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1 INTRODUCTIONThe analysis of growth and dose response curves, where experimental units (normally allocated todi�erent treatments) are observed over a period of time, has been studied under the hypothesisthat the observed sequence of measurements y(t) is sampled from a realization of a continuous timestochastic process Y (t).In this type of analysis, it is of main interest to estimate the mean response of Y (t) andwhether there exist signi�cant di�erences between the treatment groups. One way to test fordi�erences between groups is to assume that the mean response Y (t) is decomposed into two additivecomponents. The �rst one captures the so called common e�ect and the second one the group e�ect.To estimate both common and speci�c e�ects, in a fully parametric context, Laird and Ware (1982)propose linear additive components and Lindstrom and Bates (1990) nonlinear ones. More recently,Boularan et al. (1994) have introduced a method to estimate the components nonparametrically,but they do not incorporate dependence along time in the response variable. On the other hand,Hart andWehrly (1986) estimate the mean response of a growth curve nonparametrically accountingfor correlated errors, but they do not study the possible di�erence between treatment groups.Moreover, no discussion about bandwidth selection criteria is provided. Rice and Silverman (1991)and Hart and Wehrly (1993) propose cross validation based methods, and Ferreira et al. (1997)introduce a selection method that is based on a modi�cation of the Rice criterion. Moreover, thislast paper considers nonstationary correlated errors as suggested by Núñez-Antón and Woodwoth(1994). All the previous error covariance structures fall within the general class considered byFraiman and Meloche (1994) and, therefore, the result in all cases is that smoothing dependentobservations is in general not consistent unless we use repeated measurements. As pointed out inFerreira et al. (1997), this represents an important problem when analyzing asymptotic optimalityof a data driven bandwidth selection method since the bandwidth only has a second order e�ect.In order to overcome the previous problem and, at the same time, be able to estimate and testgroup e�ects, we propose an additive nonparametric model where the dependency of observationsalong time is captured by using discrete nostationary covariance structures. This type of covariancestructures are motivated in Hart (1991), and analyzed for the stationary case. We extend the resultsto the nonstationary case, as motivated by Núñez-Antón and Woodwoth (1994). The discretecovariance structure is particularly useful when analyzing data driven bandwidth selection criteria.The additive components will be estimated nonparametrically following the procedure proposedby Boularan et al. (1994) and the bandwidth will be chosen by two di�erent data-driven criteria.We develop a method to test for di�erences between groups. A standard procedure to carry these2



tests out will be to obtain the asymptotic distribution of the estimators. Unfortunately, under thehypotheses of our model, this is not a trivial issue. In addition to this, practical reasons have ledus to propose a di�erent and well know approach for these �more complicated� types of situations.The proposal we make for these tests is very simple and, also, very easy to implement. We are infact proposing to carry out a randomization test to detect if the group di�erence is statisticallysigni�cant. This test is based on permutation of the rows in the data matrix. This techniqueappears as a very natural way to test for the group e�ect. Finally, with this procedure we can alsotest for the density structure of the time density for each group, since we will propose a modelunder a random time index.Thus, the paper structure is as follows. In Section 2 we propose the two-stage model and presentthe methodology for the estimation of the unknown functions. In Section 3 we present the mainresults that provide the consistency of the estimations for the two stages. The proposals for thebandwidth selection are described in Section 4. In Section 5 the randomization test for the groupe�ect will be developed. In Section 6 we present the results when applying this methodology toour data set. Finally, in the Appendix, we give the details for the proofs of the main results.2 STATISTICAL MODEL AND HYPOTHESESAll the considerations in Section 1 lead us to propose the following modelYij = r(tij) + rG(tij) + �i(tij); (1)for i = 1; : : : ; m and j = 1; : : : ; n, where n is the maximum number of measurements for eachindividual, and ni is the number of available data for the i-th subject. Yij is the response for subjecti at time tij . If the observation at tij is missing, we put Yij = 0. We will also let N =Pmi=1 ni andNG = Pi2G ni. That is, N is the total number of available observations and NG is the number ofavailable observations in group G. Note that r(�) denotes the common e�ect and rG(�) the groupe�ect. We assume that:� (M.1) E(Yij jtij) = r(tij) and E(Yij ji 2 G; tij) = r(tij) + rG(tij).The �i(tij)'s are assumed to model any yet unexplained e�ect due to the possible existence of acorrelation between any two measurements on the same individual.In addition, we need the following identi�cation condition for rG:3



� (M.2) E(rG(t)) =PG rG(t)P (G) = 0, for any t 2 [0; b],where P (G) denotes the probability of being in group G. The tij 's are the times at which the i-thsubject is observed for the j-th time. All time points are assumed to belong to a compact, let ussay [0; b]. As for the time points, we assume that:� (T.1) tij 2 [sj ; sj+1]; 8i, with s1 = 0 and sn+1 = b.� (T.2) tij = (sj+1 + sj)=2 + Uij , where the Uij 's are independent random variables withunconditional density gj , and the support of the gj is [(sj � sj+1)=2; (sj+1� sj)=2]. Thus, thedensity of the random variable representing the time can be written as:f(t) = 1n nXj=1 gj �t� sj+1 + sj2 � :� (T.3) The conditional density of Uij , when we know that i belongs to group G, will bedenoted by gjG. Therefore,fG(t) = 1n nXj=1 gjG �t� sj+1 + sj2 �will be the density of the time index in group G, since they might be di�erent. It should alsobe noticed that f(t) =PG fG(t)P (G).Here, it is also assumed that:� (R.1) r, rG, and f are all bounded, p times continuously di�erentiable functions andinf t f(t) > 0; inf t fG(t) > 0, for any t 2 [0; b] and for any group G.� (R.2) For k � 1 there is a constant Ck so that for t 2 [0; b]E hY k jT = ti � Ck <1� (I.1) All the n0is are of the same order, i.e. ni = O(n).We will study the consistency of the estimators under a very general structure, allowing for non-stationary correlation between observations on the same individual. In order to obtain the mainresults, we will need the following assumptions for i = 1; : : : ; m and j = 1; : : : ; n:� (E.1) Ef�i(tij)jtijg = 0. 4



