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Abstract

In this note we present an application of a new tool (the Gröbner cover
method, to discuss parametric polynomial systems of equations) in the realm
of automatic discovery of theorems in elementary geometry. Namely, we
describe, through a relevant example, how the Gröbner cover algorithm is
particularly well suited to obtain the missing hypotheses for a given geometric
statement to hold true. We deal with the following problem: to describe
the triangles that have at least two bisectors of equal length. The case of
two inner bisectors is the well known, XIXth century old, Steiner-Lehmus
theorem, but the general case of inner and outer bisectors has been only
recently addressed. We show how the Gröbner cover method automatically
provides, while yielding more insight than through any other method, the
conditions for a triangle to have two equal bisectors of whatever kind.
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Introduction

In [13] we have introduced and developed the foundations on the appli-
cation of algorithmic methods for the discussion of parametric polynomial
systems of equations to the field of automatic discovery of elementary ge-
ometry theorems. The merging of techniques from these two fields (theorem
discovery and parametric polynomials) was exemplified through the applica-
tion of an algorithm for the automatic case-analysis of polynomial systems
with parameters (the algorithm MCCGS, standing for Minimal Canonical
Comprehensive Gröbner System, cf. [10]), to a collection of geometric state-
ments of the kind: Iff p, then q, where p is only partially known. The
automatic discovery protocol allowing such application stems from the work
of [16] and has been further extended in [5] and, particularly, in [17]. We
refer the interested reader to the above mentioned papers for details and for
references to previous and related work.

Now, since the Gröbner cover algorithm, as described in [14], is a substan-
tial improvement of the MCCGS concept and algorithm, it deserved being
also tested in a challenging automatic theorem discovery situation, such as
the generalization of the Steiner-Lehmus theorem. This is the original goal
of this paper.

The theorem of Steiner-Lehmus states that if a triangle has two (inter-
nal) angle-bisectors with the same length, then the triangle must be isosceles
(the converse is, obviously, also true). This is an issue which has attracted
along the years a considerable interest, and we refer to [18] for a large col-
lection of references and comments on this classical statement and its proof.
More recently, its generalization, regarding internal as well as external an-
gle bisectors, has been approached through automatic tools, cf. [24], [21] or
[1] (related to [2]), where the goal is to find a similar statement concerning
triangles verifying the equality of two bisectors (of whatever kind) for differ-
ent vertices. This generalization has been also achieved through the FSDIC
automatic discovery protocol of [5], including the (perhaps new) case describ-
ing the simultaneous equality of three (either internal or external) bisectors,
placed on each one of the vertices. We refer to [7] (in Spanish) and to [8]
for further details on this issue. Moreover, in [9] the case of equality for the
internal and external bisectors placed at just one of the vertices of a triangle,
has been addressed with automatic discovery tools.

Now, all these results have been obtained through the use of ideal-theoretical
elimination methods, which do not allow a fine grain analysis of the in-
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volved situation, in particular, concerning the different behavior of some
real-geometry objects, indistinguishable from a complex-geometry point of
view, such as the internal/external bisectors at a vertex. We think that the
Gröbner cover approach is particularly well suited in this context, bringing
out, in its output, the possibility of a detailed case analysis that significantly
extends our knowledge of the generalized Steiner-Lehmus theorem.

The paper is organized as follows. Next two Sections briefly outline some
basic facts and terminology from Gröbner Covers and from automatic de-
duction in geometry, respectively. Then, the first part of Section 3 describes
the construction of the geometric elements involved in the Steiner-Lehmus
statement, its algebraic translation and the Gröbner cover output for the
associated parametric system of equations. Subsection 3.1 deals with the
geometric interpretation of the obtained results, summarized in Theorem 3.2
(Generalized Steiner-Lehmus theorem). Subsection 3.2 shows the reduction
to this context of a closely related problem, obtaining, in this way, a more
complete generalization. We end the paper with the section Conclusions,
highlighting the contribution of our work.

1. On Gröbner covers

There exist different methods to discuss parametric polynomial system of
equations that can be used to find new geometrical theorems (some recent
ones are [20, 15, 6, 3]). We have recently introduced the Gröbner cover (in
short: GC) algorithm [14], that gives precise and compact information about
parametric polynomial systems of equations. What follows is a short digest
on this method.

Let a = a1, . . . , am be a set of parameters, x = x1, . . . , xn a set of vari-
ables and I ⊂ K[a][x] an ideal (for example, generated by the set of equations
describing a geometric construction, the parameters representing the coordi-
nates of the free points), where K is a computable field (usually Q). Denote
K an algebraically closed extension of K (usually C). Then K

m
is the pa-

rameter space.
Selecting a monomial order " for the variables, the Gröbner cover of K

m

with respect to I is a set of pairs GC = {(Si, Bi) : 1 ≤ i ≤ s}, where the
Si, called segments, are locally closed subsets of the parameter space K

m
,

and the Bi are sets of I-regular functions gij : Si → OSi
[x] (c.f. [14] for a

precise description; the reader can think of them as polynomials, in order
to understand what follows), that for every point a ∈ Si specialize to the
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reduced Gröbner basis of the specialized ideal Ia, i.e. the ideal obtained from
I by evaluating the parameters a at point a.

