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Abstract

Motivated by previous work on the simplification of parametrizations
of curves, in this paper we generalize the well known notion of analytic
polynomial (a bivariate polynomial P (x, y), with complex coefficients,
which arises by substituting z → x + iy on a univariate polynomial
p(z) ∈ C[z], i.e. p(z) → p(x + iy) = P (x, y)) to other finite field exten-
sions, beyond the classical case of R ⊂ C. In this general setting we obtain
different properties on the factorization, gcd’s and resultants of analytic
polynomials, which seem to be new even in the context of Complex Anal-
ysis. Moreover, we extend the well-known Cauchy-Riemann conditions
(for harmonic conjugates) to this algebraic framework, proving that the
new conditions also characterize the components of generalized analytic
polynomials.

keywords: Cauchy-Riemann conditions, analytic polynomials, Hankel
matrix, factorization

1 Introduction

The well known Cauchy-Riemann (in short: CR) equations provide necessary
and sufficient conditions for a complex function f(z) to be holomorphic (c.f. [2],
[5]). One traditional framework to introduce the CR conditions is through the
consideration of harmonic conjugates, {u(x, y), v(x, y)}, as the real and imag-
inary parts of a holomorphic function f(z), after performing the substitution
z → x+iy (i denotes the imaginary unit), yielding f(x+iy) = u(x, y)+i v(x, y).
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The Cauchy-Riemann conditions are a cornerstone in Complex Analysis and an
essential ingredient of its many applications to Physics, Engineering, etc.

In this paper, we will consider two different, but related, issues. First, we
will generalize CR conditions by replacing the real/complex framework by some
more general field extension and, second, we will address –in this new setting–
the specific factorization properties of conjugate harmonic polynomials. Let us
briefly describe our approach to both topics in what follows.

In this paper, we will consider two different, but related, issues. First, we
will generalize CR conditions by replacing the real/complex framework by some
more general field extension and, second, we will address –in this new setting–
the specific factorization properties of conjugate harmonic polynomials. Let us
briefly describe our approach to both topics in what follows.

An analytic polynomial (a terminology taken from popular textbooks in
Complex Analysis, see e.g. [2]), is a bivariate polynomial P (x, y), with complex
coefficients, which arises by substituting z → x+ iy on a univariate polynomial
p(z) ∈ C[z], i.e. p(z) → p(x + iy) = P (x, y). As stated above, a goal of our
paper deals with generalizing CR conditions when suitably replacing the pair
real/complex numbers by some other field extension. Remark that, in the for-
mulation of the CR conditions, since we restrict ourselves to polynomials and
rational functions, we can use the well known concept of formal partial deriva-
tive of a polynomial or rational function, as in [9], Ch. II, §17, without requiring
the introduction of any topological concept or the idea of limit of a function at
a point. For a simple example, take as base field K = Q and then K(α), with α
such that α3 + 2 = 0. Then we will consider polynomials (or more complicated
functions) f(z) ∈ K(α)[z] and perform the substitution z = x0 + x1α + x2α

2,
yielding f(x0 +x1α+x2α

2) = u0(x0, x1, x2)+u1(x0, x1, x2)α+u2(x0, x1, x2)α2,
where, ui ∈ K[x0, x1, x2]. Finally, we will like to find the necessary and suffi-
cient conditions on a collection of polynomials {ui(x0, x1, x2)}i=0,1,2 to be, as
above, the components of the expansion of a polynomial f(z) in the given field
extension.

More generally, suppose K is a characteristic zero field, K is the algebraic
closure of K, and α is an algebraic element over K of degree r+1. In this context
we proceed, first, generalizing the concept of analytic polynomial as follows
(see also [1],[7], as well as Definition 1 below, for a more general, multivariate,
definition):
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A polynomial p(x0, . . . , xr) ∈ K(α)[x0, . . . , xr] is called α-analytic if there exists a
polynomial f(z) ∈ K[z] such that

f(x0 + x1α+ · · ·+ xrα
r) = p(x0, . . . , xr).

We say that f is the generating polynomial of p. An analytic polynomial can be
uniquely written as

p(x0, . . . , xr) = u0(x0, . . . , xr) + u1(x0, . . . , xr)α+ · · ·+ ur(x0, . . . , xr)α
r,

where ui ∈ K[x0, . . . , xr]. The polynomials ui are called the K–components of
p(x0, . . . , xr).

The main result in this setting is the following statement (and its general-
ization to an even broader setting) expressing non–standard CR conditions (see
Definition 3 and Theorem 15):

Let {u0, . . . , ur} be the K–components of an α-analytic polynomial p(x0, . . . , xr).
It holds that 

∂ui

∂x0

...
∂ui

∂xr

 = Hi ·


∂u0

∂x0

...
∂ur

∂x0

 , i = 0, . . . , r

where Hi the Hankel matrix introduced in Section 3. And, conversely, if these equa-
tions hold among a collection of polynomials ui, then they are the K-components
of an analytic polynomial.