� (E.2) There is independence across individuals and for the same individual we have thatcovf�i(tij); �i(tis)jtij ; tisg = (j; s): (2)� (E.3) There exists a �nite positive constant S such that limn!1 n�1Pnj=1Pns=1 j(j; s)j =S� (E.4) Pns=1 jj � sjj(j; s)j< C <1, uniformly in j.� (E.5) limn!1 1n2 Xj;l Xj0 ;l0 j�(j; l; j 0; l0)j < C <1;where �(j; l; j 0; l0) = E(�(tij)�(til)� (j; l))(�(tij0)�(til0)� (j 0; l0))Remark 1. One can see from these assumptions that we are working with independent individ-uals, allowing for a discrete nonstationary covariance between observations on the same individual.We do not assume any parametric structure for the covariance, but we restrict by (E.3) and (E.4)the behavior when the number of observations per subject increases.Remark 2. We might notice that if (j; s) = (jj � sj) we are in the stationary case (Hart,1991). In this sense, our results can be interpreted as a generalization of those obtained in hispaper.Remark 3. A discrete structure like (2) is in between the continuous structure and the in-dependent case, letting the data values at two design points separated by a �xed distance, beasymptotically uncorrelated.We now propose the estimates for the components of our model, providing their theoreticalproperties.3 KERNEL ESTIMATORS AND FIRST PROPERTIESEach of the two components, the common and the group e�ect, in model (1) will be estimatedusing a kernel smoothing technique.The function r(�) will be estimated by using all the data as if they had been collected fromone single individual. We use as estimates of r(�) the familiar Naradaya-Watson kernel regression5



smoother (Härdle, 1990). These estimates are de�ned for a kernel functionK(�) and for a bandwidthh by r̂(t) = 1Nh mXi=1 nXj=1YijK �tij � th � I(Yij 6= 0)f̂(t) (3)with the usual Rosenblatt-Parzen kernel density estimator method (Rosenblatt, 1956; Parzen,1962): f̂(t) = 1Nh mXi=1 nXj=1K �tij � th � I(Yij 6= 0) (4)Here I(�) is an indicator function for the condition used as argument. Once we have estimatedthe common e�ect r(�), we estimate the group component rG(�) by doing kernel regression on theresiduals for each group, i.e. for any group G we de�ne the estimate:r̂G(t) = 1NGhGXi2G nXj=1(Yij � r̂(tij))K �tij � thG � I(Yij 6= 0)f̂G(t) (5)Here the bandwidth hG may vary from one group to the other. The corresponding density estimatoris f̂G(t) = 1NGhG Xi2G nXj=1K �tij � th � I(Yij 6= 0) (6)The usual assumptions in kernel smoothing techniques for the kernelK and the di�erent bandwidthsare as follows:� (K.1) K is a kernel having compact support on [�c; c], with c > 0.� (K.2) K is a bounded kernel of order p.� (K.3) R c�cK(z)dz = 1.� (H.1) h �! 0, as N tends to in�nity.� (H.2) hG �! 0, as NG tends to in�nity.Now we need to study the asymptotic properties of our nonparametric estimators given by equations(3) and (5). That is, we give asymptotic bounds for the consistency properties for these estimates.When giving these properties, and as typical in kernel smoothing techniques, a weight functionw(t) with the following assumption will be used:6



� (W.1) w is positive, bounded and integrable over [0; b].In order to study the asymptotic properties, let us consider the mean square error and the meanintegrated square error of any estimator s(t) that is being estimated by ŝ(t).MSEfŝ(t)g = Efŝ(t)� s(t)g2= [Efŝ(t)g � s(t)]2 + varfŝ(t)g= bias2fŝ(t)g+ varfŝ(t)g;MISE(h) = Z b0 Efŝ(t)� s(t)g2w(t)dt;and ASE(h) = 1N Xi;j fŝ(tij)� s(tij)g2w (tij) :Theorem 1 Under assumptions (E.1)-(E.4), (H.1), (I.1), (K.1)-(K.3), (M.1)-(M.2), (R.1),and (T.1)-(T.3), we have that, for any t 2 (0; b), as Nh goes to in�nity,MSEfr̂(t)g = cK(t)2h2p + 1Nhf(t)SdK + o(h2p) + o((Nh)�1);where dK = R K2(u)du and cK(t) = (f(t)p!)�1 R c�c �pK(�)d�f(rf)(p)(t)g.Remark 4. The order of the MSE is the standard in a nonparametric estimator. The relevanceof our result is that this order can be obtained under a very �exible covariance structure.Remark 5. The results show the consistency whenever h goes to zero and Nh goes to in�nity.Note that for this result to hold it is not necessary to let both, n and m, go to in�nity.Remark 6. The greater the variance term is, the greater the smoothing parameter will be,and the variance term increases with S . So, if we have correlation between units, the smoothingparameter should be greater than in the independent case. This is consistent with the analysis madeby Hart and Wehrly (1986), since, as they point out �the less smooth the correlation function is atzero, the larger the optimum bandwidth is.� Clearly, the discrete structure is not even continuousand, therefore, not smooth at all.It is also possible to give a global convergence result that we present as a corollary.Corollary 1 Under the assumptions of Theorem 1, as Nh goes to in�nity,MISE(h) = CKh2p +DK 1Nh + o(h2p) + o((Nh)�1);7