Moreover, the segments are disjoint and cover the whole parameter space,
the set of leading power products (lppi) of the bases Bi on each segment
are constant (and characteristic of the segment if the ideal is homogeneous)
and the whole description is canonical. The segments depend only on the
ideal and the monomial order: they are disjoint, and have a unique reduced
Gröbner basis, that is different from the Gröbner basis of the remaining
segments. When the system is not homogeneous it can happen that, in
dehomogenizing, more than one segment corresponds to the same lpp, but
usually in this case the corresponding solutions have different properties.
It is known (see [4]) that the set of lpp of the reduced Gröbner basis of
a polynomial system characterizes the type of solutions (no solution, finite
number of solutions, dimension of the solution set, etc.). Thus, it is natural
to attach the information about the lppi as a third component of the label
associated to the Si-segments (even if it is apparent form the Bi’s). The
Gröbner cover provides, as well, a very compact (i.e. minimal in some sense)
discussion of all the involved cases.

There are many different ways of expressing a locally closed set S, but
for the GC-segments we have chosen a canonical description (the so called
P-representation, see [14] for details), consisting of lists of prime ideals of the
form

S → (pk, {pk1, . . . , pkjk}) : 1 ≤ k ≤ t)

representing the irreducible components of the Zariski closure of the segment
S and of the “holes”:

S =
t
⋃

k=1

V(pk) \

(

jk
⋃

j=1

V(pkj)

)

.

The I-regular functions gij in the basis Bi

gij : Si → OSi
[x]

are described generically in terms of one polynomial in K[a][x] that spe-
cializes (after normalizing) to the corresponding polynomial of the reduced
Gröbner basis in (at least) an open subset of the segment; and to zero, in the
remaining points of the segment. A generic representation of an I-regular
function can be algorithmically extended to a full-representation, consisting
on several polynomials such that, for any point in the segment, it exists at
least one of them that specializes to non-zero. See [14] for details.
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2. Automatic discovery of geometric theorems

Our point of departure is a geometric statement of the kind {H ⇒ T}
(such as: Given a triangle, if we construct the bisectors with respect to the
vertices then. . . there are at least two bisector segments, from the vertex to the
opposite side, of equal length, where H stands for the equations describing
the construction (bisector segments) and T describes the desired property
(equality of lengths, etc.). By abuse of notation, we will denote also by H
and T the ideals generated by the polynomials involved in the equations
describing the construction associated to the given statement or the given
thesis.

Now, since it is quite reasonable to assume that a given discovery state-
ment is generally false (for instance, not all triangles have two bisectors with
equal length), the automatic discovery goal is to search for complementary
hypotheses (say, the given triangle should be not degenerate to a line and
should be equilateral or isosceles, etc.) providing necessary and sufficient
conditions for the thesis to hold.

Although this formulation could seem straightforward, things are quite
subtle and involved (for instance, why not to consider the thesis itself as
the only needed complementary hypotheses?). Therefore, as stated in the
Introduction, there is a variety of protocols (precise formulation of goals and
algorithmic procedures to achieve them) concerning the automatic discovery
of geometric theorems. Among them, those of [21], [16], [5], are -grosso modo–
founded in ideal theoretic elimination theory, searching for a single conjunc-
tion of equations and negated equations as the complementary hypotheses
(that is, the difference of two algebraic sets).

On the other hand, the approaches of [13] and [17] allow –roughly speaking–
working with more general constructible sets, ie. finding a finite union of col-
lections of equations R′

i in the parameters, and inequalities R′′
i (some of them

in the parameters, to take care of the possible degenerate cases of the free
variables for the given construction, and some in a subset of variables from
these parameters, to consider the possible degenerate cases after including
the new hypotheses R′

i), which would provide

• when added to H , sufficient conditions for T , so that

{(H ∧ (∨i(R
′
i ∧ ¬R′′

i ))) ⇒ T},

• which are as well necessary, so that {(T ∧H) ⇒ (H ∧ (∨i(R′
i ∧¬R′′

i )))}
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Therefore, as argued in detail in [13] and [17], a reasonable way to proceed
in order to find a collection of polynomials R′

i, R
′′
i verifying the above condi-

tions could consist in computing the projection over the parameter space of
the solution set of all hypotheses and theses equations, V (H) ∩ V (T ), and
express it as

⋃

i(V (R′
i)\V (R′′

i )). Yet, we should check if over each compo-
nent of the union, the corresponding set of equations and inequations yield
sufficient conditions for T .

In practice, this could be achieved as follows. First, consider a geometrical
construction depending on a set of points Ā = {A1, . . . , As}, whose free
coordinates are taken as parameters a. The construction produces some
new dependent points P̄ = {P1, . . . , Pr}, whose coordinates are taken as
dependent variables x.

