to perform a systematic discussion
of the construction of bisectors between point and curves in a DG environment.
Furthermore, some considerations about automatically obtaining their algebraic
characterization are given. We also discuss the differences between answers coming
from the DG environment and the symbolic ones.

Section 2 deals with bisectors between point and general lines. We study and
propose dynamic constructions for bisectors, and a symbolic method for computing
the equations of objects containing the bisector is recalled. Section 3 describes the
computation of curve/curve bisectors. Since the approach taken here is based on
envelopes, we show that a closed—form answer is returned just for low degree curves.
A general symbolic answer for this case is currently out of computational scope, so
we sketch a graphical method for computing such bisectors.

Throughout this paper we use GeoGebra as the DG environment which to illus-
trate our findings. Some of the proposed algorithms rely on the GeoGebra ability to
compute a point in a curve which is the closest to a given point, a feature currently
not present in other DG systems. Given the actual spread of GeoGebra, we think
that this dependence is not a severe limitation and our approach could be easily
replicated in other DG software.
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2. Point/curve bisectors

Given a point A and a curve ¢ the construction of the bisector of A and ¢ involves
selecting a point B lying in ¢ and tracing the intersection point of the perpendicular
bisector of A and B and the normal line to ¢ passing through B. The following
algorithm lists the constructive steps for computing bisectors.

Algorithm 1:
Input: curve ¢ : f(z,y) =0, point A
Construct a point B on ¢
Construct the normal line to ¢ passing through B
Construct the perpendicular bisector of A and B
Intersect both lines, giving a point C'
Return: the locus of C' when B moves along ¢

If ¢ is a straight line, Algorithm 1 can be used instead the system—defined
Parabola tool. The user will not visually appreciate any difference in the results
shown in the Graphics window. Nevertheless, while using the Parabola tool the
user obtains a system’s primitive object (a parabola whose equation is known, and
shown in the Algebra window), no algebraic knowledge is returned when using the
above locus approach (see Figure 1. Note that some GeoGebra files illustrating the
proposed approach are available as Supplementary Content).

Figure 1. The parabola with focus A(1,3) and directrix ¢ : y = 0 obtained by
using the standard Parabola tool (dotted line) and by tracing point C, which is
equidistant from A and c.

Suppose that the user wants to compute the bisector of the obtained parabola
and its focus. If the parabola was defined as a locus, there is not an easy way to
draw its tangent through a point on it, so the general procedure for constructing
the new bisector may fail. A user could place five points on the locus and ask for
the conic passing through them, thus replacing the parabolic locus by a primitive
Implicit Curve element. Nevertheless, the five points are numerically defined, and
precision errors will lead to a parabola equation slightly different from the exact
one. A simple test confirms they are different: Asking if a point in the locus is in
the parabola, the system generally reports that the point does not lie on it. Even
worse, we know that this locus is a conic, but for general curves obtained as loci
this trick will not be applicable since the curve degree is unknown.

Let us recall a method for automatically computing the algebraic description
of such a locus. It uses elimination techniques (see [1] for a detailed description)
and is currently adopted by JSXGraph [2] and under consideration for inclusion
in GeoGebra. For the sake of illustration, the construction of the parabola, when
obtained as a locus, can be parametrically described as follows. Let A(1,3) be the
focus and ¢ the horizontal axis. The point B(z1,z2) lies on the line y = 0, so
x9 = 0. The locus point C'(x3,x4) is constrained to lie on the line z = x; and on
the perpendicular bisector of A and B (with equation y — % = ““T_l(m — xlTH))
Eliminating all symbolic coordinates but those of the locus point in the polynomial
System
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we get the expected parabola equation, after replacing C' coordinates by generic
variables,

6y — 2 + 22 — 10 = 0.

Once we have this equation (thus being able to easily compute the normal line in
any point on the curve), drawing the bisector of the parabola and its focus A is
just reapplying Algorithm 1 with A and the parabola as inputs (Figure 2).

Figure 2. The bisector of A and the parabola —x? + 2z + 6y = 10.