as N tends to in�nity. Here, the constants are CK = R b0 cK(t)dt and DK = SdK R b0 f(t)�1dt.The next theorem gives the consistency for the kernel regression estimate r̂G(�) for the secondstage (i.e. the estimate for the group e�ect).Theorem 2 Assuming that (H.2) and the conditions in Theorem 1 hold, we have that, for anygroup G, as NGhG goes to in�nity,MSEfr̂G(t)g = cG(t)h2pG + 1NGhGfG(t)SdK + o(h2pG ) + o((NGhG)�1);where cG(t) = (fG(t)p!)�1 R c�c �pK(�)d�f(rGfG)(p)(t)g.Remark 7. Again, we see that the convergence of the nonparametric estimator to the under-lying function goes as rapidly as possible under the standard conditions.Finally, we give a global convergence result for the second stage estimator.Corollary 2 Under the assumptions of Theorem 2, as NGhG goes to in�nity,MISEG(h) = EKh2pG + FK 1NGhG + o(h2pG ) + o((NGhG)�1) + O((h2pG + (NGhG)�1)(h2p + (Nh)�1)):Here, the constants are EK = R b0 cG(t)dt and FK = SdK R b0 fG(t)�1dt.4 SELECTION OF THE SMOOTHING PARAMETERIn the previous sections, the estimator and the consistency results have been obtained assuming�xed bandwidths for the estimator of the common e�ect, h, and the group e�ect, hG. In thissection, we will introduce di�erent procedures to compute these bandwidths from data. This isof particular interest when considering, in the next section, the randomization approach to testfor equality of the di�erent groups. We de�ne one optimal global bandwidth for the estimator ofthe mean e�ect as the solution to the following optimization problem h� = argminhMISE(h), andfor the group G, h�G = argminhMISEG (h). Unfortunately, these optimal bandwidths can not bedetermined since they are functions of unknown quantities. To overcome these problems, severalmethods have been proposed in the literature. Among them, we have decided to use the crossvalidation method, and the method proposed by Rice (1984). The reason is that both bandwidth8



selection methods can be easily transformed to be used in a longitudinal data framework. For crossvalidation see Hart and Wehrly (1993) and for the Rice criterion Ferreira et al. (1997).In the cross validation setting, the bandwidth for the mean e�ect will be chosen according tothe following criterion ĥCV = argminhCV (h). The cross validation function is de�ned as CV (h) =N�1Pi;j �Yij � r̂�i(tij)�2 w(tij), wherer̂�i(t) = Xk 6=i nXj=1Ykj;GK � tkj � th � I(Ykj;G 6= 0)Nhf̂�i(t) (7)and f̂�i(t) = Xk 6=i nXj=1K � tkj � th � I(Ykj 6= 0)Nh : (8)As for the group e�ect, we have selected the bandwidth ĥCVG = argminhCVG (h) : The cross vali-dation function is de�ned as CVG (h) = N�1G Pi2G;j �Yij � r̂(tij)� r̂�iG (tij)�2 w(tij), wherer̂�iG (t) = Xk 6=i;k2G nXj=1YkjK � tkj � th � I(Ykj 6= 0)NGhf̂�iG (t) (9)and f̂�iG (t) = Xk 6=i;k2G nXj=1K �tkj � th � I(Ykj 6= 0):NGh (10)If we want to use the estimated bandwidths propertly, it is necessary to establish some relationshipbetween respectively h� and h�G and ĥCV and ĥCVG . Following Shibata (1981), the next theoremsstate the asymptotic optimality, with respect to the MISE, of ĥCV , ĥCVG .Theorem 3 Assume that conditions in Theorem 1 hold. In addition assume that (E.5), (R.2)and (W.1) also hold. Then, as m tends to in�nity,MISE �ĥCV �infh2HN MISE (h) �! 1 a:s: (11)for some 0 < � < 12p+1 and HN = [aN� 12p+1��; bN� 12p+1+�].Theorem 4 Assume that conditions in Theorem 2 hold. In addition, assume that (R.2) and(W.1) also hold. Then, as mG = #fi 2 Gg tends to in�nityMISEG �ĥCVG �infhG2HNG MISEG (hG) �! 1 a:s: (12)9



for some 0 < � < 12p+1 and HNG = [aNG� 12p+1��; bNG� 12p+1+�].These results were originally proved for the i.i.d. case by Härdle and Marron (1985), and they wereextended to the case of dependence by Härdle and Vieu (1992). In the framework of longitudinaldata, Hart and Wehrly (1993) show the consistency of cross-validation under a continuous andstationary structure for the covariance function. Boularan et al. (1994) show the same consistencyproperty when estimating the di�erent components of an additive model, but assuming indepen-dence among the di�erent curves. The main interest of the results shown in Theorems 3 and 4 isthat the asymptotic optimality of the cross validated bandwidths is shown under the assumptionsthat the covariance structure is discrete and nonstationary. This generalizes the previous resultsand highlights a very important feature in the asymptotic properties in the cross-validation methodfor longitudinal data. That is, cross-validation when deleting one curve is not consistent unless welet the number of individuals go to in�nity.As pointed out in Section 1, we are very interested in the applicability of the methodologypresented in this work. The dataset we are interested in has been analyzed before and presentsa correlation structure that can be well modelled in a parametric way. Therefore, as Hart andWehrly (1993) argue, if we use a modi�ed Rice criterion (see Rice, 1984), the resulting smoothingparameter should be better. Roughly speaking, selecting cross validation is like using the samplecovariance as an estimator for the covariance structure, whereas the Rice criterion uses a consistentestimator of the covariance.For this modi�ed Rice criterion, the bandwidth for the common e�ect will be selected accordingto the following criterion ĥR = argminhRICE (h), whereRICE(h) = 1N Xi;j (Yij � r̂(tij))2w(tij) + 2N2hXi;j 1f̂(tij) niXk=1K � tij � tikh � ̂(k; j)w(tij):Theorem 5 Assume that conditions in Theorem 1 hold. In addition that assume (E.5), (R.2)and (W.1) also hold, and that ̂ is a consistent estimator of . Then, as m tends to in�nity,RICE �ĥR�infh2HN MISE (h) �! 1 a:s: (13)for some 0 < � < 12p+1 and HN = [aN� 12p+1��; bN� 12p+1+�].Now, we can consider the same criterion for the second stage. In this case, the bandwidth for thegroup e�ect will be ĥRG = argminhRICEG (h).RICEG(h) = 1NG Xi2G;j(Yij � r̂(tij)� r̂G(tij))2w(tij) + 2N2Gh Xi2G;j 1f̂G(tij) niXk=1K � tij � tikh � ̂(k; j)w(tij):10