The problem is determining the configuration of the points Ā, the pa-
rameters a varying in the parameter space Cm, in order that the points P̄
verify some property (for example, they are the end points of the bisectors
with equal length). For this purpose, we write the equations reflecting the
geometric construction and the theses, and we consider the corresponding
parametric ideal I ⊂ Q[a][x].

Let {(Si, Bi) : 1 ≤ i ≤ s} be the Gröbner cover of the parameter space
wrt to I. Then we will have to carefully analyze its output, bearing in mind
that

• As the locus of free points where the theorem holds should –when
the given statement is not generally true, which is the usual case for
discovery– have dimension less than the whole parameter space, the
only open segment in the GC (also called the generic segment) must
correspond to lpp = {1}. Thus, the generic segment will be of the form

S1 = K
m \

⋃

i

V(pi)

• The remaining segments will be all inside
⋃

i V (pi)

• If the points Pi are uniquely determined by the points Aj , we will
find a segment S2 corresponding to a single solution in x with reduced
Gröbner basis having the full set of coordinates as lpp.

• There can be segments lifting up to more than one solution, that we
have then to analyze in detail.
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• There can also exist segments corresponding to degenerate or lifting up
to non-real constructions in which we are, in general, less interested.

The important fact about the use of Gröbner Cover in this context is that
it provides –in a compact and concise way– all the essential pieces (a finite
number of them) on the parameter space, allowing to determine those that
correspond to the validity of the given statement.

3. Steiner-Lehmus theorem

To show the power of the outlined procedure, we will apply it to find a
generalization of the Steiner-Lehmus Theorem. This theorem was proposed
by the well known, XIXth century geometer, Steiner, to Sturm, and it was
proved by Lehmus for the first time in 1848. It could be stated as follows:

Theorem 3.1 (Classical Steiner-Lehmus). The inner bisectors of angles A
and B of a triangle ABC (α = β and γ = δ) are of equal length (AA′ = BB′)
if and only if the triangle is isosceles with AC = BC (see Figure 1).

A B

C

B′

A′

C ′

α
β

γ

δ

Figure 1: Triangle and inner bisectors

We refer the reader to the Introduction concerning recent work on this
statement from the point of view of automatic theorem proving and discovery.

Now, in order to automatically discover the Steiner-Lehmus theorem with
GC, let ABC be the given triangle and consider the bisectors at angle A. To
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construct the bisectors (see Figure 2) we consider the circle with center A
and radius AC. There are two intersection points P and P ′ of the circle with
side AB, and thus two middle points Q and Q′ of CP and CP ′ determining
the bisectors AM and AM ′ whose length we are interested in. So, if we only
use the equations determining M and M ′ we will not distinguish between
the inner and the outer bisector. It is precisely this difficulty that will allow
to generalize the theorem.

Without loss of generality, we set coordinates A(0, 0), B(1, 0), C(a, b).
Then let (p, 0) be the intersection of the circle centered at A passing through
C, (i.e. points P or P ′), and let (x1, y1) stand for the feet of the bisectors,
(i.e. points M or M ′). The equation of the circle is (a2+b2)−p2. The middle
point between (0, p) and C is Q =

(

a+p
2
, b
2

)

. Point (x1, y1) is on the line AQ
and so bx1 − (a+ p)y1 expresses that (x1, y1) is on the bisector line. Finally
the equation staying that (x1, y1) lies on side BC, is b(1 − x1) + (a − 1)y1.
Thus, the equations determining (x1, y1) in terms of (a, b) are:

(a2 + b2)− p2, bx1 − (a+ p)y1, b(1− x1) + (a− 1)y1. (1)

Notice the sign of p discriminates which bisector of A is being concerned
with. If a solution of our problem has p > 0 it will correspond to the inner
bisector of A, whereas a solution with p < 0 will correspond to the outer
bisector of A. But the sign is not algebraically (from the complex point of
view) relevant, so both points M and M ′ are solutions of the same equations.
The length of the bisector is l2A = x2

1 + y21.
Consider now the bisectors of B (see Figure 2). Denoting (r, 0) the in-

tersection point of the circle centered in B with radius BC (points R or R′)
and (x2, y2) the coordinates of the foot of the bisector of B (points T or T ′)
the corresponding equations for them are:

(a− 1)2 + b2 − (r − 1)2, (1− x2)b+ (a+ r − 2)y2, ay2 − bx2. (2)

In that case, a discriminator between inner and outer bisectors of B is 1− r.
A solution with 1 − r > 0 will correspond to the inner bisector whereas a
solution with 1− r < 0 will correspond to the outer bisector. The length of
the bisector of the angle B is l2B = (x2 − 1)2 + y22.

Now, using the set of all the above equations, we turn to searching the
necessary and also sufficient conditions for assuring that the length of one
bisector of the angle A is equal to that of one bisector of angle B (our
Problem 1, we will later address the analogous problem for vertices A,C and
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A(0, 0) B(1, 0)

C(a, b)

R(r, 0) R′P (p, 0)P ′

S S′

T (x2, y2)

T ′

QQ′
M(x1, y1)

M ′

Figure 2: The bisectors of A and B are equal

B,C), but we are not distinguishing between which inner or outer bisector
is concerned. It can happen that the two equal bisectors are the two inner
bisectors (iA = iB), or the two outer bisectors (eA = eB), or one inner and
one outer bisector (cases iA = eB and eA = iB). There are, thus, four
possibilities.