When doing the GeoGebra construction we get an unknown curve as bisector.
It is easy to check that parts of this locus do not satisfy the required equidistance
condition. Since the locus is computed for each possible position of a point in the
parabola, the returned locus is not the true bisector, but the set of equidistant
points from the given point and each point on the parabola. In Figure 2, any point
out of the locus loop does not lie on the true bisector, as can be easily checked
by drawing the circle centred on it and passing through A. There are points in
the parabola closer to A than the locus point, so we have to exclude it from the
bisector. See, for instance, Figure 3: Any point in the parabola between D and E
is closer to C’ than A.

Figure 3. The points out of the bisector loop do not satisfy the condition of
equidistance.

Using the above remark, we can trace the true bisector with the following

Algorithm 2:
Input: curve ¢ : f(z,y) = 0, point A
Construct a point B on ¢
Construct the normal line to ¢ passing through B
Construct the perpendicular bisector of A and B
Intersect both lines, giving a point L
Construct the locus loc of L when B moves along ¢
Construct the point D on ¢ closest to L
If D = B then construct the point £, F = L.
Return: the locus truelocus of £ when B moves along c

It must be noted that the construction of D is numerical, so we are introducing
some inexactness in the diagram. And testing the equality between points D and
B, given their numerical representation, must be replaced by a closeness measure
(in empiric tests, we have found that constraining their distance to be less than
0.1 is enough for most constructions).

Using this algorithm the bisector shown in Figure 2 is trimmed. Figure 4 shows
the true and untrimmed bisectors of the parabola and a point, for two positions of
the point.
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Figure 4. The bisectors of the parabola and a point (top A(4,4), bottom A(6,4)).
Dotted lines are the untrimmed parts of the bisectors.

The computation of the closest point involves inequalities, so a strict algebraic
approach to fully determine bisectors is not possible. Nevertheless, we can compute
a variety where the bisector lies. Using the above sketched elimination process, we
get that the bisector of the parabola and its focus lies on the zero set of the
polynomial

81x? — 4y> + 81y? — 162z — 486y + 810,

thus being a cubic. In order to automate these computations, we have developed a
web service at http://193.146.36.205:5467 that uses Sage [3] and a Sage Cell Server
[4]. Using this server for bisector computations involves sending a task as follows:

load(’/home/scs/AD2D4scs.sage’)
ACurve(’c’, [-x72+2*x+6%y-10])
FreePoint(’P’,1,3)
Bisector(’b’,’P’,’c?)

where the first line loads the appropriate library, the parabola c is defined via its
equation, so it is the point, and a new Bisector object b is defined. The system’s
answer is a line stating the dimension of the bisector and a polynomial list giving
the variety that contains the bisector. In this case, the variety is denoted by the
list

[2? + y* — 22 — 6y + 10, 812% — 49> + 81y* — 162z — 486y + 810].

Note that besides the cubic, the elimination also returns a real point (the parabola
focus) that also satisfies the algebraic conditions for the bisector, but not being
part of the true bisector. The reason for to appear such a spurious solution lies
in the elimination process. The calculi take place in the complex field, so for the
complex points in the parabola (1 £ 3i,0) we get the real locus point (1, 3).

If this extra point shows that the algebraic knowledge must be carefully consid-
ered, the Algorithm 2 does not even assure getting the trace of the true bisector.
One must remember that geometry and DG are not exactly the same thing. Trying
to draw the bisector of the parabola and the parabola point A(0,5/3) no trace is
returned for the true part of the bisector. Nevertheless, the server declares that the
bisector lies on the variety

(92 — 3y + 5,2187z% — 108y> — 486y + 1503y* — 21422 — 6486y + 10735)].

Again, it is easy to reject the second polynomial as a false part of the true bisector.
The reader can check that a GeoGebra construction using Algorithm 1 returns a
locus corresponding to this second polynomial, while no visible locus is shown if
using Algorithm 2. So, what is the meaning of line 92 —3y+5 = 07 A simple mental
experiment concludes that there are points on the bisector, for instance, A itself.
In fact, the bisector is a halfline with origin at A and normal to the parabola. A
simple modification of Algorithm 2 could return a trace of the true bisector. Just
replacing the first locus computation with the result of the symbolic computation,
we have a certified object where the bisector lies.