For the second stage, we state the next theorem.Theorem 6 Assume that conditions in Theorem 2 hold. In addition, assume that (R.2) and(W.1) also hold, and that ̂ is a consistent estimator of . Then, as mG tends to in�nityMISEG �ĥRG�infhG2HNG MISEG (hG) �! 1 a:s: (14)for some 0 < � < 12p+1 and HNG = [aNG� 12p+1��; bNG� 12p+1+�].5 TESTING FOR THE GROUP EFFECTOnce we have estimated the mean and the group e�ect, it can be of interest to analyze the di�er-ence between groups. That is, we would like to test if the di�erence between groups is statisticallysigni�cant. This has been an issue receiving some consideration from other authors that have ana-lyzed this dataset in the past (see e.g., Zimmerman et al., 1998 and Núñez-Antón and Woodworth,1994). Thus, there are two issues regarding possible tests to be carried out, for the two di�erentgroups:� A contrast to determine if the di�erence between groups is statistically signi�cant.� A contrast to determine if the di�erence between the densities for the times at which individ-uals are observed is statistically di�erent for the two groups. Regarding this issue, we haveassumed, for estimation purposes, that the densities are in fact di�erent and, thus, we haveused di�erent densities for the estimation of the group e�ects.That is, we are interested in testing both the statistical signi�cance of the di�erence betweengroups and between densities for each of the groups. Even though the methodology is similar,we will only concentrate on a randomization test for contrasting the di�erence between groups,assuming that each of the two groups has a di�erent density.A randomization test is a permutation test based on randomization (random assignment) totest a null hypothesis about treatment e�ects in a randomized experiment. In our case, individualswere randomly assigned to the di�erent groups (i.e. di�erent types of cochlear implant) and, thus,we are on this situation. The test is carried out as follows. A test statistic is computed forthe experimental data, then the data are permuted (divided or rearranged) repeatedly and thetest statistic is computed for each of the resulting data permutations. Those data permutations,11



including the one representing the obtained results, constitute the reference set for determiningsigni�cance. The proportion of data permutations in the reference set that have test statisticvalues greater than or equal to (or, for certain test statistics, less than or equal to) the value for theexperimentally obtained results is the P-value (signi�cance or probability value). If, for example,the proportion is 0.02, the p-value is 0.02, and the results are signi�cant at the 0.05 but not the0.01 level of signi�cance. Determining signi�cance on the basis of a distribution of test statisticsgenerated by permuting the data is characteristic of all permutations tests; it is when the basis forpermuting the data is random assignment that a permutation test is called a randomization test.This is the type of test we will be using here. See Good (1994), Edgington (1995), Garthwaite et al.(1995, chapter 9) and Lehmann (1986, Chapter 5, Sec. 12, for references to complete some generaldetails on this methodology.The null hypothesis for a traditional randomization test is that the measurements for each personor other unit that is randomly assigned will be the same under one assignment to treatment asunder any alternative assignment that could have resulted from the random assignment procedure.Thus, when the null hypothesis for the traditional randomization test, which is the hypothesisof no di�erencial treatment e�ect, is true, random assignment of subjects to treatments randomlydivides the measurements among the treatments. Each data permutation in the reference set, whichfunctions as a randomization test �signi�cance table�, represents the results that would have beenobtained for a particular assignment if the null hypothesis is true.The procedure we will use for our speci�c test to investigate the statistical signi�cance of thetreatment di�erence is as follows:1. De�ne a �grid� of points where all e�ects (i.e. common and group e�ects) are estimated.Note that this is necessary because the two groups do not have common time points. Thenumber of time points in the grid will be denoted by Ng.2. Estimate the densities fA(�), fB(�), and the group e�ects, r̂A(t) and r̂B(t) for the originaldataset, using the methods speci�ed in Sections 3 and 4.3. De�ne the test statistic as:Tobs = NgXj=1 jr̂A(tj)� r̂B(tj)j = 2 NgXj=1 jr̂A(tj)j : (15)The last equality holds because of the condition r̂B(t) = �r̂A(t).4. Keep the number of observations per group as 21, the initial value in the original dataset.12