As expected, the above statement gives, in the complex case, the well known
CR conditions. In fact, let K = R, α = i, and P (x0, x1) ∈ C[x0, x1] be an
analytic polynomial. If u0, u1 are the real and imaginary parts of P , the above
Theorem states that(

∂u0

∂x0
∂u0

∂x1

)
=

(
1 0
0 −1

)
·

(
∂u0

∂x0
∂u1

∂x0

)
,

(
∂u1

∂x0
∂u1

∂x1

)
=

(
0 1
1 0

)
·

(
∂u0

∂x0
∂u1

∂x0

)

which is a matrix form expression of the classic CR equations:

∂u0
∂x1

= −∂u1
∂x0

,
∂u1
∂x1

=
∂u0
∂x0

It might be interesting to remark that the square matrix, expressing the
above non-standard CR conditions, is a Hankel matrix (see [6] or Chapter 7 in
[8]), an ubiquitous companion of Computer Algebra practitioners.

A computational relevant context (and in fact our original motivation) of our
work about generalized analytic polynomials is the following situation. Con-
sider a rational function f(z) ∈ C(z) in several complex variables and with
complex coefficients, then perform the substitution z = x + iy and com-
pute the real and imaginary parts of the resulting analytic rational function
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f(x+iy) = u(x,y)+i v(x,y). These two rational functions in R(x,y) involve,
usually, quite huge expressions, so it is reasonable to ask if there is a possibility of
simplifying them by canceling out some common factors of the involved numer-
ators and denominators. Such functions appear quite naturally when working
with complex parametrizations of curves (see [3], and [4] for parametrizations
with coefficients over a more general algebraic extension), and the key to at-
tempt showing that some time-consuming steps could be avoided is, precisely,
the analysis of the potential common factors for the two numerators of u, v.
Learning about factorization properties of harmonic polynomials is useful in
this respect. In fact, as a consequence of our study we can prove here that the
assertion gcd(numer(u),numer(v)) = 1 holds under reasonable assumptions and
also that, if a rational function f(z) in prime (also called irreducible) form is
given, then the standard way of obtaining u and v yields also rational functions
in prime form, i.e. it cannot be further simplified. See subsection 2.2 for more
details on this application to the reparametrization problem.

More generally, in this paper we study (see Section 2) the factorization prop-
erties of generalized analytic polynomials, showing, among other remarkable
facts, that conjugate harmonic polynomials cannot have a common factor (see
Corollary 7). This seems a quite fundamental (and interesting) result, but we
were not able to find a reference about it in the consulted bibliography within
the Complex Variables context, probably because it requires an algebraic ap-
proach which is usually missing in the traditional Complex Analysis framework.
On the other hand, we can generalize this result (in subsections 2.2 and 2.3)
from polynomials to other functions (several variables, germs of holomorphic
functions at a point, entire functions), all of them having in common being
elements of rings with some factorization properties.

For expository reasons, we have chosen to structure this paper differently
from the way we have presented the introduction, starting, first (see subsec-
tion 2.1), by the notion of α-analytic multivariate polynomials and studying
their basic algebraic properties; in particular those concerning factorization,
gcd’s and resultants. Then, in the last Section 3, we present the generalization
of CR conditions to this new setting and we show that they (the new conditions)
characterize components of α-analytic multivariate polynomials (cf. Theorem
15). Moreover, as in the classical Complex Variables context, we can deduce
again, from this non-standard CR conditions, some important properties of an-
alytic polynomials (cf. Theorem 18).

2 α-Analyticity

In this section we introduce the notion of α-analyticity in different contexts,
and we study its basic algebraic properties.
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2.1 α-Analytic Multivariate Polynomials

We start with the concept of α-analytic polynomial. Let K be a characteristic
zero field, K its algebraic closure. Let α be an algebraic element of degree r+ 1
over K and let n ≥ 1, a natural number. Let us introduce r+ 1 different tuples
xi = (xi1, . . . , xin), 0 ≤ i ≤ r, each one with n different variables, thus, involving
in total (r + 1) × n variables. When adding these tuples, or multiplying them
by constants c ∈ K, we will always perform the operations component-wise, i.e.
xi + xj = (xi1 + xj1, . . . , xin + xjn), c · xi = (c · xi1, . . . , c · xin). Denote by X
the tuple (x0, . . . ,xr) and by z = (z1, . . . , zn) a set of n variables.

Definition 1. A polynomial p(X) = p(x0, . . . ,xr) ∈ K(α)[X] is called (α)–
analytic if there exists a polynomial f(z) = f(z1, . . . , zn) ∈ K[z] such that

f(x0 + αx1 + · · ·+ αrxr) = p(X).

In other words, p(X) is the polynomial obtained replacing, in f(z), each of the
z1, . . . , zn variables by its “expansion” in terms of powers of α, as follows:

f

(
r∑
i=0

αixi1,

r∑
i=0

αixi2, . . . ,

r∑
i=0

αixin

)
= p(x0, . . . ,xr) (1)

where xij , 0 ≤ i ≤ r, 1 ≤ j ≤ n, are new variables. Notice that, for each i,
xi collects the n variables involved in expressing the i-th power of α for the
expansion of the different zj ’s.

We say that f(z) is a generating polynomial of p(X) (but see Lemma 1 below,
showing, in particular, that the generating polynomial is unique). If the fixed
number of variables within each xi is n > 1, we say that the analytic polynomial
is multivariate. An analytic polynomial can be uniquely written as

p(X) = u0(X) + u1(X)α+ · · ·+ ur(X)αr,

where ui ∈ K[X]. The polynomials ui are called the K–components of p(X).

