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The interplay of excitonic and vibronic coupling in coupled chromophores determines the efficiency
of exciton localization vs delocalization, or in other words, coherent excitation energy transfer vs
exciton hopping. For the investigation of exciton localization in large coupled dimers, a model
Hamiltonian approach is derived, the ingredients of which can all be obtained from monomer
ab initio calculations alone avoiding costly ab initio computation of the full dimer. The accuracy
and applicability of this model are exemplified for the benzene dimer by rigorous comparison to
ab initio results. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827398]

I. INTRODUCTION

Conjugated π -systems are deservedly the subject of ex-
tensive experimental and theoretical studies, considering that
π -conjugated smart materials have become increasingly im-
portant in everyday life.1–13A comprehensive collection of
their electronic spectra and electronic and structural proper-
ties has been presented over decades, with regard to their
remarkable applicability in organic light-emitting diodes
(OLED),14 in semi-conducting layers of field-effect transis-
tors (FET),1, 12, 15, 16 as well as in organic solar cells which
are being developed as cheap substitutes for silicon-based so-
lar cells. However, the low energy conversion efficiency of
organic solar cells is the main bottleneck, which still limits
their usage. This is partially due to rather inefficient excita-
tion energy transport (EET)11, 17 within the organic materials.
For designing improved organic materials, all occurring pro-
cesses and the effects determining their efficiency need to be
ascertained and eventually well understood.

To investigate EET pathways in organic materials the-
oretically, it is an important first step to compute the exci-
tonic coupling (EC) between individual chromophores using
quantum chemical methods for the excited states of the sys-
tem, because the qualitative character and the quantitative
rate of EET are determined by EC.18–20 EET usually occurs
from an electronically excited molecule to a non-excited spa-
tially close molecule with lower excitation energy via Förster
(Coloumb) or Dexter (exchange)-type or both transfer mech-
anisms between excitonically coupled dimers.21 In general,
two types of EET are distinguished, coherent and in-coherent
EET.22 The first is usually understood in terms of delocalized
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excited electronic states over several chromophores and the
monomer units remain structurally identical. The latter one is
often described as “hopping” of excitation energy from one
site to the other, i.e., the exciton is localized on one monomer
unit due to its geometry relaxation and then transferred dy-
namically to a neighboring site. However, most real cases of
practical importance belong to intermediate situations.

In order to understand the geometry relaxation of an elec-
tronically excited dimer, or equivalently, the localization of
the exciton, it is necessary to explicitly take nuclear motion
into account. Many theories exist for the description of EET
processes,22 however, only a very few studies are available
that consider both electronic and vibrational contributions to
the energy transfer process in a rigorous, quantum mechani-
cal way.20, 23–25 Typically, the effect of vibrations is often in-
cluded as dynamic disorder in the electronic coupling.26, 27

The coupling between electronic and vibrational degrees
of freedom is generally quantified by the so-called non-
adiabatic couplings,28 and structural, symmetry-breaking dis-
tortions can be explained in this framework by Jahn-Teller
(JT) and pseudo Jahn-Teller (PJT) theory. Hence, the major
goal of this work is to understand the localization mecha-
nism of excited states and the driving forces responsible for
it, in the framework of the established PJT formalism and
Förster’s degenerate perturbation theory approach.29 We de-
velop models for the reliable description, interpretation, and
prediction of excitonic coupling taking into account vibronic
coupling, and the interplay between these two effects. Most
importantly, the necessary quantities for the dimer Hamil-
tonian can be derived from monomer calculations alone.
The proposed theory is validated using the benzene dimer
as test case, since it presents one of the simplest, aromatic
systems with π -π interaction, representative of more com-
plex chromophores. In addition, extensive experimental and
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theoretical data are available in the bibliography, with which
we can compare our computed data.30–39 For the purpose of
this work, time-dependent density functional theory (TDDFT)
was chosen as standard method for the calculation of the
excited states, due to its computational efficiency. Its ac-
curacy is here clearly sufficient despite its well-known
drawbacks.40

A detailed understanding of the physical effects deter-
mining the electronic properties of the benzene dimer, its ex-
cited states, and the role of vibronic coupling is an essential
prerequisite for the successful investigation of more complex
systems. As it will be shown, the new developed model pre-
dicts the properties of the dimer through the simple interpreta-
tion of the monomer characteristics and its intrinsic features,
which can eventually be used to study much larger systems of
biological and technological interest.

II. THEORETICAL BACKGROUND—VIBRONIC MODEL
FOR EXCITONIC COUPLING

In order to develop a theory, which takes excitonic and
vibronic coupling into account, and to understand their mu-
tual influence at least in a qualitative manner, one needs to
start with some basic assumptions: (a) It is assumed that the
monomer is a closed-shell species (see Figure 1(a)) which
should be correct for most systems not containing transi-
tion metal ions. (b) The first excited state of the monomer
is mainly described by a single excitation from the highest
occupied molecular orbital (HOMO) to the lowest unoccu-
pied one (LUMO). While this condition implies a very small
configuration interaction, this later condition is reasonable if
excited states with other configurations are sufficiently sepa-
rated from the HOMO-LUMO ones. (c) In order to take ad-
vantage of a JT-type formulation it is assumed that some kind
of symmetry element relating the two monomers in a dimer
exists. In the case of the benzene dimer shown in Figure 1(b)
this operation can be taken to be a reflection or inversion but
the theory is not limited to them in its application to other

FIG. 1. Scheme of the frontier orbitals of the monomer and the dimer, in
which, a symmetry operation relates the monomer orbitals to the dimer ones.
Hence it is possible to classify the dimer orbitals accordingly, here with re-
spect to the coplanar reflection plane.