In order to compute the Gröbner cover, we include the set of equations
(1), the set of equations (2), plus the condition that the length of one bisector
of A is equal to that of one bisector of B, i.e. x2

1 + y21 = (x2 − 1)2 + y22. Thus

9



the complete set of equations is:






































a2 + b2 − p2,
bx1 − (a + p)y1,
b(1 − x1) + (a− 1)y1,
(a− 1)2 + b2 − (r − 1)2,
b(1 − x2) + (a+ r − 2)y2,
ay2 − bx2,
x2
1 + y21 = (x2 − 1)2 + y22.

(3)

Now, we take the point C(a, b) as the only parametric point, for which we
want to obtain the conditions for the system (3) with variables x1, y1, x2, y2, p, r
to have solutions. These solutions will correspond to one bisector of A being
equal to one bisector of B, but the conditions over a, b will not distinguish
between internal and external bisectors. When p is positive, the bisector of
A will be internal and it will be external if p is negative. The same happens
considering the sign of 1− r, for the bisector of B.

The GC algorithm is used here taking the grevlex(x1, y1, x2, y2, p, r) order
for the variables. The call in Singular (after charging the grobcov library) is:

> ring R=(0,a,b),(x1,y1,x2,y2,p,r),dp;
> ideal S93 = a^2+b^2-p^2, b*x1-(a+p)*y1, b*(1-x1)+(a-1)*y1,

(a-1)^2+b^2-(r-1)^2, b*(1-x2)+(a+r-2)*y2, a*y2-b*x2,
x1^2+y1^2-(x2-1)^2-y2^2;

> short=0;
> grobcov(S93);

Let us describe below and in the following tables the output of the
Gröbner cover algorithm. The following irreducible curves and varieties (over
Q) appear:

C1 = V(8a10 − 40a9 + 41a8b2 + 76a8 − 164a7b2 − 64a7

+84a6b4 + 246a6b2 + 16a6 − 252a5b4 − 164a5b2

+8a5 + 86a4b6 + 278a4b4 + 31a4b2 − 4a4 − 172a3b6

−136a3b4 + 20a3b2 + 44a2b8 + 122a2b6 + 14a2b4

−10a2b2 − 44ab8 − 36ab6 + 12ab4 + 9b10 + 14b8

−b6 − 6b4 + b2,
C2 = V(2a− 1).
C3 = V(b),
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We are interested only in the real points, so we separate the real from the
complex points appearing in the segments.

Varieties Real points
V1 = V(b, a) P1 = (0, 0)
V2 = V(b, a− 1) P2 = (1, 0)

V3 = V(b, 2a2 − 2a− 1) P31 =
(

1−
√
3

2
, 0
)

= (−.3660254038, 0.)

P32 =
(

1+
√
3

2
, 0
)

= (1.366025404, 0.)
V4 = V(b, 2a− 1) P4 = (1

2
, 0)

V5 = V(12b2 − 1, 2a− 1) P51 =
(

1

2
,−

√
3

6

)

= (0.5,−0.2886751347)

P52 =
(

1

2
,
√
3

6

)

= (0.5, 0.2886751347)

V6 = V(4b2 − 3, 2a− 1) P61 =
(

1

2
,−

√
3

2

)

= (.5000000000,−.8660254040)

P62 =
(

1

2
,
√
3

2

)

= (0.5, .8660254040)

V7 = V(b4 + 11b2 − 1, 5a− 2b2 − 6) P71 =

(

−1 +
√
5,−

√
−22+10

√
5

2

)

= (1.236067977,−.3002831039)

P72 =

(

−1 +
√
5,

√
−22+10

√
5

2

)

= (1.236067977, .3002831039)

V8 = V(b4 + 11b2 − 1, 5a+ 2b2 + 1) P81 =

(

2−
√
5,−

√
−22+10

√
5

2

)

(−.236067977,−.3002831039)

P82

(

2−
√
5,

√
−22+10

√
5

2

)

(−.236067977, .3002831039)
V9 = V(4b4 + 5b2 + 2, 2a− 1)
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Vars. Complex points

V7 P73 =

(

−1 −
√
5,−I

√
22+10

√
5

2

)

= (−3.236067977,−3.330190676I)

P74 =

(

−1 +
√
5, I

√
22+10

√
5

2

)

= (−3.236067977, 3.330190676I)

V8 P83 =

(

2 +
√
5,−I

√
22+10

√
5

2

)

= (4.236067977,−3.330190676I)

P84 =

(

2 +
√
5, I

√
22+10

√
5

2

)

= (4.236067977, 3.330190676I)

V9 P91 =

(

1

2
,−

√
−10+2I

√
7

4

)

= (0.5,−.2026163631− .8161209412I)