5. Permute randomly the rows of the data matrix (m individuals with the i-th individual havingni observations available) Q times.6. For each of the q = 1; : : : ; Q permutations of the data, assign half of the individuals (i.e. 21)to treatment A, and the other half to treatment B. Let us denote these halves by Aq and Bq.This will constitute our new dataset originated from permuting the data.7. Maintain the estimate of the common e�ect since the sampling is without replacement. Es-timate fAq (�), fBq (�), rAq (t) and rBq(t), as indicated in Sections 3 and 4, keeping the valuesfor the bandwidths we obtained for the original dataset, since the optimal bandwidth is nota�ected by the randomization process.8. Compute the test statistic in equation (15) for each of the q = 1; : : : ; Q permutations of thedata.9. Calculate the P-value or the critical value for our randomization test. The proportion of datapermutations in the reference set that have test statistic values greater than or equal to thevalue for the experimentally obtained results is the P-value (signi�cance or probability value).The critical value will be the (1� �)-th percentile of the test statistic values calculated fromthe respective permutations.10. Conclude if the di�erence in group e�ect is statistically signi�cant or not, at the � level ofsigni�cance.The same procedure can be used for testing the signi�cance of the di�erence for the densitiesin the two groups.6 Application to the Speech Recognition DataIn this section we present the application of our methodology to the speech recognition dataset fromthe Iowa Cochlear Implant Project (Gantz et al., 1988). In this data set, the data consist of scores(percentage of correct responses) on a sentence test administered under audition-only conditions togroups of human subjects wearing one of two types of cochlear implants, referred to here as A andB. Implants were surgically implanted �ve to six weeks prior to being electrically connected to anexternal speech processor. Subjects were profoundly, bilaterally deaf, thus pre-connection baselinevalues for the sentence test were all zero. Twenty-one subjects received implant A and 21 receivedimplant B. 13



The data set consists of N = 155 observations available on m = 42 subjects, 21 subjects in eachof the two groups for each type of cochlear implant. In the notation introduced in Section 2, wealso have that the number of observations available for the subjects wearing cochlear implant typeA was NGA = 76 and the one for subjects wearing cochlear implant type B was NGB = 79. Themaximum number of available observations a subject can have is n = 6. As illustrative examples,we can point out that the values the ni's (i.e. number of observations available on subject i) takeon are di�erent and small. For example, n1 = 2, n2 = 3, � � �, n41 = 2, and n42 = 2. Thus, as canclearly be seen, most subjects do not have more than 2 or 3 observations available, and very fewhave all 6 observations.Measurements were scheduled at 1, 9, 18, 30, 40, and 54 months after connection; there wassome variation in actual follow-up times, however, so these times were not exact. Moreover, somesubjects did not show up for one or more of their scheduled follow-ups. Thus, actual follow-up timescould be very well considered to be randomly distributed around the scheduled follow-up times. Itwas also assumed that these observations were missing at random. We are interested in estimatingthe common and group (i.e. type of cochlear implant) e�ects believed to be present in this dataset. As proposed in earlier sections, we would compare two well known methods for bandwidthselection: the cross validation criterion and the Rice criterion. The theoretical properties for thesetwo methods have shown that they work well under the conditions stated in Section 4, which canbe easily veri�ed for this dataset (see, e.g. Núñez-Antón et al., 1999).In addition, we would like to test for a group e�ect (i.e. if there is as signi�cant di�erencebetween the two types of cochlear implants). We also want to investigate the features in the withinsubjects covariance structure, known to have a speci�c parametric nonstationary structure (see,e.g. Núñez-Antón and Woodworth, 1994, and Zimmerman et al., 1998). These ideas and the stepsto carry them out can, of course, provide a clear picture of the main properties of the dependencybetween audiologic performance and time for this data set.Figures 1 and 2 show the scatter plot and the pro�les of the audiologic performance over timefor all 42 subjects. From these �gures, it is quite hard to reckon a precise parametric form to usefor the model in this data set.Núñez-Antón and Woodworth (1994) analyzed a previous version of this dataset. Their �nalmodel for the mean response was a quadratic in time model that did not �nd a signi�cant group14



Figure 1: Scatter plot of the speech recognition data set.
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Figure 2: Pro�les for the subjects in the speech recognition data set.
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e�ect. The other known parametric approach for this data set has been taken by Zimmerman etal. (1998). They considered the updated and corrected version of the dataset (i.e. the one we willuse here). They decided to consider only the observations available at 1, 9, 18 and 30 months andobtained a quadratic in time model for the mean response and a signi�cant group e�ect. Núñez-Antón et al. (1999) proposed a three-stage estimation approach, assuming a continuous covariancestructure and without justifying the selection of the smoothing parameter.For our estimation process we have selected the Gaussian kernel and for the bandwidth selection,we present both cross validation and Rice criteria. For the latter, we have used estimates obtainedfrom nonlinear least squares, following the ideas in Ferreira et al. (1997), for the theoretical modelwhere: covf�i(tij); �r(trs)jtij ; trsg = ( �2� jj��s�j� if i = r0 if i 6= rEstimation of the Common E�ect:We have used the methodology develop in Section 3. The value obtained for the bandwidthusing the leave-out-one-subject cross-validation criterion was ĥCV = 3:05, and the correspondingbandwidth using the Rice criterion was ĥR = 2:62. Figure 3 shows the scatter plot of the datatogether with the estimated curves r̂ for the common e�ect for both methods of bandwidth selection.As can be seen from this �gure, there is no real di�erence for the estimates obtained for thecommon e�ect, when using either one of these two methods.Figure 3 shows that up to about 30 months there is an improvement in the hearing of thesubject, then it seems that the performance becomes worse as time goes by and it then increasesagain at about 40 months. This decrease could be due mainly to the fact that the subjects withsigni�cant improvement in their hearing did not come back to any more appointments, and thesubjects that continued being observed were the ones showing improvement on the average lowerthan the mean of the whole group. We will be able to see if this hypothesis is reasonable whenestimating the individual e�ects. The �nal increase in performance could be just due to the e�ectof the implant in the people that came back for the last appointments; i.e. people's hearing getsbetter as times goes by. Since the individuals left are not exactly, in general, the ones with higherperformances, if the implants are somewhat helpful, they should improve their hearing in the longrun.Estimation of the Group E�ect: According to the methodology in Sections 3 and 4, weestimate r̂A(t) and r̂B(t). Now, motivated by assumption (M.2) we have re-calculated the e�ects17