FIG. 2. Scheme of all singly excited determinants within the dimer orbital
space composed only of linear combinations of the HOMOs and the LUMOs
of the monomer units, and the notation used to differentiate the different ex-
cited states arising from it.

cases as, for example, it could be applied to an n-monomer
system with a Cn axis in the system.

Let us first discuss the nature of the lowest excited states
in a symmetric dimer. For simplicity, it is first supposed that
monomers HOMO and LUMO are non-degenerate, however
this restriction can be easily lifted and the solutions for the
degenerate case will be given also below for benzene. Using
the symmetry condition (c) we can write the dimer orbitals as
symmetrized combinations of the monomer orbitals:

�α
H = 1√

2(1 ± SH )

(
�1

H ± �2
H

)
, (1)

�α
L = 1√

2(1 ± SL)

(
�1

L ± �2
L

)
. (2)

In the equations above the sign corresponds to the character
of the wavefunction with respect to the considered symme-
try operation. We will call the combination with the + sign
even (α = e) and the combination with the − sign odd
(α = o). It is important to note that the even and odd no-
tations here refer exclusively to the main symmetry operation
and they should not be understood as proper even or odd char-
acter with respect to inversion in real space which, in many
cases, the studied molecules lack. The symbols SH and SL

denote the HOMO-HOMO and LUMO-LUMO orbital over-
laps. Note that in deriving expressions (1) and (2) we are ne-
glecting the interactions of the HOMO of a monomer with
the LUMO of the other, and vice versa. This is justified, be-
cause the HOMO-LUMO interaction is small. Using condi-
tions (a) and (b) we can now generate all singly excited deter-
minants that give rise to the lowest dimer singlet excited states
(Figure 2), which can be classified with respect to the position
of the electron and hole of the exciton, as well as from a sym-
metry point-of-view.

In a second step we are going to take the structural distor-
tion into account that occurs on the monomer when the system
is excited into the excited state. If we describe this distortion
by an effective mode Q, using symmetry, we can construct
two distortion modes for the dimer:

Qe = 1√
2

(Q1 + Q2), (3)

Qo = 1√
2

(Q1 − Q2). (4)
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Here, and similar to previous notation, Qe and Qo have +1
and −1 characters with respect to the symmetry operation,
and Q1 and Q2 are local distortions in each of the monomers.
In Figure 3 we give a schematic representation of these modes
for the benzene dimer in a D6h configuration.

Finally we will build the system Hamiltonian as a sum of
electronic, vibrational, and vibronic parts. The electronic con-
tribution (Hel({�r} ; R)) depends on the electron coordinates,
{�r}, and the distance between the monomers, R, the vibra-

tional on the distortion coordinates (Qe, Qo) while the vi-
bronic part depends on both:

H = Hel ({�r} ; R) + H ′
o ({�r} ; R) Qo + H ′

e ({�r} ; R) Qe

+Hv(Qe,Qo; R). (5)

Using this Hamiltonian we can now create a vibronic matrix
〈� i|H|� j〉 using the states shown in Figure 2. This matrix
can be simplified using symmetry to determine only non-zero
elements to yield

HJT = 1

2
KeQ

2
e + 1

2
KoQ

2
o +

⎛
⎜⎜⎜⎝

�ee + FeeQe F oo
ee Qe F eo

ee Qo F oe
ee Qo

F oo
ee Qe �oo + FooQe F eo

oo Qo F oe
oo Qo

F eo
ee Qo F eo

oo Qo �eo + FeoQe F oe
eo Qe

F oe
ee Qo F oe

oo Qo F oe
eo Qe �oe + FoeQe

⎞
⎟⎟⎟⎠ , (6)

where we have defined the excitonic coupling constants �i

= 〈� i|H|� i〉 and the diagonal Fi = 〈� i|dH/dQα|� i〉 and
off-diagonal F

j

i = 〈�i |dH/dQα|�j 〉 vibronic coupling con-
stants (here the index i and j run along the states ee, oo, eo,
and oe as defined in Figure 2 and α stands for e or o). Using
the singlet wavefunctions of the electronic configurations and
taking into account that the diagonal terms represent the force
exerted by the excited electrons with respect to the ground
state, we can get the following expressions for the diagonal
vibronic coupling elements:

Fee = Foo = Feo = Foe = −〈
�e

H

∣∣f̂e

∣∣�e
H

〉 + 〈
�e

L

∣∣f̂e

∣∣�e
L

〉
,

(7)
in which f̂e represents the vibronic operator for a single-
electron along Qe. Thus, we observe that all diagonal vibronic
coupling elements are approximately the same. We can oper-
ate in a similar way to find expressions for the off-diagonal
elements:

Foo
ee = Foe

eo = 0, (8)

Feo
ee = Foe

oo = 〈
�e

L

∣∣f̂o

∣∣�o
L

〉
, (9)

FIG. 3. Schematic representation of symmetric Qe(left) and anti-symmetric
distortion Qo (right) of the benzene dimer. The size of vibrational motion on a
nucleus is represented as sphere with the radius depending on the magnitude
of the motion. The different colours indicate the direction of the motion.