Example 1. Let K = Q, α3 = 5, thus r + 1 = 3, let n = 2 and f(z1, z2) =
z1z2 + αz22 + 1. Then x0 = (x01, x02), x1 = (x11, x12), x2 = (x21, x22). The
α-analytic polynomial generated by f , using formula (1) above, is:

p(x0,x1,x2) = f(x01 + αx11 + α2x21, x02 + αx12 + α2x22) =

= (x01 + αx11 + α2x21)(x02 + αx12 + α2x22) + α(x02 + αx12 + α2x22)2 + 1 =

= p(x01, x02, x11, x12, x21, x22)

Notice that the generating polynomial is not constrained, in principle, to
belong to K(α)[z], but, more generally, it could be any element of K[z]. It turns
out that this is not possible, see Corollary 3. The following result gives a simple
criterion to decide whether a polynomial is analytic.
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Lemma 1 (Characterization of α-analytic polynomials). A polynomial p(X) ∈
K(α)[X] is analytic if and only if

p(x0 + αx1 + · · ·+ αrxr,0, . . . ,0) = p(X)

if and only if for any (equivalently, all) j, 1 ≤ j ≤ r,

p(X) = p(0, . . . ,0,

r∑
i=0

αi−jxi,0, . . . ,0),

where the sum appears at the position of the tuple xj. Furthermore, in the
affirmative case, there is a unique generating polynomial of p(X) and it is
p(z,0, . . . ,0) or, equivalently, p(0, . . . ,0, z/αi,0, . . . ,0), 1 ≤ i ≤ r.

Proof. If p(x0 + αx1 + · · · + αrxr,0, . . . ,0) = p(X), then p(X) is the analytic
polynomial generated by p(z,0, . . . ,0). Conversely, if p(X) is analytic and f(z)
is any generating polynomial of p(X) then we have the polynomial identity (1)

f

(
r∑
i=0

αixi1, . . . ,

r∑
i=0

αixin

)
= p(X)

Substituting xij = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ n, we get

f(x01, . . . , x0n) = p(x0,0, . . . ,0) (2)

and, hence, the generating polynomial f is uniquely determined by p, yielding
f(z) = p(z,0, . . . ,0). Now, if we substitute x0i =

∑r
j=0 α

jxji in (2), we get

p

(
r∑
i=0

αixi,0, . . . ,0

)
= f

(
r∑
i=0

αixi

)
= p(X).

For any other index 1 ≤ i ≤ r, the proof is similar.

A direct and very useful consequence of this lemma is the following result.

Corollary 2. Let p(X) be α-analytic generated by f(z). Then p is constant if
and only if f is constant.

We observe that the set of α-analytic polynomials over K(α) is a subring of
K(α)[X]. We denote it by Aα[X]. Moreover, the set of its generating polyno-
mials is a subring of K[z]. We denote it by Gα[z]. Now, in Definition 1 we have
introduced the generating polynomials as polynomials with coefficients in K.
However, from Lemma 1 one deduces that their coefficients are in K(α). Thus,
we get the following equality.

Corollary 3. Gα[z] = K(α)[z].

As consequence of Lemma 1, we also deduce the following property that, in
particular, implies that Aα[X] is a proper subring of K(α)[X].
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Corollary 4. (K[X] \ K) ∩ Aα[X] = ∅, i.e. there are no analytic polynomials
with coefficients in K other than constants.

Proof. Let p(X) ∈ Aα[X] ∩ K[X] be non-constant. Let f(z) be its genera-
tor. By Lemma 1, f ∈ K[z]. First we prove that there exists γ ∈ K(α)n

such that f(γ) 6∈ K. From there, writing γ as γ = γ0 + · · · + αrγr, with
γi ∈ Kn, we get that f(γ) = p(γ0, . . . , γr) ∈ K, which is a contradiction.
Since f is not constant (see Corollary 2), f depends on at least one vari-
able zi; say w.l.o.g. on zn. We express f as a univariate polynomial in zn:
f(z) = Am(z1, . . . , zn−1)zmn + · · ·+A0(z1, . . . , zn−1), with m > 0. Now we take
a1, . . . , an−1 ∈ K such that Am(a1, . . . , an−1) 6= 0. Then, f(a1, . . . , an−1, zn) ∈
K[zn] and is not constant. In this situation is clear that there exist an ∈ K(α)
such that f(a1, . . . , an−1, an) ∈ K(α)\K. Finally, take γ = (a1, . . . , an).

The following result states that the ring of analytic polynomials and the ring
of generating polynomials are isomorphic.

Theorem 5. Aα[X] is K(α)–isomorphic to Gα[z].

Proof. We consider the map φ : Gα[z] → Aα[X] such that φ(f(z)) = f(x0 +
αx1 + · · · + αrxr). Clearly, φ is a ring homomorphism. Moreover, Lemma
1 ensures that φ is onto and injective since zero is the (unique) generating
polynomial of zero. Furthermore, the restriction of φ to K(α) is the identity
map.

Applying Theorem 5, we derive properties on factorization, gcd’s, and re-
sultants of analytic polynomials. First we observe that, since Gα[z] is a unique
factorization domain (UFD), and since φ (the K(α)–isomorphism introduced in
the proof of Theorem 5) preserves constants, we have the following Corollary.

Corollary 6. Aα[X] is a unique factorization domain

Again, Theorem 5 can be used to relate the factors of an analytic polynomial
to the factors of its generator. More precisely, one has the next result.