Figure 3: Kernel regression estimate for the common e�ect r̂(t) for cross validation and Rice'scriterion together with the scatter plot of the speech recognition data set.
Month

Au
dio

log
ic 

Pe
rfo

rm
an

ce

0 10 20 30 40 50 60

-2
0

0
20

40
60

80
10

0

Cross validation
Rice

18



Figure 4: Kernel regression estimate for the common and group e�ect r̂G(t) + r̂(t) for cochlearimplant groups A and B.
Month

Au
dio

log
ic 

Pe
rfo

rm
an

ce

0 10 20 30 40 50 60

-2
0

0
20

40
60

80
10

0

Cross validation - Group A
Rice - Group A
Cross validation - Group B
Rice - Group Busing: r̂�A(t) = r̂A(t)� r̂B(t)2 and r̂�B(t) = �r̂�A(t):The bandwidths selected using the two methods led to the same large bandwiths values. The valuesfor these bandwiths were ĥA = ĥB = 25.Figure 4 shows the scatter plot of the data for both groups together with the estimated curvesr̂(t)+ r̂G(t) for the common and group e�ects, for the cross validation criterion and Rice's criterion.As mentioned before, there is no real di�erence in the results obtained by the two methods proposedhere for this dataset.From this �gure we can see that it looks as if A is a better group, in terms of audiologicperformance, than B. If we were analyzing the two groups in more detail, it could be easily seenthat the �better� group (i.e. A) in terms of improvement of hearing, would be the one losing morepeople after 30 months. Basically, the individuals hearing better, most of them from group A, didnot come back after 30 months. This last issue can be observed by just looking at the data fromgroup A, also featured in this graphic. 19



Figure 5: Test statistic values for testing the group di�erence between cochlear implants using CVand Rice's criterion.
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CV RiceAs mentioned in Section 5, we are also interested in testing the signi�cance of the group e�ect.We carried out the procedure described in Section 5 using Ng = 100 and Q = 1000. We haveobtained, when using cross validation, Tobs = 717:53 and the 95-th percentile of the test statisticvalues from the 1000 permutations was T �0:05 = 1042:18. On the other hand, Rice's criterion wasused, we obtained Tobs = 720:11 and the 95-th percentile of the test statistic values from the 1000permutations was T �0:05 = 1164:72. As can be seen, in both cases the null hypothesis is not rejected,concluding that the di�erence between the two groups (i.e. two types of cochlear implants) is notstatistically signi�cant at the � = 0:05 level. Figure 5 shows the boxplots for the test statisticvalues from the permutations obtained using cross validation and Rice's criterion.ACKNOWLEDGEMENTSThis work was supported by Dirección General de Enseñanza Superior del Ministerio Español deEducación y Cultura and Universidad del País Vasco (UPV/EHU) under research grant PB95-0346.20



APPENDIXProof of Theorem 1: For the proof of this theorem we need the following three lemmas.Lemma 1 Under the assumptions established in Theorem 1, we have that for any compact set Din (0; b), as N tend to in�nity, supt2D jf̂(t)� f(t)j �! 0 a:s:And, as NG tends to in�nity, supt2D jf̂G(t)� fG(t)j �! 0 a:s:Proof of Lemma 1: Assumptions (R.1) and (E.1) are su�cient for Theorem 3.5.1 fromGyör� et al. (1989) and, therefore, the proof is done.Lemma 2 Let t > 0. Under the assumptions of Theorem 1, we have thatvarfr̂(t)g = 1Nhf(t)dKS + o� 1Nh� :Proof of Lemma 2: Letting Kij = K � tij�th �, we can writevarfr̂(t)g = 1N2h2f2(t) mXi=1 nXj=1 nXl=1E [Ef�ij�iljtijtilgKijKil] I(Yij 6= 0)I(Yil 6= 0)+o hPmi=1 n2iN2 ! = A+ o hPmi=1 n2iN2 !From Assumptions (E.1) and (E.2), the �rst term on the right side isA = 1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E(KijKil)I(Yij 6= 0)I(Yil 6= 0)= 1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E(K2ij)I(Yij 6= 0)I(Yil 6= 0)+ 1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E �KijK 0ij ���� tij � tilh ����� I(Yij 6= 0)I(Yil 6= 0)+O(higher order terms): 21



Now, using Assumptions (T.2) and (E.4) we obtain that the last expression is1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E(K2ij)I(Yij 6= 0)I(Yil 6= 0)+ 1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E�KijK0ijO� jj � ljnh �� I(Yij 6= 0)I(Yil 6= 0)+O(higher order terms)= 1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l)E(K2ij)I(Yij 6= 0)I(Yil 6= 0)+O0@ 1N2h2f2(t) mXi=1 nXj=1 1nh1A +O(higher order terms)Now, using the change of variable tij � t = hu and the �rst order Taylor expansion of f(�) and aftersome other standard manipulations, we have that the �rst and leading term can be written as:1N2h2f2(t) mXi=1 nXj=1 nXl=1 (j; l) Z K2��j � th � f(�j)d�j= 1N2hf2(t) mXi=1 nXj=1 nXl=1 (j; l) Z K2(u)f(t)du+ o((Nh)�1)= 1Nhf(t)dkS + o� 1Nh� :The last step uses the fact that when h goes to zero, the variable u will integrate over the wholedomain. This concludes the proof of the lemma.Lemma 3 Let t > 0. Under the assumptions of Theorem 1, we have thatEfr̂(t)� r(t)g = cK(t)hp + o(hp);and the o(�) is uniform over t in ]0; b[.Proof of Lemma 3:The proof follows directly from Núñez-Antón et al. (1999), Lemma 2.Given the previous lemmas, the proof of Theorem 1 is direct using the decomposition of theMSE in terms of the square of the bias plus the variance, and the fact thatr̂(t)� r(t) = (r̂(t)� r(t)) f̂(t)f(t) + (r̂(t)� r(t))f(t)� f̂(t)f(t) :Proof of Theorem 2: Theorem 2 is a direct consequence of the following two lemmas.22