P92 =

(

1

2
,
√

−10+2I
√
7

4

)

= (0.5, 0.2026163631 + .8161209412I)

P93 =

(

1

2
,−

√
−10−2I

√
7

4

)

= (0.5,−0.2026163631 + .8161209412I)

P94 =

(

1

2
,
√

−10−2I
√
7

4

)

=(0.5, 0.2026163631− .8161209412I)

These curves are represented in Figure 3. Special points are either singu-
lar points of C1 or intersection points between the three curves:

a) V1, V2, V5, V7, V8 are singular points of C1. They contain the real points
P1, P2, P51, P52, P71, P72, P81, P82 and some other complex points.

b) V5, V6, V9 are intersection points between C1 and C2. They contain the
real points P51, P52, P61, P62 plus other complex points.

c) V1, V2 are intersection points between C1 and C3. They contain the real
points P1 = A and P2 = B.

d) V3 is the intersection between C2 and C3.

Variety V9 contains only complex points, whereas V7 and V8 contain real and
complex points. We distinguish both cases because of the particular behavior
of complex points concerning Euclidean distance issues and because we are
not interested in the complex points.

Let us give now the output of the Gröbner cover. We obtain the following
description with 9 segments:
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1. Segment with lpp = {1} Generic segment
Segment: C2 \ (C1 ∪ C2 ∪ C3)
Description: The whole parameter space except the curves (C1∪C2∪C3).
Basis: B1 = {1} (no solution over the segment)

2. Segment with lpp = {p, y2, x2, y1, x1, r2}
Segment: (C2 \ (V4 ∪ V5 ∪ V6)) ∪ V8

Description: (C2 minus intersecting points with C1 and C2) plus V8

Basis: (2 solutions on each point of the segment)

B2 = {(35a− 45)p+ (−4ab2 − 37a+ 2b2 − 9)r + (65a− 5)
(a− 2b2 + 1)y2 + (−4ab)r, (7a+ 2b2 − 5)x2 + (−2a+ 2)r,
(100ab3 − 75ab+ 60b3 − 45b)y1 + (−28ab2 + 16a+ 124b2 − 8)r
+(−940ab2 + 80a+ 470b2 − 40), (220b2 − 165)x1

+(−16ab2 − 148a+ 8b2 − 36)r + (160ab2 + 380a− 300b2 − 25),
(4a)r2 + (−8a)r + (a− 2b2 + 1)}

3. Segment with lpp = {r, p, y2, x2, y1, x1}
Segment: C1 \ (V1 ∪ V2 ∪ V3 ∪ V5 ∪ V6 ∪ V7 ∪ V8 ∪ V9)
Description of the real points: The curve C1 except the points

P1, P2, P31, P32, P51, P52, P61, P62, P71, P72, P81, P82

Basis: (single solution on each point of the segment)

B3 = {(3a4 − 6a3 + 6a2b2 + 5a2 − 6ab2 + 3b4 + 5b2 − 1)r + (a5 − 10a4

+2a3b2 + 17a3 − 18a2b2 − 10a2 + ab4 + 17ab2 − a− 8b4 − 10b2 + 2),
(3a4 − 6a3 + 6a2b2 + 5a2 − 6ab2 − 4a+ 3b4 + 5b2 + 1)p
+(a5 + 2a4 + 2a3b2 − 7a3 + 6a2b2 + 4a2 + ab4 − 7ab2 − a+ 4b4 + 4b2),
(a5 − 4a4 + 2a3b2 + 5a3 − 6a2b2 + ab4 + 5ab2 − a− 2b4)y2
+(−3a4b+ 6a3b− 6a2b3 − 5a2b+ 6ab3 − 3b5 − 5b3 + b),
(a5 − 4a4 + 2a3b2 + 5a3 − 6a2b2 + ab4 + 5ab2 − a− 2b4)x2

+(−3a5 + 6a4 − 6a3b2 − 5a3 + 6a2b2 − 3ab4 − 5ab2 + a),
(a5 − a4 + 2a3b2 − a3 − a2 + ab4 − ab2 + 3a+ b4 − b2 − 1)y1
+(3a4b− 6a3b+ 6a2b3 + 5a2b− 6ab3 − 4ab+ 3b5 + 5b3 + b),
(a5 − a4 + 2a3b2 − a3 − a2 + ab4 − ab2 + 3a+ b4 − b2 − 1)x1

+(2a5 − 8a4 + 4a3b2 + 12a3 − 12a2b2 − 8a2 + 2ab4 + 12ab2 + 2a
−4b4 − 4b2)}
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4. Segment with lpp = {y2, y1, r2, p2, x2
1}

Segment: C3 \ (V1 ∪ V2)
Description: The line C3 except the points P1, P2

Basis: (infinite solutions, corresponding to degenerate triangles)

B4 = {y2, y1, r2 − 2r + (−a2 + 2a), p2 + (−a2)
x2
1 − x2

2 + 2x2 − 1}

5. Segment with lpp = {y2, x2, y1, x1, r2, p2}
Segment: V5

Description: Points P51, P52

Basis: (4 solutions on each point of the segment)