Foe
ee = Feo

oo = 〈
�e

H

∣∣f̂o

∣∣�o
H

〉
. (10)

Expression (7) suggests that the force with respect to the
ground state on the dimer comes from the removal of an elec-
tron from the HOMO (due to the negative sign) that is placed
into the LUMO, while expressions (9) and (10) suggest that
they are related to the forces of individual electrons in the
LUMO and the HOMO, respectively. Indeed, using expres-
sions (1) and (2) we get integrals like

〈
�e

H

∣∣f̂o

∣∣�o
H

〉

= 1√
2
(
1 − S2

H

) [〈�1H |f̂1|�1H 〉 − 〈�1H |f̂2|�1H 〉]. (11)

These integrals can be further simplified taking into account
that vibronic operators decay very quickly (typically αr−3)
to neglect the second term in the sum when compared to the
first one. Moreover, the first product, whose meaning is that
of a reduction factor due to the delocalization of the electron
in between the two individual monomers orbitals, can in fact
be simplified since our first-principles calculations indicate
that S2

H � 1. Under these conditions we write Eqs. (7) and
(9), and (10) in terms of integrals depending just on a single
monomer:

Fee =Foo =Feo = Foo = 1√
2

(−〈�H |f̂ |�H 〉 + 〈�L|f̂ |�L〉)

= 1√
2
fmono, (12)

Feo
ee = Foe

oo = 1√
2
fL, (13)

Foe
ee = Feo

oo = 1√
2
fH . (14)
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Here fmono = fL − fH is the force experienced in the monomer
by removing an electron from the HOMO and placing it
in the LUMO, i.e., the force in the excited state of the
monomer, while fL and fH are the individual forces created
by adding an electron to the LUMO or removing an electron
from the HOMO of a monomer, respectively. These two last
quantities can be associated with the force on the monomer
along the effective mode Q when an electron is added or
removed, i.e., the forces for the anion and the cation. In order
to check expressions (12)–(14) and the assumptions leading to

them we compared the ab initio forces of the anion and
cation (Eqs. (13) and (14)) with that of the neutral excited
monomer (given by Eq. (12)) finding a reasonable agreement
(see Sec. IV). Acting in a similar way for the vibrational
part, and imposing that at long range the frequencies of vi-
bration of the dimer need to be those of the monomer we
obtain

Ke = Ko = Kmono. (15)

Thus, we can finally reduce the full vibronic matrix (6) to

H = 1

2
Kmono

(
Q2

e + Q2
o

) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ee + 1√
2
fmonoQe 0 1√

2
fLQo

1√
2
fHQo

0 �oo + 1√
2
fmonoQe

1√
2
fHQo

1√
2
fLQo

1√
2
fLQo

1√
2
fHQo �eo + 1√

2
fmonoQe 0

1√
2
fHQo

1√
2
fLQo 0 �oe + 1√

2
fmonoQe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Here we see that all vibronic interactions in the dimer can be
reduced to quantities obtainable from the monomer. This is
a very desirable property since it may allow estimation of the
role of vibronic coupling in exciton transport without the need
to carry out costly dimer calculations, but to do so is generally
advised to validate the model with ab initio calculations. We
perform this task in Sec. IV.

We can now analyze the physical content of the derived
model. The coupling to Qe occurs on the diagonal of the
Hamiltonian and connected with fmono, while, on the other
hand, the coupling to Qo is always accompanied by vibronic
constants fH and fL. Taking into account that fmono = fL − fH,
there will be systems in which the coupling to Qe dominates
(fL and fH are very different), while in others the coupling to
Qo dominates (fL ∼ fH → |fmono| � |fL|,|fH|). The emerging pic-
ture is that in the first case the distortion is the same and the
solution that dominates the vibronic problem, Eq. (16), is an
exciton where electron and hole travel together. On the other
hand, the case where fL ∼ fH leads to different distortions
in the two monomers favors the localization of the electron
and hole separately, i.e., formation of polarons. Thus, even
though our model does not contain several important key in-
gredients like electrostatic attraction between hole and elec-
tron, it provides a very sensible picture of which conditions
would favor the separation of the exciton in polarons. These
limit solutions can be obtained from Eq. (16) when the exci-
tonic coupling energy � is much smaller than the vibronic
coupling energy (f · Q). In that case the solutions take the
form

�e
± = 1√

2
(�oo ± �ee) , (17)

�o
± = 1√

2
(�oe ± �eo). (18)

While the (+) combinations correspond to two excitonically
coupled local excited states, the (−) combinations represent
two symmetrized charge-transfer (CT) excitations.41 Later it
will be shown that the CT states do not play a role in the
benzene dimer due to their symmetry.