Corollary 7 (Factorization properties). Let p(X) ∈ Aα[X] be generated by
f(z) ∈ Gα[z]. It holds that

1. p(X) is irreducible in Aα[X] iff p(X) is irreducible in K(α)[X].

2. p(X) is irreducible in K(α)[X] iff f(z) is irreducible in K(α)[z].

3. f(z) = f1(z)n1 · · · fs(z)ns is an irreducible factorization of f in K(α)[z]
iff p(X) = f1(x0 + · · ·+αrxr)

n1 · · · fs(x0 + · · ·+αrxr)
ns is an irreducible

factorization of p in K(α)[X].

4. p(X) has no factor in K[X].

5. Let {ui(X), 0 ≤ i ≤ r} be the K-components of p(X), so that p =
∑r
i=0 uiα

i.
Then, gcd(u0, . . . , ur) = 1.
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Proof. (1) The right-left implication is clear. Conversely, let p be irreducible as
an element of Aα[X]. Now, assume that p = AB, where A,B are non-constant
polynomials in K(α)[X]. Since p is analytic, by Lemma 1, p(X) = p(x0 + · · ·+
αrxr,0, . . . ,0) = A(x0 + · · ·+ αrxr,0, . . . ,0)B(x0 + · · ·+ αrxr,0, . . . ,0). Now
observe that both A(x0+· · ·+αrxr,0, . . . ,0) and B(x0+· · ·+αrxr,0, . . . ,0) are
analytic polynomials, A(x0 + · · ·+αrxr,0, . . . ,0), B(x0 + · · ·+αrxr,0, . . . ,0) ∈
Aα[X]. Thus, since p is irreducible as analytic polynomial, one of them has to
be constant, say A(x0 + · · ·+ αrxr,0, . . . ,0) = λ ∈ K(α). Then,

A(X)B(X) = p(X) = λB(x0 + · · ·+ αrxr,0, . . . ,0)

Finally, since A(X) is not constant, this implies that the total degree of B(x0 +
· · ·+αrxr,0, . . . ,0) is greater than the total degree of B(X), which is impossible.

Statements (2) and (3) follow from (1) and Theorem 5. Statement (4) is
a consequence of (1) and Corollary 4. Statement (5) follows from (4), since
gcd(u0, . . . , ur) is a factor of p with coefficients in K.

Similarly, one may relate the gcd of several analytic polynomials to the gcd
of their generators.

Corollary 8 (Gcd formula). Let p1, . . . , ps ∈ Aα[X] be α-analytic polynomials
generated by f1, . . . , fs ∈ Gα[z], respectively. It holds that

gcd(p1(X), . . . , ps(X)) = gcd(f1(z), . . . , fs(z))(x0 + · · ·+ αrxr).

Finally, we study the computation of resultants of polynomials in Aα[X][w],
i.e. of univariate polynomials with coefficients in the ring Aα[X]. For this
purpose, we will refer to the natural extension φ? : Gα[z][w] → Aα[X][w] of
the isomorphism φ : Gα[z]→ Aα[X] (introduced in the proof of Theorem 5) to
these new polynomial rings. In this situation, one has the next corollary.

Corollary 9 (Resultant formula). Let P1, P2 ∈ Aα[X][w] be generated, respec-
tively, via φ?, by F1, F2 ∈ Gα[z][w]. It holds that

Resultantw(P1, P2) = Resultantw(F1, F2)(x0 + · · ·+ αrxr).

Proof. Let M be the Sylvester matrix associated to P1, P2, and let N be the
Sylvester matrix associated to F1, F2. M is over Aα[X], and N is over Gα[z].
Therefore, since a determinant only involves additions and multiplications in
the corresponding ring, the result follows using Theorem 5.

2.2 α-Analytic Multivariate Rational Functions: An ap-
plication

As in the previous subsection and following the notation thereof, a rational
function A(X) ∈ K(α)(X) will be called (α)–analytic if there exists a rational
function B(z) ∈ K(z) such that

B(x0 + αx1 + · · ·+ αrxr) = A(X).
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We say that B(z) is the generating rational function of A. If n > 1, we say that
the analytic rational function is multivariate.

In [3], a complete analysis for i-analytic univariate rational functions is
given, in the context of a reparametrization problem for curves. Namely, given
a rational curve parametrization with complex coefficients, the parametrization
problem consists in deciding whether the curve can be also parametrized with
real rational functions and, in the affirmative case, in computing a parameter
change, that transforms the initial complex parametrization into a real one. Ob-
viously, this context can be generalized to the case of rational parametrizations
with coefficients in a finite algebraic extension, of a given ground field: here,
the goal is also to simplify a given parametrization with algebraic coefficient to
another one with coefficients over the ground field.

In this context (see, for more details, [1], [4]), the following situation hap-
pens. Let f = a(z)/b(z) ∈ K(α)(z) be a rational function. Then, we want
to compute the K-components of φ(f) ∈ Aα(X) (where φ is the extension to
rational functions of the isomorphism introduced in Theorem 5). One way to
proceed is first apply the change of variables p = a(x0 + αx1 + . . . + αrxr),
q = b(x0 +αx1 + . . .+αrxr), and then compute Q, the multiple of q of smallest
degree that has all its coefficients in K. It is easy to verify that Q is a divisor of
the norm of q for the extension K[X] ⊆ K[X](α). Let R = Q/q ∈ K(α)[X]. It
follows that φ(f) = p · R/Q and the K-components are φ(f) =

∑r
i=0(ui/Q)αi,

where ui are the K-components of p·R. This is a mathematically valid represen-
tation, but it is desirable for applications –such as the ones mentioned above–
that gcd(u0, . . . , ur, Q) = 1. The interesting fact is that this is the case under
natural assumptions.