B5 = {2y2 − 3br, 4x2 − 3r, 2y1 + 3bp− 3b,
4x1 − 3p− 1, 3r2 − 6r + 2, 3p2 − 1}

6. Segment with lpp = {r, p, y2, x2, y1, x1}
Segment: V6

Description: Points P61, P62

Basis: (single solution on the points of the segment)

B6 = {r, p− 1, 2y2 − b, 4x2 − 1, 2x1 − b, 4x1 − 3}

7. Segment with lpp = {r, y2, x2, y1, x1, p2}
Segment: V7

Description: Points P71, P72

Basis: (2 solutions on each point of the segment)

B7 = {5r + (b2 − 7), (5b)y2 + (3b2 − 1), x2 − 2,
(5b)y1 + (3b2 − 1)p+ (−3b2 + 1),
5x1 + (b2 − 2)p+ (−b2 − 3), 5p2 + (−b2 − 8)}.

8. Segment with lpp = {y1, r2, y2r, p2, x2
1}

Segment: V1

Description: Point P1

Basis: (infinite solutions, corresponding to degenerate triangles)

B8 = {y1, r2 − 2r, y2r − 2y2, p2, x2
1 − x2

2 − y22 + 2x2 − 1}
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9. Segment with lpp = {y2, r2, p2, y1p, x2
1}

Segment: V2

Description: Point P2

Basis: (infinite solutions, corresponding to degenerate triangles)

B9 = {y2, r2 − 2r + 1, p2 − 1, y1p+ y1, x2
1 + y21 − x2

2 + 2x2 − 1}

3.1. Discussion and formulation of the generalized theorem

C1

A B

P1 P2P4P31 P32

P51

P52

P61

P62

P71

P72

P81

P82

iA = iB , eA = eB

eA = eB

iA = eB

eA = iB

C2

C3

Figure 3: Problem 1. Curves C1, C2, C3 and special points

– Segment 1: of the Gröbner cover proves that the thesis does not hold
in general, except for triangles with vertex C placed on the three curves C1,
C2 and C3 (see Figure 3). For the points inside these curves, system (3) has
always some solution. Let us discuss which kind of solutions exist on these
curves.

– Segment 2: It has two components:
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1) For a = 1/2, vertex C is on the bisector of side AB (so that the
triangle ABC is isosceles), leaving out the points P51, P52, P61, P62, P4.
Specializing the basis on this branch (setting a = 1/2) yields to

B21 = {−p− r + 1, (4b2 − 3)y2 + 4(b)r, (4b2 − 3)x2 + 2r,
(4b2 − 3)y1 + (4b)r, (4b2 − 3)x1 − 2r + (−4b2 + 3),
4r2 − 8r + 3 + (−4b2)}

and considering the first and the last equations we have:

p = 1− r = (1/2)±
√
1 + 4b2.

Thus there are two solutions: In one case p = 1 − r > 0, so that it
holds the equality of both internal bisectors (i.e. iA = iB), and in the
other solution it holds that p = 1 − r < 0, corresponding to the case
eA = eB, which is also obvious from the first equality, by symmetry.

Thus, on this part of the segment the two inner bisectors are equal, as
well as the two outer ones. This corresponds to the classical Steiner-
Lehmus Theorem, enlarging it with the coincidence of the outer bisec-
tors too.

2) V8, containing the pair of points P81 and P82. Here we have

Point (p, 1− r) Bisectors
P81, P82 (−0.3819659526,−1.272019650) eA = eB

(−0.3819659526, 1.272019650) eA = iB

– Segment 5: It contains the two real points P51, P52, and for each one
there are four solutions, as it is clear by observing the values of p and 1− r
at each of the solutions.

Point (p, 1− r) Bisectors
P51, P52 (0.5773502693, 0.5773502693) iA = iB

(0.5773502693,−0.577350269) iA = eB
(−0.5773502693, 0.5773502693) eA = iB,
(−0.5773502693,−0.5773502693) eA = eB

– Segment 6: contains the two real points P61, P62, and for each one
there is a unique solution corresponding to iA = iB (as it can be checked
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by actually solving the system associated to segment 6). We observe –as
remarked at the end of section 1– that, although at these points there should
be –by symmetry– another solution, related to the equality eA = eB, it is
actually missing, because both external angle bisectors become infinite. This
is the reason why, even if the lpp on this segment 6 is equal to the lpp on
segment 3, this common lpp appears in different segments. We will see below
that, in the curve described in segment 3, in the neighborhood of P61 and
P62, we have the equality eA = eB, instead of iA = iB.

Point (p, 1− r) Bisectors
P61, P62 (1,1) iA = iB

– Segment 7: V7, containing the pair of points P71 and P72. Here we
have

Point (p, 1− r) Bisectors
P71, P72 (−1.272019650,−0.381965976) eA = eB

(1.272019650,−0.381965976) iA = eB

– Segment 3: This segment contains all the points of the curve C1 except
the special points. There is a unique solution on each point of the curve, and
so only one equality between one bisector of A and one bisector of B can
happen. The kind of solution cannot change, by continuity, on the curve
except when the curve reaches a special point. The reason is that in the
changing points one needs to have equality of more bisectors and this can
only occur in some special segment. So we only need to determine the color
(i.e. the kind of solution) –in Figure 3– of a single point of the curve between
special points.