We will now focus on the changes between the above
model and the one that arises when the HOMO and LUMO
are doubly degenerate, as in the case of benzene. The main
difference between these models is that in the latter case
many more states are involved (see Figure 4 and compare
with Figure 2). Observing the monomer states in Figure 4
we see that, in principle, the vibronic coupling problem is
more complicated since vibrations belonging to a1g, a2g,
and e1g can be involved. However, ab initio calculations
indicate that in the benzene molecule the effective mode
Q belongs to a1g and as a consequence we will not take
into account the other possibilities. When constructing
all excited states in the benzene dimer involving only the

FIG. 4. Singly excited determinants arising from single HOMO-LUMO ex-
citations in the benzene monomer (left) and benzene dimer (right).
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doubly degenerate HOMO and LUMO, we observe that
instead of the previous four possibilities now 16 different
states are possible. However, since the effective mode in
the monomer is a1g, the resulting even (Qe) and odd (Qo)
dimer modes have a1g and a2u symmetry, respectively. As
a consequence, the lower 1B states do not couple with the
higher lying 1E ones. Therefore, the E states can be com-

pletely neglected in the model. Because the charge transfer
states belong to these E states, they do not play any role
in the derived excitonic coupling model due to the symme-
try restrictions of the distortion modes. Thus, the dimen-
sionality of the vibronic matrix can be reduced to eight,
and using the same approximations as in Eqs. (7)–(14), we
find

H = 1

2
Kmono

(
Q2

e + Q2
o

)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ee
1e + fmQe√

2
0 0 0 0 0 fL√

2
Qo 0

0 �oo
1o + fmQe√

2
0 0 0 0 0 fL√

2
Qo

0 0 �eo
1o + fmQe√

2
0 fH√

2
Qo 0 0 0

0 0 0 �oe
1o + fmQe√

2
0 fH√

2
Qo 0 0

0 0 fH√
2
Qo 0 �ee

2e + fmQe√
2

0 0 0

0 0 0 fH√
2
Qo 0 �oo

2e + fmQe√
2

0 0
fL√

2
Qo 0 0 0 0 0 �eo

2o + fmQe√
2

0

0 fL√
2
Qo 0 0 0 0 0 �oe

2o + fmQe√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Note again that, as in the previous case, only information from
monomer calculations is required to arrive at a complete de-
scription of the benzene dimer coupling Hamiltonian. We will
proceed in Sec. IV to verify this model.

III. COMPUTATIONAL METHODOLOGY

The underlying computational procedure for the con-
struction of the dimer model Hamiltonian is the following
steps:

1. Geometry optimization of the monomer and calculation
of vertical excitation energies using different TDDFT
levels of theory and comparison with experimental data.

2. Geometry optimization of the monomer in the first ex-
cited state and identification of the distortion mode.

3. Choice of mutual orientations of monomer units in the
dimer, followed by calculations of vertical excitation en-
ergies at different intermolecular separations between
two monomer units; selection of particular intermolec-
ular distances from the potential energy curves.

4. Performing calculations along the symmetric (Qe) and
anti-symmetric (Qo) distortion of the excimer at chosen
intermolecular separations.

5. Determination of all parameters in the model Hamilto-
nian (Eq. (19)); comparison of the results obtained using
the model Hamiltonian with ab initio computed ones;
validation of proposed model.

As already mentioned, the parameters fH and fL cor-
respond to the forces acting on the monomer HOMO and
LUMO at the ground state geometry, and their difference
should be practically equal to the force acting on the excited
neutral molecule, fmono. These parameters have been obtained

by fitting the curves of HOMO and LUMO energies along the
monomer distortion coordinate. Ke and Ko correspond to the
monomer force constant in the excited state and can be ex-
tracted by fitting the curves of the first excited state along the
particular distortion. Qe and Qo have been constructed over
the distortion mode of monomer, Q1 and Q2.

The structures of the benzene monomer and its dimer
were optimized at the level of DFT using the Amsterdam
Density Functional program package, ADF2010.01.42–44 The
hybrid B3LYP functional,45, 46 with included dispersion,47

B3LYP-D3, was used for the symmetry-constrained geome-
try optimizations. An all electron triple-zeta Slater-type or-
bitals (STO) plus one polarization function (TZP) basis set
was used for all atoms. The difference in energy between
two optimized monomers and the dimer, where two monomer
units are placed at large intermolecular separation, i.e., there
is practically no interaction between them, was 0.0047 eV,
confirming the size-consistency of the calculations.

Vertical excitation energies of benzene were calculated
using TDDFT,40, 48, 49 at B3LYP-D3 optimized geometry with
B3LYP,45, 46 BP86,50, 51 PBEsol,52 SAOP,53, 54 and PBE055, 56

levels of theory. In order to elucidate the best combination of
functional and basis set the vertical excitation energies were
calculated with DZP, TZP, TZ2P, and QZ4P basis set for all
used functionals. Vertical excitation energies and potential en-
ergy curves of the excited states of benzene dimer were ap-
proximated by adding the excitation energies to the B3LYP-
D3 ground state.