Theorem 10. Assume that gcd(a, b) = 1 in the previous construction, then the
above procedure to compute the K-components of f(z) = a(z)/b(z) verifies that
gcd(u0, . . . , ur, Q) = 1.

Proof. Note that, in general, p · R need not be α-analytic, so we can not use
Corollary 7 directly. Since gcd(a, b) = 1, then, by Corollary 8, gcd(p, q) = 1 and
gcd(p · R, q · R) = R. If c = gcd(ui, Q) then c is a polynomial with coefficients
over K and c|R, but R does not have factors over K. To prove this, let d be a
factor of R with coefficients in K irreducible in K[X]. Then d is also a factor
of Q and, by construction of Q, gcd(d, q) 6= 1. Let g be an irreducible factor of
gcd(d, q) with coefficients in K(α)[X] and assume that q = glq1, gcd(g, q1) = 1.
Let G be the minimum multiple of g with coefficients over K. Then G|d, but d
is irreducible in K[X], so G = d. It follows that Q = dlQ1, gcd(d,Q1) = 1. But
then, R = Q/q does not have g as a factor, so d cannot be a factor of R.

2.3 The case of germs and entire functions

In this section we generalize the previous notions and results to germs of holo-
morphic functions and entire functions. Because these mathematical entities
are defined only over the complex numbers, in this subsection we will consider
always that K = R and α = i =

√
−1. Let a = (a1 + i b1, . . . , an + i bn) ∈ Cn,
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aj , bj ∈ R, c = (a1, . . . , an, b1, . . . , bn) ∈ R2n ⊂ C2n, x = (x1, . . . , xn),y =
(y1, . . . , yn) and z = (z1, . . . , zn). Furthermore, let OCn,a be the local ring of
complex holomorphic germs at the point a; recall that it is isomorphic to the
ring of complex convergent power series centered at a. Similar notation will be
used to express other local rings of germs.

In this situation, if f(z) ∈ OCn,a we consider the complex holomorphic germ
p(x,y) = f(x+iy) ∈ OC2n,c. Clearly, p(x,y) ∈ OC2n,c can always be expressed
as:

p(x,y) = u(x,y) + iv(x,y)

where u,v are real analytic germs at c (the real and imaginary parts of p(x,y)).
Thus, since the ring OC2n,c is a unique factorization domain, one can study
factorization questions for p(x,y). Furthermore, since the ring OR2n,c of real
analytic germs at c ∈ R2n is also a unique factorization domain, one can consider
the gcd of its elements; in particular the gcd of the germs u and v. In this
context, (multiplicative) units play the role of constants (in the polynomial
case); they are the germs that do not vanish at c. Then it is easy to show that
p is a unit in OC2n,c if and only if f is a unit in OCn,a, if and only if either u or
v are units in OR2n,c. Moreover, by the classical Cauchy-Riemann conditions,
one has that p is constant if and only if u or v are constants.

Proposition 11. Let p ∈ OC2n,c be a nonconstant germ of the form p(x,y) =
f(x + iy), for some f(z) ∈ OCn,a. Then p /∈ OR2n,c. Moreover, it is not
associated to any real-defined germ. That is, if u ∈ (OC2n,c)∗ (the ring of
units), then u · p 6∈ OR2n,c.

Proof. If p is a real-defined germ p ∈ OR2n,c, p(x,y) ∈ R for all (x,y) in an
open neighborhood U ⊆ R2n of c. If this happens, then f(V ) ⊆ R for an open
neighborhood V ⊆ Cn of a. But, from basic properties of analytic functions,
f (and p) must be, then, constant functions, contradicting the hypothesis. For
the second part, assume without loss of generality that c = (0, . . . , 0). Let
r · za11 · · · zann be a term of minimal degree in the power series expansion of
f(z). In the power expansion of p, we have some lowest degree terms such
as r · xa11 . . . xann and ia1r · y1xa1−1

1 xa22 · · ·xann . If u is a unit of OC2n,0, then
u(0) = b 6= 0. Now, in the powers series expansion of u · p we get the coefficients
b · r and b · ia1r, which cannot be both real. This proves that u · p cannot be a
real-defined germ.

We can now obtain a result analogous to Corollary 7, but in the context of
germs.

Proposition 12. Let p ∈ OC2n,c be as above, p(x,y) = f(x + iy). Then

• p is irreducible if and only if f is irreducible.

• If f = f i11 · · · f iss is the irreducible factorization of f then p = f i1i (x +
iy) · · · f iss (x + iy) is the irreducible factorization of p.

• p has no real-defined factor.
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Proof. Clearly p(x,y) = p(x + iy, 0) = f(x + iy) and, if f is reducible, then p
is reducible. Now, assume that p is reducible and p = A ·B, A and B non-units.
Then f(x + iy) = A(x + iy, 0)B(x + iy, 0). If A(x + iy, 0) were a unit, then
f(x + iy) = λB(x + iy, 0), so the order of p at c equals the order of B and
the order of A at c is zero. So A would be a unit which is a contradiction. So
A(x + iy, 0) is not a unit and, by symmetry, B(x + iy) is neither a unit. It
follows that f = A(x + iy, 0)B(x + iy, 0) is reducible.