Lemma 4 Under the assumptions of Theorem 2 and for t > 0, we have that Efr̂G(t)� ~rG(t)g2 =o(h2p + (Nh)�1), where the o(�) are uniform over t and~rG(t) = 1NGhGfG(t)Xi2G nXj=1fYij � r(tij)gK �tij � thG � I(Yij 6= 0):Proof of Lemma 4:First note that r̂G(t) � ~rG(t) can be written as (NGhG)�1Pi2GPnj=1K((t � tij)h�1G )[r(tij) �r̂(tij)]. Now, it is not hard to show that for any s 6= t, we have that E[(r(t)� r̂(t))(r(s)� r̂(s))] =o(E(r(t)� r̂(t))2). That is, we are dealing with a smoother of r(tij)� r̂(tij). From here, and usingsimilar arguments to those in Lemmas 2 and 3, we have the �nal result stated in the lemma.Lemma 5 Let t > 0. Under the assumptions of Theorem 2, we have that EfrG(t) � ~rG(t)g2 =cG(t)h2pG + (NGhGfG(t))�1SdK + o(h2pG ) + o((NGhG)�1); where o(�) is uniform over t in ]0; b[.Proof of Lemma 5:This proof is straightforward by just using the result in Lemma 1 for f = fG, Lemma 4, andthe proofs of Lemmas 2 and 3, where we change Yij by Zij = Yij � r(tij), N by NG, h by hG, andf(t) by fG(t).Proof of Theorems 3 and 5:In order to simplify the proofs, for any estimator ŝ(t) of s(t), we de�ne:ASE� (h) = 1N Xi (ŝ(ti)� s(ti))2  f̂(ti)f(ti)!2 w(ti);ASE� (h) = 1N Xi �ŝ�i(ti)� s(ti)�2 f̂�i (ti)f (ti) !2 w(ti);ASE (h) = 1N Xi �ŝ�i(ti)� s(ti)�2w(ti);and MISE� (h) = Z b0 E(ŝ(t)� s(t))2 f̂(t)f(t)!2w(t)dtThe proof of these theorems relies on the following lemmas.Lemma 6 Under the assumptions in Theorem 3, we have thatsuph2HN MISE�(h)�MISE(h)MISE(h) �! 0 a:s:;23



and suph2HN ASE�(h)� ASE(h)ASE(h) �! 0 a:s:as N tends to in�nity.Proof of Lemma 6: The proof is straightforward from Lemma 1.Lemma 7 Under the assumptions in Theorem 3, we have that, as N tends to in�nity,suph2HN ASE�(h)�MISE�(h)MISE�(h) �! 0 a:s:Proof of Lemma 7: The proof of this lemma is inmediate by considering assumptions (R.1),(R.2), (K.1), (K.2), (K.3) and (W.1). Then, Theorem 2 from Marron and Härdle (1986), pag.98, applies and the proof is done.Lemma 8 Under the assumptions in Theorem 3, then we have that, as N tends to in�nity,suph2HN ASE�(h)� ASE�(h)MISE�(h) �! 0 a:s:Proof of Lemma 8: The proof of this lemma follows closely the proof of Lemma 3 from Härdleand Marron (1985). LetASE�(h)� ASE�(h) = 1N Xi;j hA2ij + 2Ai;j �r(tij)f̂(tij)� r̂(tij)f̂(tij)�i f (tij)�2 w(tij);where Aij = r(tij)f̂�i(tij)� r̂�i(tij)f̂�i(tij)� �r(tij)f̂(tij)� r̂(tij)f̂(tij)� :Then, ASE�(h)� ASE�(h) = h(m� 1)�2 + 2(m� 1)�1iASE�(h)+(m� 1)�2N�1Xi;j ( 1nh nXl=1K � tij � tilh � (Yil � r(til)))2 f(tij)�2 + 2 h(m� 1)�2 + (m� 1)�1i�N�1Xi;j �r(tij)f̂(tij)� r̂(tij)f̂(tij)� 1nh " nXl=1K �tij � tilh � (Yil;G � r(til))# f(tij)�2:24



For the second term, by strong law of large numbers, and following the same arguments than inthe proof of Lemma 2, we have that, as m tends to in�nity,1m� 1 mXi=1 " 1nh nXl=1K �tij � tilh � �(til)#2 = Op� 1nh�Finally, apply the Cauchy-Schwartz inequality to the cross term, use the results from Corollary 1and the lemma follows.The proofs of Theorems 3 and 5 follow closely Theorem 1 from Härdle and Marron (1985),pag. 1468 (H-M from now on). In order to keep the proofs as brief as possible, we will write theexpressions such that we can compare them directly with H-M and, therefore, use the results thatcan be applied to our structure. The main idea will be to see where we use the fact that the errorsare not independent, and use there the hypotheses of this more general structure.For the proof of Theorem 3, it is enough to check thatsuph;h02HN ����(MISE(h)�MISE(h0))� (CV(h)� CV(h0))MISE(h�) ���� �! 0 a:s:;and for the proof of Theorem 5, it is enough to check that:suph;h02HN ����MISE(h)�MISE(h0)� (RICE(h)� RICE(h0))MISE(h�) ����! 0 a:s:Now, given Lemmas 6, 7 and 8, this can be done by showing, respectively, that, as N tends toin�nity, suph;h0 �������ASE(h)�ASE(h0)�� (CV(h)� CV(h0))MISE(h�) ������ �! 0 a:s:; and (16)suph;h0 �������ASE(h)�ASE(h0)�� (RICE(h)� RICE(h0))MISE(h�) ������ �! 0 a:s: (17)We show �rst (16). SinceASE(h)� CV(h) = 1N Xi;j (Yij � r(tij))2w(tij) + 2N Xi;j (Yij � r(tij))�r̂�i(tij)� r(tij)�w(tij):Thus, the theorem will be proved just by showing thatsuph2HN ���N�1Pi;j (Yij � r(tij)) �r̂�i(tij)� r(tij)�w(tij)���MISE(h) �! 0 a:s:25