IV. RESULTS AND DISCUSSION

In order to study the localization mechanism of the ex-
cited benzene dimer and to calculate the model Hamiltonian,
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it is first necessary to compute properties of the benzene
monomer to extract the required constants. For this purpose,
equilibrium distances and vertical excitation energies have
been calculated at different levels of theory and compared
with available data. Afterwards, we will present TDDFT re-
sults and compare them with the proposed model for the ex-
citonically coupled benzene dimer.

A. The benzene monomer

The optimized structure of the benzene molecule, in D6h

symmetry, at B3LYP-D3/TZP level of theory, has equilibrium
bond lengths values of rCC = 1.39 Å and rCH = 1.08 Å, in
perfect agreement with results of high-level quantum chem-
ical calculations at the coupled cluster single, double (triple)
excitations level with correlation-consistent polarized valence
quadruple-zeta basis set (CCSD(T)/ccpVQZ).57

The excited states of benzene have been the subject of
various theoretical and experimental studies.36, 58–68 The ob-
tained TDDFT values of the excitation energies of the seven
lowest excited states of benzene are given in Table I and com-
pared with experimental data. The three well-known absorp-
tion bands in the UV spectrum of benzene at 4.90, 6.20, and
6.94 eV are assigned to the transitions 1A1g → 1B2u, 1A1g

→ 1B1u, and 1A1g → 1E1u, respectively. Although, the tran-
sitions to 11B2u, and 11B1u excited states, are symmetry for-

TABLE I. Vertical excitation energies of C6H6 (eV) calculated at the level
of TDDFT using different functionals and basis sets. All calculations were
performed in D6h symmetry with rCC = 1.39 Å and rCH = 1.08 Å.

Singlet π → π* Triplet π → π*

Eex (eV) 11B1u 11B2u 11E1u 13B1u 13E1u 13B2u 13E2g

B3LYP
DZP 5.53 6.34 7.31 4.07 4.84 5.23 7.23
TZP 5.41 6.18 7.14 4.01 4.76 5.13 6.56
TZ2P 5.43 6.18 7.14 4.02 4.77 5.14 6.57
QZ4P 5.44 6.15 6.99 4.04 4.76 5.11 6.24

BP86
DZP 5.34 6.21 7.20 4.46 4.83 5.10 7.49
TZP 5.26 6.08 7.05 4.41 4.77 5.02 6.77
TZ2P 5.27 6.08 7.05 4.42 4.77 5.03 6.77
QZ4P 5.29 6.07 6.98 4.43 4.77 5.02 6.47

PBEsol
DZP 5.34 6.22 7.20 4.47 4.83 5.11 7.44
TZP 5.27 6.09 7.06 4.42 4.77 5.03 6.70
TZ2P 5.27 6.09 7.05 4.43 4.78 5.04 6.71
QZ4P 5.29 6.06 6.96 4.43 4.78 5.02 6.32

SAOP
DZP 5.32 6.20 7.16 4.44 4.81 5.09 7.14
TZP 5.28 6.09 7.05 4.42 4.78 5.04 6.59
TZ2P 5.28 6.10 7.05 4.43 4.79 5.05 6.61
QZ4P 5.30 6.07 6.96 4.43 4.78 5.03 6.56

PBE0
DZP 5.58 6.36 7.35 3.98 4.86 5.27 7.52
TZP 5.51 6.25 7.22 3.94 4.81 5.20 6.87
TZ2P 5.51 6.24 7.21 3.95 4.81 5.20 6.89
QZ4P 5.53 6.22 7.14 3.97 4.81 5.17 6.54

Experiment58–62 4.90 6.20 6.94 3.94 4.76 5.60 6.83/7.24

FIG. 5. Potential energy curves of the ground and the three lowest excited
singlet states of benzene along its totally symmetric vibrational breathing
mode.

bidden in benzene,69 due to vibronic interactions they still
occur in the experimental spectrum.67 The excitation en-
ergies are calculated at different levels of theory. The re-
sults are consistent to each other, and to previous theoreti-
cal considerations,68 and do not show large basis set or ex-
change/correlation functional dependence (Table I). For fur-
ther studies we have chosen TD-B3LYP/TZP level, although
it is clear that it does not exhibit the necessary accuracy to
perform a quantitative state-of-the-art study of the excited
states of benzene.68 Qualitatively same results could be ob-
tained with other levels of theory. However, the focus of the
present study is not the investigation of the excited states of
benzene, but the rationalization of the electronic structure of
the excited benzene dimer and the verification of the proposed
model Hamiltonian approach. It is also important to note that
the CT problem of TDDFT is irrelevant here, since the CT
states are excluded from the investigation based on their sym-
metry and the fact that they do thus not play a role in the
excitonic coupling.