Algorithm 3:
Input: curve ¢ : f(z,y) =0, point A
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Compute, via the server, the untrimmed bisector of A and ¢
Define this object as an implicit curve d

Construct a point B on d

Construct the point D on ¢ closest to B

If D and A are close, then construct the point £, F = B.
Return: the locus truelocus of E when B moves along d

This algorithm is more efficient than the previous one for showing true bisectors,
since it can detect hidden parts of them. Nevertheless, using a tool external to
GeoGebra, we loose interactivity. A smart combination of both algorithms 2 and 3
should be balanced when teaching, at least while this mixed approach is not fully
integrated in GeoGebra.

The reason behind the limitation of the Algorithm 2 lies in its use of the Perpen-
dicular Bisector primitive. When using this tool, an implicit restriction is assumed:
the segment is well defined, or, in other words, its endpoints are not the same.
GeoGebra and other software do not allow to define a perpendicular bisector when
both segment endpoints coincide, declaring it as undefined if some operation causes
the equality of points. In the bisector we are studying, this undefinition happens
when the moving point in the parabola coincides with A, thus preventing the de-
sired computation. Although it is generally meaningful to declare the perpendicular
bisector in such degenerated cases as undefined, it should be noted that the bisec-
tor of a pair of coincident points is the whole plane, as it can be computed via the
server. Sending

load(’ /home/scs/AD2D4scs.sage’)
FreePoint(’P’,1,2)
Bisector(’b’,’P’,’P?)

the server returns a bidimensional object defined by the polynomials in [0], that
is, all points in the plane are in the bisector. Thus, when computing the bisector
of the parabola and a point on it, if the parabola moving point coincides with
the given point, the intersection between the normal line and the bisector of the
points reduces to the normal line, which is returned as a factor as said above. A
quite similar situation occurs when computing the bisector of a straight line and
a point lying on the line. If Algorithm 1 is used, no locus is returned, since there
are undefined objects (the perpendicular line and the perpendicular bisector are
always parallel). Nevertheless, there exists an elementary bisector, as is well known.
Computing through the server the bisector of y = z and the point A(1,1), we get
the true bisector as the whole line x + y — 2 = 0, while if using the GeoGebra
Parabola tool the answer will the double line (z +y — 2)? = 0.

As a final illustration of the method, we study the bisector of a point A and the
cubic 2 — 5y? = 0. Apart from knowing the polynomial support of the bisector
there are no appreciable differences between using algorithms 2 and 3, when the
point lies outside the cubic. Figure 5 shows the bisector for A(3,1) computed via
Algorithm 2.

Figure 5. The bisector of 23 — 5y*> = 0 and A(3,1) (the dotted line is the
untrimmed part).

The server computation
load(’ /home/scs/AD2D4scs.sage’)
ACurve(’c’, [x"3-5xy~2])
FreePoint (’A’,3,1)
Bisector(’b’,’A’,’c’)
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states that the variety containing the bisector is an octic curve, which factors to
3z 4y —5 and a long polynomial 540x3y* + - - - + 1445000 with 30 terms. The linear
factor is trimmed (it comes from a degeneracy when trying to compute the tangent
to the cubic at its singular point) following the closeness heuristic, thus remaining
the graphical trace of the bisector and the knowledge of its polynomial support.
Things are different when A lies in the cubic. For A(5,5), Algorithm 2 does not
return anything, while Algorithm 3 correctly returns a line as the true bisector
(again, this fact is due to a GeoGebra degenerated condition). For A(0,0), we have
the contrary situation. Algorithm 3 does not give any sensible information (the
server computation returns [0], that is, it concludes that the bisector is contained
in the plane!), while Algorithm 2 shows a non empty bisector. Nevertheless, this
answer is incomplete, since the negative part of the horizontal axis is also part of
the bisector. Figure 6 shows the bisector for A(0,0).

Figure 6. The true bisector of 3 — 532 = 0 and A(0,0).

Algorithm 3 fails for A(0,0) returning the bisector just as contained in the plane,
since it tries to use the normal line to the cubic at a singular point. Thus, the
solution is the whole plane, as it is swept by the bisector of A and a moving point
on the cubic. In turn, the horizontal ray that the pure GeoGebra approach ignores
is due to the Perpendicular Bisector degeneration when the cubic moving point
coincides with A(0,0).