The second item follows directly from the first one and the third item follows
from the first item and Proposition 11.

Now, we proceed to extend this result to entire functions, that is, functions
holomorphic at every point of Cn. For this purpose, one considers entire func-
tions in R2n generated by entire functions in Cn, that is, real functions p(x,y)
analytic at every point of R2n such that there exists an entire function f(z)
in Cn and p(x,y) = f(x + iy). In this situation, we study the existence of
real non-constant factors. Here, “real non-constant factors” means non-unit el-
ements in the ring of real-defined functions, analytic everywhere in R2n. More
precisely, one has the following result.

Proposition 13. Let f(z) be a nonzero entire function in Cn, and let p(x,y) =
f(x + iy). Then, there exists no decomposition of the form p(x,y) = k(x,y) ·
h(x,y), where k is a non-unit, real-defined function, analytic at every point of
R2n, and h is a complex valued, entire function in C2n.

Proof. Let us assume that such decomposition p = k · h exists. Then, there is
c ∈ R2n such that k(c) = 0. We consider now the complex germ p of p at c,
p ∈ OC2n,c, and the real germ k of k at c, k ∈ OR2n,c. Then, since k vanishes
at c, it follows that k is not a unit in OR

2n,c, and k is a factor of p, which is
impossible by Proposition 12.

3 Non-Standard Cauchy-Riemann Conditions

In this final section we show how the well known Cauchy–Riemann holomorphic
conditions can be generalized for the case of arbitrary finite field extensions,
and we deduce some important facts on analytic polynomials.

Definition 2. (See [8]) Let D = (d1, . . . , d2n−1) be a 2n − 1 tuple. The finite
Hankel matrix of order n generated by D is the n × n matrix H such that
Hij = di+j−1.

H =



d1 d2 d3 . . . dn
d2 d3 . . . dn+1

d3
...

...
...

dn dn+1 . . . . . . d2n−1



11



Let us introduce (r+ 1) Hankel, square matrices {Hi}i=0,...,r, all of them of
order (r + 1). For this purpose, first, we express αr+i (with i = 1, . . . , r) in the
α-basis, as

αr+i =

r∑
j=0

aijα
j , with aij ∈ K and i = 1, . . . , r.

Then

• H0 is the (r + 1)× (r + 1) Hankel matrix generated by the (2r + 1)-tuple

(1, 0 . . . , 0, a10, . . . , ar0),

• for i > 1, Hi is the (r + 1) × (r + 1) Hankel matrix generated by the
(2r + 1)-tuple

(

i zeros︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0, a1i, . . . , ari).

Therefore,

col (i + 1)

↓

Hi =



0 · · · 0 1 0 · · · 0 0
0 · · · 1 0 0 · · · 0 a1i
... . .

.
. .
. ...

1 · · · · · · 0 a1i · · · aii
0 · · · · · · a1i a2i · · · ai+1,i

... . .
.

. .
. ...

... . .
.

. .
. ...

0 a1i a2i · · · · · · ari


, for i = 0, . . . , r.

Remark 1. Note that
1 α · · · αr

α α2 · · · αr+1

... . .
. ...

αr αr+1 · · · α2r

 =

r∑
i=0

αiHi

is the Hankel matrix of order r + 1 generated by (1, α, . . . , α2r).

In this situation we introduce the following definition

Definition 3. We say that p(X) = u0(X) + · · · + ur(X)αr ∈ K(α)[X], with
ui ∈ K[X], satisfies the non-standard Cauchy-Riemann conditions (in short: NS-
CR) if, for i = 0, . . . , r, it holds that

∂ui
∂x01

· · · ∂ui
∂x0n

...
...

∂ui
∂xr1

· · · ∂ui
∂xrn

 = Hi ·


∂u0
∂x01

· · · ∂u0
∂x0n

...
...

∂ur
∂x01

· · · ∂ur
∂x0n

 (3)
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We will use the following simpler notation for the above conditions:

ML
i = HiM

R

Example 2. Let α3 + 2 = 0 (so r = 2) and n = 1. Let p(x01, x11, x21) be
an α-analytic polynomial p ∈ Q(α)[x01, x11, x21], generated by the polynomial
f(z1) = z21 + 1. Thus

p(x01, x11, x21) = (x01 + x11α+ x21α
2)2 + 1.

Let p be expressed as

p = u0(x01, x11, x21) + u1(x01, x11, x21)α+ u2(x01, x11, x21)α2

where u0, u1, u2 are the Q–components of p and

u0 = x201 − 4x11x21 + 1
u1 = 2x01x11 − 2x221
u2 = 2x01x21 + x211.

Now, we construct the Hankel matrices H0, H1, H2. For this we need to express
α3 and α4 in the α-basis:

α3 = a10 + a11α+ a12α
2 = −2

α4 = a20 + a21α+ a22α
2 = −2α.