TDDFT geometry optimization, without constraining the
symmetry, has shown that the equilibrium structure of the first
excited singlet state has D6h symmetry and bond lengths of
rCC = 1.43 Å and rCH = 1.08 Å. It is obvious that the struc-
tural relaxation, which leads from the ground state geometry
of benzene to the equilibrium geometry of the first excited
state, occurs along the totally symmetric breathing mode. Fol-
lowing this breathing mode from the ground state geometry,
the potential energy curves of the three lowest singlet excited
electronic states of benzene, in D6h symmetry, have been com-
puted (Figure 5). These three states of 1B1u, 1B2u, and 1E1u

symmetry are the lowest singlet states arising from HOMO-
LUMO excitations.
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FIG. 6. Investigated mutual orientations of the benzene dimer.

In order to verify the applicability and accuracy of the
proposed model Hamiltonian, which requires only intrinsic
features of the constituting monomer to reproduce the ex-
cited states of the dimer, we have calculated the necessary
parameters fH and fL and obtained values of 14.53 eV/Å and
23.30 eV/Å, respectively. According to the model, the differ-
ence between these forces (8.77 eV/Å) acting on the monomer
cation on removal of an electron from the HOMO or on the
anion on addition of an electron to the LUMO, perfectly cor-
responds to the force (8.48 eV/Å) acting on the excited neutral
monomer.

B. The benzene dimer

Selected possible mutual orientations of two benzene
molecules forming a dimer, i.e., parallel (sandwich-shaped)
(D6h), T-shaped (C2v), parallel-displaced (C2h), and parallel-
twisted (D6), are presented in Figure 6. In the case of the
D6h, C2v , and D6 structures, the intermolecular separation
coordinate R was defined as the distance between the cen-
ters of masses of the two benzene molecules. In C2h orienta-
tion, the intermolecular separation coordinate R was chosen
to be the distance between the center of mass of one benzene
ring and center of the closest C–C bond of the other benzene
ring.

Numerous theoretical studies have nowadays shown that
the T-shaped and the parallel-displaced structures are min-
ima on the potential energy surface of the benzene dimer,70, 71

which is in agreement with our calculations. Symmetry con-
strained geometry optimizations of the benzene dimer in all
investigated mutual orientations result in equilibrium bond
distances rCC = 1.39 Å and rCH = 1.08 Å, which are equal to
the bond lengths of the benzene monomer. Since the equilib-
rium bond distances are the same as in the isolated monomer,
the ground state geometry is practically not affected by the

FIG. 7. Potential energy curves along the intermolecular separation coordinate R of the benzene dimer in D6h (top left), C2h (top right), D6 (bottom left), and
C2v (bottom right) orientation with rCC1 = rCC2 = 1.39 Å at the theoretical level of TDDFT/B3LYP-D3.
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FIG. 8. Potential energy curves of the lowest excited states along the
symmetric and the anti-symmetric distortion coordinates Qe (left) and Qo

(right) at an intermolecular separation R of 3 Å of the D6h benzene dimer;
TDDFT/B3LYP-D3 calculated plots are given on the top, while the plots ob-
tained using the model Hamiltonian are given at the bottom.

presence of another benzene molecule at this intermolecu-
lar distance. The optimal intermolecular separation between
two benzene units, Req, is 3.89 Å for D6h, 3.63 Å for C2h,
4.97 Å for C2v , and 3.82 Å for D6 at the theoretical level of
DFT/B3LYP-D3, with splittings of the first two excited states
of 0.28 eV for D6h, 0.04 eV for C2h, 0.08 eV for C2v , and
0.00 eV for D6 minima structures, respectively, at the theoret-
ical level of TDDFT/B3LYP (Figure 7).

The potential energy curves of the energetically lowest
electronic states of all studied dimer orientations along the
intermolecular separation coordinate R, going from 7 Å to
3 Å in steps of 0.5 Å, are shown in Figure 7. At distances
R < 3 Å strong repulsive Coulomb interaction appears result-
ing in a steep increase of the energies of the electronic states
and consequently in their mixing.

The potential energy curves of the electronic states of the
parallel, eclipsed, D6h, benzene dimer at various intermolec-
ular separations, R (Figure 7, top left), show that the two first
excited states are practically degenerate at intermolecular dis-
tances larger than 5 Å. At separations <5 Å, a significant
excitonic splitting of these states becomes apparent. With de-
creasing monomer distances, the splitting becomes more sig-
nificant, and at R = 3 Å, it has a value of 1.39 eV. In the
other studied dimer orientations, the splitting of the first two
excited states at R = 3 Å is smaller. In the parallel-displaced
orientation, C2h, it has a value of 0.47 eV (Figure 7, top right),

FIG. 9. Potential energy curves of the lowest excited states along the sym-
metric and the anti-symmetric distortion coordinates Qe (left) and Qo (right)
at an intermolecular separation R of 3.89 Å of the D6h benzene dimer;
TDDFT/B3LYP-D3 calculated plots are given on the top, while the plots ob-
tained using the model Hamiltonian are given at the bottom.

while in the D6 orientation, the splitting is completely absent
(Figure 7, bottom left). In the T-shaped orientation (Figure
7, bottom right), the splitting of first two excited states is
0.07 eV at an intermolecular separations of 4.5 Å.