3. Curve/curve bisectors

Despite the subtleties involved in tracing the bisectors of a point and a curve, we
did not find hardly any reference about this problem in DG forums. The situation
is quite different when dealing with curve/curve bisectors. Circle/circle bisectors
have been extensively discussed in this community. For instance, in [5] the partic-
ipants discuss about the bisectors of two circles. Their constructions are able to
draw part of the bisector of external circles, but they face severe issues concern-
ing continuity and degeneracies. Indeed, these ad-hoc constructions can lead to
misunderstandings when used for different circle positions, as a false statement in
the cited page about the bisector of internally tangent circles. Another contributor
[6] gives a more complete solution, and points to a standard proof supporting his
statements although restricted to circle/circle bisectors.

We did not find any attempt to construct simpler curve/curve bisectors (e.g.
line/circle ones), and, beyond circles, only the ellipse/ellipse bisector has been
posed. Regarding this last problem, an interesting discussion (partly in Spanish) is
carried out in [7]. Trying to draw these bisectors the contributors employ a closeness
approach, and they offer some brute force methods for returning the bisector trace.
There, a participant argues against a previous claim declaring this bisector as a
conic, stating that “since it seems from the picture that there are inflexion points,
we can think on a quartic”. We feel that this commentary illustrates the convenience
of combining the standard DG approaches with other tools, such as the one reported
here.

Our treatment of curve/curve bisectors is inspired in the work in [8] and the
automatic methods for computing envelopes described in [9]. It has been proved
[8, p. 343] that the bisector of two curves ¢ and d lies in the envelope of the
family of bisectors of ¢ and a moving point D in d. Although, as is well known,
the envelope can contain spurious factors, our closeness heuristic for trimming the
bisectors makes those aberrant factors a matter of lesser significance.
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An algorithm to produce the trace of a curve/curve bisector is

Algorithm 1:

Input: a pair of curves a: f(x,y) =0,b: g(z,y) =0

Compute, via the server, the untrimmed bisector of a and b

Define this object as an implicit curve ¢

Construct a point C on ¢

Construct the point A (B) on a (b) closest to C

If the numbers distance(A, C) and distance(B,C) are close, then construct the
point D, D = C.

Return: the locus truelocus of D when C moves along ¢

The server syntax for computing the untrimmed bisector of a pair of curves is

load(’/home/scs/AD2D4scs.sage’)
ACurve(’a’, [<polynomial in x and y>])
ACurve(’b’, [<polynomial in x and y>])
Bisector(’bis’,’a’,’b’)

Thus, besides obtaining the trace of the true bisector via the proposed algo-
rithm, the server computation returns a polynomial containing the bisector. This
algebraic knowledge is a prerrequisite for deriving new objects with such bisectors
as arguments.

Figure 7 shows some bisectors involving lines and conics. From top to bottom,
the figure shows the bisector of external (internal) circles with unequal radii, exter-
nally (internally) tangent circles, a straight line and a circle, ellipse, hyperbola and
parabola. As the previous figures in this paper, the trimmed part of the bisector is
shown as a dotted line.

Figure 7. Some curve/curve bisectors.

If a user tries to compute the bisector of two ellipses (or two general conics,
even simple ones), he/she will find that the server is not able to find its polynomial
support in a reasonable time. The computational cost of evaluating these envelopes
is currently out of scope, given the actual algorithms and hardware. Although
the problem of tracing the bisector of general plane curves can be numerically
solved (see, for instance, a method coming from the community of computer aided
geometry design in [10]), here we describe a simpler method based on the standard
DG way to suggest envelopes.

As recalled above, the bisector of a pair of curves a and b lies on the envelope
of the family of bisectors of a and a moving point on b. Using Algorithm 2 we
can trace these bisectors in the DG environment, getting a picture that suggests
the envelope. Analogously, tracing the bisector of b and a moving point on a, it is
possible to sketch another envelope. Since the bisector of a, b lies in both envelopes,
their common part will be the the sought bisector.

Figure 8. An ellipse/ellipse bisector as the common part of envelopes.