Then,

H0 =

 1 0 0
0 0 a10
0 a10 a20

 =

 1 0 0
0 0 −2
0 −2 0


H1 =

 0 1 0
1 0 a11
0 a11 a21

 =

 0 1 0
1 0 0
0 0 −2


H2 =

 0 0 1
0 1 a12
1 a12 a22

 =

 0 0 1
0 1 0
1 0 0


Moreover,

ML
i =

 ∂ui

∂x01
∂ui

∂x11
∂ui

∂x21

 , MR =

 ∂u0

∂x01
∂u1

∂x01
∂u2

∂x01


And one can easily check that ML

i = Hi ·MR; compare to Theorem 15.

Remark 2. Let us verify that we get, in particular, the usual CR conditions
from the NS-CR conditions. We consider that α = i, n = 1 and r + 1 = 2.
In this context we usually express z = x+ iy, but here, following the notation

13



introduced for the general case, we will use X = (x0,x1), with x0 = (x01),x1 =
(x11). Let p(X) ∈ C[X] be expressed as

p(X) = u0(X) + iu1(X), with u0, u1 ∈ R[X].

In order to construct the Hankel matrices Hi, note that i2 = −1, and thus
a10 = −1, and a11 = 0. Then we have

H0 =

(
1 0
0 −1

)
, H1 =

(
0 1
1 0

)
Therefore the NS-CR conditions are, in this case,

∂u0
∂x01

∂u0
∂x11

 = H0


∂u0
∂x01

∂u1
∂x01

 ,


∂u1
∂x01

∂u1
∂x11

 = H1


∂u0
∂x01

∂u1
∂x01

 .

which yields
∂u0
∂x11

= − ∂u1
∂x01

,
∂u1
∂x11

=
∂u0
∂x01

that are the classical CR conditions.

In Lemma 1 we already have a characterization of analytic polynomials.
The following theorem characterizes analytic polynomials in terms of the NS-
CR conditions. First we show that the set of polynomials that satisfy NS-CR is
closed under derivation.

Lemma 14. Let p(X) satisfy NS-CR. Then ∂p
∂xij

also satisfy NS-CR.

Proof. Just take the equation (3) and compute derivatives with respect to xij .

Theorem 15. Let p(X) ∈ K(α)[X]. The following statements are equivalent

1. p ∈ Aα[X], generated by some f(z).

2. p satisfies the non-standard Cauchy-Riemann conditions.

Proof. Let us see that (1) implies (2). Let Ci,Lj and CRj the j-column of ML
i

and MR, respectively (see Definition 3). Then, it is enough to prove that

Ci,Lj = HiC
R
j for i = 0, . . . , r and j = 1, . . . , n. For j = 1, . . . , n, let Mj be the

matrix whose columns are (C0,L
j , . . . , Cr,Lj ); that is

Mj =


∂u0
∂x0j

· · · ∂ur
∂x0j

...
...

∂u0
∂xrj

· · · ∂ur
∂xrj

 .
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Computing partial derivatives w.r.t. x0j , . . . , xrj in the equality

p(X) =

r∑
i=0

αiui(X) = f

(
r∑
i=0

αixi

)

one gets that

Mj ·

 1
...
αr

 =
∂f

∂zj
(

r∑
i=0

αixi)

 1
...
αr


Now, from the equality

∂f

∂zj
(

r∑
i=0

αixi) =
∂p

∂x0j
=

r∑
i=0

∂ui
∂x0j

αi

one obtains that
∑r
i=0 α

iCi,Lj =

Mj ·

 1
...
αr

 =


1 α · · · αr

α α2 · · · αr+1

...
...

...
αr αr+1 · · · α2r

·


∂u0
∂x0j
...

∂ur
∂x0j

 =


1 α · · · αr

α α2 · · · αr+1

...
...

...
αr αr+1 · · · α2r

·CRj
Thus, by Remark 1, we get

r∑
i=0

αiCi,Lj =

r∑
i=0

αiHi · CRj

Therefore, since Ci,Lj , CRj are over K[X], and Hi is over K, we get

Ci,Lj = Hi · CRj

concluding the proof of this implication.
Let us see that (2) implies (1). We express p(X) as p(X) = pm(X)+ · · ·+p0(X),
where pk(X) (k ∈ {0, . . . ,m}, being m the total degree of p) is the homogeneous
component of degree k of p(X); i.e. in pk(X), all terms of p(X) of total degree
k are collected. Now, each homogeneous part pk(X) is written as

pk(X) = uk0(X) + · · ·+ αrukr (X)

where ukj ∈ K[X] is homogeneous of degree k. Obviously, each component of p
verifies

ui = umi + · · ·+ u0i .

Now, taking into account that the partial derivative of a homogeneous polyno-
mial is again homogeneous and that two polynomials in K[X] are equal iff their
homogeneous components are equal, we deduce that the NS-CR conditions are
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also valid if we replace uj by ukj ; that is pk satisfies also the NS-CR conditions.

So, our plan now is to prove that each pk is analytic, from where one deduces
that p is analytic. We will do it by induction in the degree, being the result
trivial if k = 0, since every constant polynomial is α-analytic. From the NS-CR
conditions, we get that for j = 1, . . . , n, and i = 0, . . . , r,

∂uki
∂x0j
...

∂uki
∂xrj

 = Hi ·


∂uk0
∂x0j
...

∂ukr
∂x0j


Thus, by Remark 1, we obtain, for j = 1, . . . , n,

∂pk

∂x0j
...

∂pk

∂xrj

 =


1 α · · · αr

α α2 · · · αr+1

... . .
. ...