The largest EC, i.e., the most pronounced splitting of
the excited states, appears in the D6h parallel sandwich ori-
entation. It has been shown previously that a minimum on
the potential energy surface of the lowest excited state exists
in this D6h orientation corresponding to a benzene excimer
(1B2g) with an intermolecular separation of only 3.05 Å.72

Hence, we studied the localization of the exciton in this par-
allel D6h conformation. The relevant potential energy curves
of the benzene dimer were determined at fixed values of
R(3 Å—excimer minimum, 3.89 Å—ground state minimum,
and 5 Å—borderline case) by following the symmetric and
anti-symmetric combinations of the breathing mode, which
belong to a1g and a2u irreducible representations in the D6h

point group, by varying the bond distance rCC from 1.25 to
1.50 Å in steps of 0.025 Å. By elongation of all C–C bonds
in one benzene monomer and simultaneous compression of all
C–C bonds in the other one, i.e., following the anti-symmetric
distortion, the symmetry of the benzene dimer is reduced from
D6h to C6v . Therefore, calculations were performed in D6h

(rCC1 = rCC2) and C6v (rCC1 
= rCC2) point groups.
Cuts through the potential energy surfaces obtained

at TDDFT/B3LYP-D3 level along the symmetric and anti-
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FIG. 10. Potential energy curves of the lowest excited states along the
symmetric and the anti-symmetric distortion coordinates Qe (left) and Qo

(right) at an intermolecular separation R of 5 Å of the D6h benzene dimer;
TDDFT/B3LYP-D3 calculated plots are given on the top, while the plots ob-
tained using the model Hamiltonian are given at the bottom.

symmetric distortions, at intermolecular separation of 3, 3.89,
and 5 Å are displayed in Figures 8–10 (top), respectively. In
the same figures (bottom), results obtained using the model
Hamiltonian (Eq. (19)) are shown. Remember that all neces-
sary parameters for the model Hamiltonian, except the �, are
extracted from ab initio calculations of the monomer alone.73

However, at large intermolecular separation it is straight-
forward to derive also � from monomer calculations alone
knowing the relative orientation of the monomers using the
classical Förster equation for the coupling of the transition
dipole moments.74 For shorter distances further contributions
need to be taken into account.68

The overall agreement between ab initio and model
curves is excellent, despite the simplicity of the proposed
model. The only discrepancy can be found for the slope
of the four highest considered excited states in the model,
Figures 8–10 (bottom right). This is not surprising, since in
pseudo JT theory higher excited states are generally needed
to soften these curves.75, 76 However, for the localization of
the exciton, i.e., the correct description of the shape of the
1B2g curve, which is reproduced perfectly, only eight states are
needed, which are included in the model. In addition, a slight
anharmonicity of the TDDFT computed curves can generally
be noted (Figures 8–10, top left). Obviously, this remains un-
detected in the purely harmonic model (Figures 8–10, bottom
left).

At an intermolecular separation of 3 Å, the splitting of
the first two excited states, 1B2g and 1B1u, is apparent (Fig-
ure 8, left). Along the anti-symmetric distortion of the first
excited state, only one minimum exists (Figure 8, right). Hav-
ing a closer look at Figure 8 (top right), the minimum of the
curve of the first excited state lies at rCC1 = rCC2, though at
longer bond lengths of 1.41 Å, which is between the equilib-
rium bond lengths of the benzene molecule in the ground and
first excited state.

Moving to the intermolecular separation of 3.89 Å, the
splitting of the states decreases, as expected (Figure 9, left),
because excitonic coupling decreases with intermolecular dis-
tance as R−6. Regarding the anti-symmetric distortion (Fig-
ure 9, top right), the interaction between the two first excited
states at the point rCC1 = rCC2 = 1.41 Å can be noticed. Con-
sequently, two very weakly visible minima in the first ex-
cited state, where one monomer unit has C–C bond lengths
1.43 Å and the other 1.39 Å and vice versa, arise, which rep-
resent characteristic examples of pseudo JT distortion. This
situation can be seen as an intermediate case where weak
localization of the exciton due to the pseudo JT distortion
can occur. The curve of the first excited state along the anti-
symmetric distortion coordinate Qo obtained from the model
Hamiltonian (Figure 9, bottom right) is in excellent agreement
with the ab initio curve.

Finally, at R = 5 Å, the first two excited states, 1B2g and
1B1u, are practically degenerate (Figure 10, left). At this in-
termolecular separation, only a very weak interaction exists
between the two monomer units. Removal of the degener-
acy is achieved along anti-symmetric distortion and a sym-
metric double minimum emerges (Figure 10, right). The ob-
tained minima correspond to structures in which one benzene
monomer has C–C bond lengths of 1.43 Å and the other of
1.39 Å and vice versa. It is obvious that one monomer takes on
the equilibrium bond distance of the electronic ground state,
while the other the one of the first excited states. In other
words, localization of the exciton on one of the monomers
in the excited benzene dimer can occur at this intermolecular
separation of 5 Å.