We can proceed, then, by choosing some simple vertical lines, determining
its intersection with the curve and computing in each case the correspondent
bisectors. For instance, for the lines x = 0 and x = 1 (which determine quite
a few of the pieces of the curve; a similar procedure should be performed
on the remaining parts) we obtain the following systems of equations for the
intersections:

{

a = 0
b2(3b4 − 4b3 + 5b2 − 4b+ 1)(3b4 + 4b3 + 5b2 + 4b+ 1)

{

a = 1
b2(3b4 − 4b3 + 5b2 − 4b+ 1)(3b4 + 4b3 + 5b2 + 4b+ 1)
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We do not consider the solutions (a, b) = (0, 0) and (a, b) = (1, 0), as they cor-
respond to degenerate triangles. Substituting the solutions of these systems
into the basis B3 one can determine the pair (p, 1− r) for each of the points,
thus determining which bisectors are equal at the corresponding point. We
set a red color if eA = eB, blue color if iA = eB and green if eA = iB. The
possibility iA = iB never occurs on C∗

1 . The following table gives the color
assigned in Figure 3 to some points of the curve

Point Branch (p, 1− r) Bisectors
(0, .7013671986) P62-P82 (−.7013671074,−1.221439949) eA = eB
(0, .4190287818) P52-P82 (−.4190287676, 1.08424403111) eA = iB
(0,−.4190287818) P51-P81 (−.4190287676, 1.08424403111) eA = iB
(0,−.7013671986) P61-P81 (−.7013671074,−1.221439949) eA = eB
(1, .7013671986) P62-P92 (−1.221530232,−0.701371729) eA = eB
(1, .4190287818) P52-P92 (1.084234608,−0.419025294) iA = eB
(1,−.4190287818) P51-P91 (1.084234608,−0.419025294) iA = eB
(1,−.7013671986) P61-P91 (−1.221530232,−0.701371729) eA = eB

– Segments 4, 8, 9: These three segments correspond to degenerate
triangles. Here there are infinite solutions, as the lengths of the bisectors are
not defined. We need not to analyze what happens exactly over them.

Obviously all the properties concerning the shape of the curve and the
special points and colors are easily transformed if scaling the distance AB.

In summary, we have thus proved the following

Theorem 3.2 (Generalized Steiner-Lehmus). Let ABC be a triangle and iA,
eA, iB, eB, the lengths of the inner and outer bisectors of the angles A and
B. Then, considering the conditions for the equality of some bisector of A
and some bisector of B the following excluding situations occur:

1. The triangle ABC is degenerate (i.e. C is aligned with A and B);

2. ABC is equilateral and then iA = iB, whereas eA and eB become infi-
nite, (P61, P62);
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3. Point C is in the center of an equilateral triangle, and then iA = iB =
eA = eB, (P51, P52);

4. The triangle is isosceles, but not of the special form of cases 2. or 3.
and then iA = iB != eA = eB, (ordinary Theorem);

5.
AC

AB
=

√

1 +
√
5

2
,
BC

AB
=

3−
√
5

2
, and then eA = eB = iA, (P71, P72);

6.
AC

AB
=

3−
√
5

2
,
BC

AB
=

√

1 +
√
5

2
, and then eA = eB = iB, (P81, P82);

7. C lies in the curve of degree 10 relative to points A and B (case of
curve C1) passing through all the special points above but is none of
these points, and then only one of the following possibilities happen:
either eA = eB or iA = eB or eA = iB, depending on the piece of the
curve (see Figure 3, the color representing which of these situations
occur);

8. None of the above cases occur, and then no bisector of A is equal to no
bisector of B.

A B

C

C ′

C”

B

Figure 4: Transformation of coordinates
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3.2. Bisectors at vertex C
So far we have studied the equality of bisectors at the fixed points A,B of

the given triangle. For the sake of completeness, it could be of some interest
to analyze the conditions for one bisector of the fixed point A to be equal
to one bisector of the moving point C. Obviously, a similar task could be
undertaken regarding the couple B,C.

We can deal with the equality of bisectors for vertices A,C as in the
precedent case of the vertices A,B, by computing the solutions of the cor-
responding polynomial system using the Gröbner cover. The computations
are completely similar to those of the precedent section and, thus, we do not
include here the details. See Figure 5 for a graphic representation of the
output.