Note that ������N�1Xi;j (Yij � r(tij))�r̂�i(tij)� r(tij)�w(tij)������ = A1(h) +A2(h);where A1(h) = ������ 1N2h � mm� 1� mXi=1 nXj=1Xk 6=i nXl=1K � tij � tklh � (r(tkl)� r(tij))�(tij)f(tij) ������ ;and A2(h) = ������ 1N2h � mm� 1� mXi=1 nXj=1Xk 6=i nXl=1K �tij � tklh � 1f(tij)�(tij)�(tkl)������ :Hence, the proof of Theorem 3 will follow by showing that:suph2HN Ai(h)MISE(h�) ! 0 a:s:for i = 1; 2. For A1(h), we write it as N�2Pmi=1Pnj=1Pmk=1Pnl=1 Vijkl, whereVijkl = 1h � mm� 1�K � tij � tklh � (r(tkl)� r(tij))f(tij) �(tij)and N�1Pijkl Vijkl = Pmi=1Pnj=1 aij�(tij), with aij = (Nhf(tij))�1Pk;i;lK((tij � tkl)h�1)(r(tkl �r(tij))I(k 6= i).Hence, in our context, the order of aij is the same as the order of bj in Lemma 4 on H-M. This means that if we prove that E[(Pij aij�(tij))2] � C(Pij a2ij) holds, the result followsstraightforwardly, since the rest is immediate from their proof.In order to do this, let us note thatE[Xij aij�(tij)]2 = E[Xij Xkl aijckl�(tij)�(tkl)] =Xij Xl aijcil(j; l)= Xij [a2ij(j; j)+Xl6=j aijail(j; l)]� CXij a2ij ;by using Assumption (E.4), and the same arguments as in the proof of Theorem 1.For A2(h), we write it as N�2Pmi=1Pnj=1Pmk=1Pnl=1Uijkl, whereUijkl = 1h � mm� 1�K �tij � tklh � �(tkl)�(tij)f(tij) I(k 6= i);and N�1Pijkl Uijkl =Pijkl bijkl�(tij)�(tkl), with bijkl = (Nhf(tij))�1K � tij�tklh � I(k 6= i).26



Hence, in our context, the order of bijkl is the same as the order of aij in Lemma 4 on H-M.This means that if we prove thatE[(Pijkl bijkl�(tij)�(tkl))2] � C(Pijkl b2ijkl) holds, the result followsstraightforwardly, since the rest is immediate from their proof.For this note that E[Pijkl bijkl�(tij)�(tkl)]2 = E[PijklPi0j0k0l0 bijklbi0j0k0l0�(tij)�(tkl)�(ti0j0)�(tk0l0)]:Using assumption (E.2) then the last term is equal to Pijj0kll0 bijklbij0kl0(j; j 0)(l; l0), and usingsimilar arguments than above this expression can be bounded by C(Pijkl b2ijkl). This closes theproof of Theorem 3.To �nish the proof of Theorem 5, we point out that the numerator in equation (17) can bewritten as C(h) + C(h0), whereC(h) = 2N Xi;j (Y (tij)� r(tij))(r̂(tij)� r(tij))� 2N2hXi;j 1f̂(tij) nXl=1K �tij � tilh � ̂(j; l):It is easy to see that the main terms of C(h) are 2C1(h) + 2C2(h) + 2C3(h), de�ned asC1(h) = 1N2h mXi=1 nXj=1 mXk=1 nXl=1K � tij � tklh � (r(tkl)� r(tij))�(tij)f(tij)C2(h) = 1N2h mXi=1 nXj=1Xk 6=i nXl=1K � tij � tklh � 1f(tij)�(tij)�(tkl)C3(h) = 1N2h mXi=1 nXj=1 nXl=1K � tij � tilh � 1f(tij) [�(tij)�(til)� ̂(j; l)]:Hence, the proof will be done when we show thatsuph2HN Ci(h)MISE(h�) ! 0 a:s:for i = 1; 2; 3. This result has already been proved for i = 1; 2. As for C3(h), we have that:C3(h) = 1N2hf̂(tij)Xij Xl K � tij � tilh � (�(tij)�(til)� (j; l)+ (j; l)� ̂(j; l))= 1N Xijl cijlZijl + 1N Xijl cijl ((j; l)� ̂(j; l)) ;where cijl = bijil from the proof of Theorem 3, and Zijl = �(tij)�(til)� (j; l).Now, we have that E(Pijl cijlZijl)2 = E(Pi;j;lPi0j0l0 cijlci0j0l0ZijlZi0j0l0)= Pijl[c2ijl�(j; l; j; l) + o(c2ijl)]; by using Assumption (E.5). Now, the proof follows taking intoaccount the order of cijl. The remainder term is straightforward since E((j; l)� ̂(j; l))2 = o(1),when m goes to in�nity. 27
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