It should be noted that in this case degeneracy exists by
construction, i.e., by putting two equivalent molecules in spa-
tial proximity exhibiting D6h symmetry. However, the distor-
tion that the system undergoes is not due to the JT effect. The
reasons can be found in point group theory as the final state
representation must come from the sum of the two initial irre-
ducible representations. Therefore, the subspace of the degen-
erate B2g and B1u states corresponds to a double irreducible
representation (B2g + B1u). Taking the direct product with it-
self, the result is the total symmetric representation A1g plus
the asymmetric A2u, which is exactly the connecting mode be-
tween the D6h and C6v symmetric structures, representing the
anti-symmetric distortion mode of the benzene C–C bonds.
Moreover, the strong mixing of these two initial wave func-
tions strongly changes the initial character of the state trans-
ferring charge from one molecule to the other clearly indicat-
ing that this is a strong pseudo JTE with a very small gap.

Similar to previous results for the CO dimer,20 distance
dependent EC can either quench the pseudo JT effect (R
= 3 Å), or lead to the formation of pseudo JT (R = 3.89 Å)
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that becomes very strong with quasi-degeneracy at (R = 5 Å).
In the two later cases, breaking the symmetry results in asym-
metrically distorted molecular geometries with lower energy
and concomitant localization of the excitation energy on one
monomer unit.

It is noteworthy that the developed simplified model
leads to the same conclusions as computationally demanding
ab initio calculations, bearing the advantage of giving detailed
insight in the behavior of excitonically coupled chromophores
while being conceptually simple and computationally cheap.

V. CONCLUSION

Excitonic coupling is the physical quantity that deter-
mines the function and efficiency of many photo-biological
processes like light harvesting or light reception, or of tech-
nological devices like organic light emitting diodes or organic
photovoltaics. In this work, a novel scheme for analyzing ex-
citon localization or equivalently excitation energy transfer in
excitonically coupled dimers taking vibronic coupling into ac-
count is presented, which can be derived from intrinsic prop-
erties of the constituting monomers alone. The derived model
has here been exemplified using the benzene dimer and its
validity and applicability have been tested against ab initio
results. Most importantly, the derived Hamiltonian forms the
basis for more advanced quantum simulations of excitons in
coupled chromophores.

Spatially separated equivalent molecules have degener-
ate excited states by construction. In principle, two possibil-
ities exist to lift the degeneracy, either by lowering the in-
termolecular separation between two monomer units to in-
crease EC, or by vibronic coupling where only a small dis-
placement of the atoms removes the degeneracy and lowers
the energy of the states, indicating strong vibronic coupling
in the excited states, whereas the ground state is not affected.
In other words, if two chromophores are close enough that
excitonic coupling plays the main role for splitting of the ex-
cited states, this situation corresponds to the coherent regime
of excitation energy transfer as the exciton remains delocal-
ized over both chromophores. With increasing the intermolec-
ular separation, EC strength decreases, and as soon as the
vibronic coupling approaches a similar magnitude than EC,
pseudo JT distortion occurs and the exciton tends to localize
on one monomer. Going to even larger intermolecular separa-
tion, a very strong pseudo JT effect removes the excited states
degeneracy.

In order to rationalize the effects that are taking place in
the process of exciton localization, we have developed this
model based on the vibronic coupling theory, to elucidate
the mechanism of exciton localization vs. excitation energy
transfer, in strong, weak, and intermediate EC case. The key
role of the pseudo JT coupling, especially in intermediate EC
situations, has been illuminated. In particular, neglecting the
pseudo JT coupling between excited states in the model would
always lead to a delocalized picture of the exciton.

Bearing in mind the importance of excitation energy
transfer, its consideration from a JT perspective will pave the
road to a better understanding of interacting chromophores in

a large number of biological systems. The purpose of the new
developed model is to represent and predict the properties of
coupled identical chromophores based on intrinsic features of
the constituting monomer alone, allowing us to study much
larger biological or chemical systems, but still to achieve mi-
croscopic insights into the details of exciton localization vs.
excitation energy transfer in complex systems. In other words,
our main conclusion is that most of the influence of vibronic
and excitonic couplings on the localization of the exciton can
be obtained from calculations of a single monomer. This will
allow for studying the properties of isolated molecules by
looking for systems with improved excitation transfer prop-
erties.
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in the excellent agreement with the force obtained for the monomer in the
first excited state (8.48 eV/Å). Ke and Ko were obtained from the monomer
force constant in the excited state. Following the model and Eq. (15) the
dimer force constants are equal to the monomer force constant. Kmono has a
value of 313.07 eV/Å2. The dimer forces, Ke and Ko, where the monomer
units are strongly separated, are 318.10 eV/Å2 and 269.82 eV/Å2,
respectively. Moving to smaller intermolecular separations, Ke and Ko

have almost constant values. At intermolecular distance of 3.89 Å Ke is
316.49 eV/Å2 and at R = 3 Å it has value of 318.28 eV/Å2. Ko calculated
at intermolecular separation of 3.89 Å is 262.43 eV/Å2 and at intermolec-
ular separation of 3 Å the constant has a value of 283.45 eV/Å2.
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