Figure 8 shows the bisector of two ellipses as suggested through this graphical
procedure. Although this method can be seen as a brute force one, we think that it
is more efficient than the ones used in [7]. Nevertheless, it can forget some parts of
the true bisector, since it is based on Algorithm 2. For instance, tracing the bisector
of two internally tangent ellipses, the ray with origin at the tangency point and
with direction the normal line to the ellipses will not be a priori detected.
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It is also possible to numerically compute points on the bisector of two general
curves. The bisector of a curve and a point is a convex line [8, p. 337]. Thus, inter-
secting the bisector of ¢ and a point B in b with the normal line to b through B
(Figure 9), at most we get two points in the envelope. A closeness measure could
decide which of these points lies on the bisector of the curves. Nevertheless, we
cannot trace these points in GeoGebra, since it cannot currently compute intersec-
tions of a locus and other element. Thus, this approach can only be used to obtain
approximations of points lying on the bisector.

Figure 9. A method to graphically determine points (see +) in the bisector.

4. Conclusion

We developed a mixed approach combining a standard DG environment and an
algebraic study of bisectors of points and lines. Anecdotal evidence from teachers’
constructions of simple bisectors is cited to highlight inherent limitations to this
subject under the DG paradigm. We show that elimination techniques are needed
for getting more detailed bisectors. Although the complete bisector solution falls
out of the algebraic setting, we describe how a numerical approach to trim the
bisectors, solved as geometric loci, can give a thorough access to an easy generation
of bisectors.

The setup of a remote server for computing geometric loci enables accessibility
of the required algebraic knowledge for getting the sough bisectors. Although a
price for loosing interactivity must be paid when using the server, the algebraic
description of loci is a necessary step for returning certified answers. An automatic
connection between GeoGebra and the remote server is ongoing work. Since deter-
mining the algebraic description of some curve/curve bisectors is computationally
out of scope, a graphical method has been proposed to obtain the trace of such
bisectors.
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Figure 1. The parabola with focus A(1,3) and directrix ¢ : y = 0 obtained by
using the standard Parabola tool (dotted line) and by tracing point C, which is
equidistant from A and c.

Figure 2. The bisector of A and the parabola —z2 + 2z + 6y = 10.

Figure 3. The points out of the bisector loop do not satisfy the condition of
equidistance.

Figure 4. The bisectors of the parabola and a point (top A(4,4), bottom A(6,4)).
Dotted lines are the untrimmed parts of the bisectors.

Figure 5. The bisector of 23 — 5y*> = 0 and A(3,1) (the dotted line is the
untrimmed part).

Figure 6. The true bisector of 3 — 5y = 0 and A(0, 0).

Figure 7. Some curve/curve bisectors.

Figure 8. An ellipse/ellipse bisector as the common part of envelopes.

Figure 9. A method to graphically determine points (see +) in the bisector.
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The parabola with focus $A(1,3)$ and directrix $c:y=0%$ obtained by using the standard Parabola

= |Graphics

Bisector
~KI+2x+6y=10

\o 2 4 &

tool (dotted line) and by tracing point $C$, which is
equidistant from $A$ and $c$.
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the patabola

parabola: -x? + 2x + 6y = 10

4 2 n.f 1 q & 3\\1'0 12 14 16

The bisector of $A$ and the parabola $-x"2+2x+6y=10%.
39x24mm (300 x 300 DPI)
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28 The points out of the bisector loop do not satisfy the condition of equidistance.
37x25mm (300 x 300 DPI)

URL: http://mc.manuscriptcentral.com/tmes Email: ijmest@lboro.ac.uk



©CoO~NOUTA,WNPE

International Journal of Mathematical Education in Science and Technology

bisector's
. trimmed part./

~

true|bisextor

parabola

A 4,9

"\, bisector's ;
\trimmed part/

\ i

bol
paresd true bisector

@ AG,9

LY

The bisectors of the parabola and a point (top $A(4,4)$, bottom $A(6,4)$). Dotted lines are the

untrimmed parts of the bisectors.
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x#=>y?*

%
L
i 1 bisector

i CLYERY

~dg 1z

The bisector of $x~3-5y”~2=0% and $A(3,1)$ (the dotted line is the untrimmed part).
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£l
bisector

The true bisector of $x"3-5y”~2=0% and $A(0,0)$.
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47 Some curve/curve bisectors.
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ellipse a

An ellipse/ellipse bisector as the common part of envelopes.
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ellipse b
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normal line to b
through B

19 A E“ipSE a bisector
ofa, B

A method to graphically determine points (see $+$) in the bisector.
25 38x21mm (300 x 300 DPI)

URL: http://mc.manuscriptcentral.com/tmes Email: ijmest@lboro.ac.uk