Yet, this issue can be also solved by a transformation of the previous
solution for the equality of bisectors at the fixed points A,B. In fact: each
point C of the solution to this problem corresponds to a triangle ABC (see
Figure 4), where one bisector of A is equal to one bisector of B, with AB = 1.
Considering a parallel to the line BC one can form a similar triangle AB′C ′

with AC ′ = 1. Making a symmetry over the inner bisector of A will lead
to a new triangle ABC ′′ with one bisector of A equal to one bisector of C ′′

and AB = 1 that corresponds to the requirements of the new problem. This
yields a transformation of C into C ′′ that will conserve the direction

−→
AC

parallel to
−−→
AC ′′, but having inverse lengths. Thus, setting C = (a, b) and

C ′′ = (a′, b′) the transformation is










a′ =
a

a2 + b2

b′ =
b

a2 + b2











a =
a′

a′2 + b′2

b =
b′

a′2 + b′2

Substituting the transformation into the curves obtained in the precedent
section and eliminating the denominator (a2 + b2)s (where s depends on the
curve), leads to the transformed curves

CC1 = V(a8b2 + 4a6b4 + 6a4b6 + 4a2b8 + b10− 4a8 − 18a6b2 − 30a4b4

−22a2b6 − 6b8 + 8a7 + 28a5b2 + 32a3b4 + 12ab6 + 16a6 + 31a4b2

+14a2b4 − b6 − 64a5 − 100a3b2 − 36ab4 + 76a4 + 94a2b2 + 14b4

−40a3 − 44ab2 + 8a2 + 9b2)
CC2 = V(a2 − 2a+ b2), CC3 = V(b)

where the curves CCi correspond to Ci and the points Qij to Pij . All of them
are represented in Figure 5.
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iA = iC , eA = eC

eA = eC

iA = eC

eA = iC

Q1 Q2 Q4

Q32

Q11

Q51

Q52

Q61

Q62

Q81

Q82

Q71

Q72

Figure 5: Problem 2. Curves CC1, CC2

4. Conclusions

As stated in the Introduction, neither the Gröbner cover method, nor
the application of tools for discussing parametric systems of equations to the
automatic discovery of geometric statements or the automatic discovery of
the Steiner-Lehmus generalization, are new ideas. What is new in this paper
is the application of the Gröbner cover tool to automatic discovery, in the
context of the Steiner-Lehmus theorem.

The very relevant case distinction of subsection 3.1 (describing the pieces
of the involved curves where the equality holds for internal/internal, inter-
nal/external or external/external bisectors), as graphically displayed in Fig-
ures 3 and 5, is a natural output when using the Gröbner cover method,
but unfeasible (in an automatic manner) for the previous approaches to this
problem, where this case distinction was achieved by performing different
tests at some selected points in the curves.

It is probably true that such case distinction could also have been achieved
using other algorithms related to comprehensive Gröbner systems. Now,
roughly speaking, there are two kinds of algorithms for discussing parametric
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ideals: Comprehensive Gröbner Systems (CGS) (Weispfenning [22], Suzuki-
Sato [20], Nabeshima [15], Kapur-Sun-Wang [6], Montes [12]) and Canonical
algorithms (the Montes-Wibmer Gröbner cover [14] and its predecessor MC-
CGS [10]). The reference [23] contains an algorithm which is canonical only
on some restricted sense (the output just depends on the ideal and mono-
mial order, but the produced segments are not disjoint and their description is
not compact). Currently, among the CGS methods, we have to consider only
KSW (Kapur-Sun-Wang), as it is much faster, produces disjoint segments
and reduced bases and also produces much less segments. Other methods
can be considered as previous attempts, but have now become obsolete.

Concerning canonical methods, the current one is the Gröbner cover
(GC). KSW (Kapur-Sun-Wang) is actually used inside GC as its starting
CGS step, and then it suitably transforms its output to obtain the canonical
Gröbner cover.

Comparing KSW with GC, concerning the Steiner-Lehmus problem, we
have the following

Algorithm Number of segments Time(sec) For use in
grobcov (sec.)

KSW 14 0.39 1.07
GC 9 - 3.42

Computations have been done with a MacBook Pro, Version 10.7.4, with 2.3
GHz Intel Core i7 processor and 4GB 1600 MHz DDR3 memory.

The third column (KSW time alone) refers to simply applying KSW to
the given ideal. The corresponding segments are represented as difference of
varieties, with no further requirements, and thus the obtained segments do
not necessarily correspond to those in the GC method (see below for further
details). In the last column we display the time needed for using KSW inside
grobcov, requiring, first homogenizing the given ideal, then computing KSW,
then grouping segments by lpp, then dehomogenizing the bases and, finally
transforming the segments into canonical P-representation. This corresponds
to the first step of grobcov, as described above.

In some detail, it turns out that 4 segments of KSW of the homogenized
ideal are grouped into segment 2 of GC, two segments of KSW are grouped
into segment 3 of GC and two more into segment 4. The remaining KSW
segments are also single segments in GC.

We believe that our work in this paper exemplifies the potential of the
Gröbner cover method in the automatic discovery of geometric properties.
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Its complete automatization and implementation in this context is a future
task, in which we are actually working. We refer the interested reader to [11]
for a downloadable version of the current library grobcov.lib of algorithms,
that will be part of the Singular [19] program in its next release.
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Symbolic Computation 36 (2003) 669–683.
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