αr αr+1 · · · α2r

 ·


∂uk0
∂x0j
...

∂ukr
∂x0j

 =
∂pk

∂x0j

 1
...
αr


Now, applying Euler’s formula and the previous identities, we get

pk =
1

k

(
(x01 + · · ·+ αrxr1)

∂pk

∂x01
+ · · ·+ (x0n + · · ·+ αrxrn)

∂pk

∂x0n

)
.

The partial derivative ∂pk

∂x0i
is a homogeneous polynomial of degree < k that

satisfies NS-CR, so, by induction hypothesis, ∂pk

∂x0i
is α-analytic generated by

fi(z). It follows that pk is α-analytic generated by (1/k)(z1f1(z)+. . .+znfn(z)).

In Corollary 2, we have seen that an analytic polynomial is constant if and
only if its generator is constant. In the complex case, an important application
of the CR condition is that an analytic polynomial is constant if and only if
either the real or the imaginary part is constant; that is, it is enough to check
whether one of its component is constant. In the following we show that our
NS-CR conditions yield to the same conclusion. For this purpose, we first state
two technical lemmas.

Lemma 16. Let H be the n×n Hankel matrix, n > 1, generated by (d1, . . . , d2n−1) ∈
K2n−1, and let (b0, . . . , bn−1) ∈ Kn be such that

H ·


b0
...

bn−2

bn−1

 =


dn+1

...
d2n−1∑n−1
i=0 dn+ibi

 .

If f(t) = tn− bn−1t
n−1− · · · − b0 ∈ K[t] is irreducible over K, then det(H) 6= 0.
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Proof. Let

g(t) = d1t
n−1 + (d2 − d1bn−1)tn−2 + · · ·+ (dn − dn−1bn−1 − · · · − d1b1).

We consider the rational function R(t) = g
f . Then, H is the n × n principal

matrix of the infinity Hankel matrix associated to R(t) (see the concept of as-
sociated matrix in [8] Def. 7.2.3). Since deg(g) < deg(f), and f is irreducible,
then R(t) = g

f is a proper representation. Now, the result follows from The-

orem 7.2.2. and 7.3.1. in [8], that states that the rank of the infinite matrix
associated to a properly expressed rational function agrees with the degree of
the denominator.

Lemma 17. det(Hi) 6= 0.

Proof. Let m(t) = tr+1 − brtr − · · · − b1t− b0 be the minimal polynomial of α.
Let α2r+1 be expressed in the α-basis as

α2r+1 = a(r+1)0 + a(r+1)1α+ · · ·+ a(r+1)rα
r.

Then 
1 α · · · αr

α α2 · · · αr+1

...
...

...
αr αr+1 · · · α2r


 b0

...
br

 =

 αr+1

...
α2r+1

 .

Thus, by Remark 1,

 αr+1

...
α2r+1

 =

r∑
i=0

αi


a1i
...
ari

a(r+1)i

 =

r∑
i=0

αiHi ·

 b0
...
br

 .

Hence, taking into account that aij , bk ∈ K one deduces that

Hi ·

 b0
...
br

 =


a1i
...
ari

a(r+1)i


We consider 

αr = αr

αr+1 = a10 + a11α+ · · ·+ a1rα
r

...
α2r = ar0 + ar1α+ · · ·+ arrα

r
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Multiplying the i-th equality by bi−1, adding all of them, and taking into account
that aij , bk ∈ K, we get

a10b1 + · · ·+ ar0br = a(r+1)0

...
a1(r−1)b1 + · · ·+ ar(r−1)br = a(r+1)(r−1)

b0 + a1rb1 + · · ·+ arrbr = a(r+1)r

Therefore, we get that for i = 0, . . . , r, the the last row of Hi times the column
(b0, . . . , br)

T is equal to a(r+1)i. Now, the result follows from Lemma 16.

Theorem 18. An analytic polynomial p is constant if and only if at least one
of its K–components is constant.

Proof. If p is constant it is clear that all K–components are constant. Con-
versely, let u0, . . . , ur be the K–components of p, and let ui be a constant.
By Theorem 15, the NS-CR conditions are satisfied; let us denote them by
ML
i = HiM

R. Now, by Lemma 17, H−1
i ML

i = MR. Moreover, since ui is
constant, then ML

i is the zero matrix, and hence MR is also zero. Now, coming
back to the NS-CR conditions we get that ML

j is the zero matrix for j = 0, . . . , r.
That is, all uj are constant.

Remark 3. Note that Corollary 4 can also be proved directly from Theorem 18.
If p is an α-analytic polynomial and p ∈ K[X], then its component associated
to α is constant (in fact, is zero), so p is a constant polynomial.

Remark 4. Throughout the text, we have assumed that K is a characteristic
zero field. The results obtained cannot be extended to characteristic p fields.
For instance, if K is a characteristic p field and K(α) is an extension of degree
r + 1 (separable or not), take n = 1 and xp01 ∈ K(α)[x01, . . . , xr1]. Clearly, xp01
verifies the NS-CR but it is not α-analytic. If it were, since the transformation
in Equation (1) is homogeneous, x01 would be generated by a polynomial of the
form f(z1) = k ·zp1 , k ∈ K. But, in this case, xp01 = k(x01+αx11+· · ·+αrxr1)p =
kxp01 + kαpxp11 + · · ·+ kαprxpr1, which is impossible.
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