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1.   Introduction 

As in many other Helds of engineering, the 
design of ocean or marine structures is governed by 
extreme values of wave heights. Several methods 
have been given in the past for the determination 
of design values. However, no method is widely 
accepted by the engineering community. 

Traditionally, the analysis of yearly maxima has 
been considered as a good method for this pur- 
pose. However, recently, peak value methods arose 
as a promising alternative. 

The aim of this paper is to compare these ^*o 
methods and illustrate some of the problems 
related to their use. 

2. Two Standard Methods in the 
Determination of Wave Height 
Design Values 

In this section we analyze the following two well 
known procedures for obtaining design wave 
heights: Wx&peak value method and X\\^ yearly max- 
ima method. 

The first one employs the peak wave heights of 
individual storms and thus composes a set of ex- 
treme wave data. The second one uses the yearly 
maxima. 

Several authors have criticized the second 
method in that it discards large wave heights, when 
they occur in years with large storms, but includes 
relatively small wave heights which are maxima of 
calm years. 

2.1   The Peak Value Method 

This method consists of the following steps: 

1,  Fit the peak values of individual storms to a 
parametric family of distributions 

fo(x; Ao, So, /3o), (1) 

where Ao, 5o and )3u are the parameters. In some 
cases these three parameters can be reduced to' 
two or even to a single one. The fitting of the 
above family can be done either by using all data 
or only tail data (Peak over threshold (POT) 
method). 
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It is worthwhile mentioning that this distribu- 
tion corresponds to the wave height of a storm, 
that is, we assume that the cdf of the maximum 
wave height of storms is Eq. (1). 

2.   Use the following cdf for the maximum wave 
height in a period of duration D years: 

Fo{x', Au, Sa, j3o) Dk (2) 

where k is the mean number of storms per year, 
or determine the wave height, XT, associated 
with a return period T, that is, solve, for jc, the 
equation 

Foix'j Ao, So, $o) — 1 — ~ (3) 

Note that the cdf in Eq. (2) implies the assump- 
tion of independence of storms. 

2.2   The Yearly Maxima Method 

This method consists of the following steps: 

1.   Fit the yearly maxima to a parametric family of 
distributions 

Fi(x; A,, 5i, Pi), (4) 

where Ai, Si and 0i are the new parameters. 
This is equivalent to assuming that the yearly 
maxima follow a distribution which belongs to 
Eq. (4). 

Use the following formula to extrapolate to the 
maximum of a period of D years: 

Fi(:r; A,,6,, 00", (5) 

or determine the wave height x associated with 
a return period 7", i.e., solve the equation for x: 

FI(J:;A,, 5,.Pi) = l-|;. (6) 

3.    Some Problems Related to the 
Data Analysis 

In the analysis of data one has to deal with some 
problems. Among them we mention the following: 

• Selection of the families Fo(x; An, Su, Po) or 
F,(jc; Ai. Si, pt) 

• Estimation of the parameters of the selected 
families 

■    Confidence interval determination 

• Outlier detection 

• Treatment of incomplete series 

3.1    Some Distribution Families Used in the 
Analysis of Wave Data 

The most common used distributions in the anal- 
ysis of wave heights are the following: 

1.  The Gumbel family 

F{x; A, 5) = expj^-exp(—^ jj; 

— 00 <X < 00 

2.  The maximal Weibull family 

(7) 

F{.T;A,5,;3) = exp{- (^)') ; 

JT^A (8) 

3.  The  maximal  generalized   extreme  value  or 
Jenkinson's family 

.„ = e,p{.[:.i^]-}. 

-^- 

4.  The minimal Weibull family 

(9) 

f{x;A,5,^) = l-exp{- (^) "} ; 

j^A (10) 

The Gumbel, maximal Weibull and maximal 
Jenkinson's families are justified from a theoretical 
point of view, because they are the limit distribu- 
tions for maxima (see Galambos [5] or Castillo [2]). 
It is interesting to note that the Jenkinson's family 
includes the other two, as particular cases, and the 
maximal Frechet family (for k>0). The Frechet 
distribution is not justified in this case because 
wave heights are physically limited, no matter we 
deal with shallow or deep waters (see Castillo and 
Sarabia [3] and [4]). 
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The minimal Weibull distribution, though widely 
used, is not theoretically justified in the case of 
maxima. Its only justification is that its range can 
be made to be consistent with the positive charac- 
ter of wave heights. In addition, we remind the 
reader that it belongs to the maximal domain of 
attraction of the Gumbel type, i.e., it is asymtoti- 
caiiy equivalent to a Gumbel distribution of the 
type Eq. (7). 

However, due to the fact that this distribution is 
widely used in the analysis of wave heights, it seems 
convenient to make here some comments. 

Initially we can say that this distribution has the 
following advantages: 

• For A =^0, its range is (0, <»), that is, it does not 
include negative values of the random variable. 

• Assuming that the location parameter, due to 
physical reasons, is fixed to zero, it depends 
only on two parameters. This makes the estima- 
tion process much simpler. 

• Its associated domain of attraction is Gumbel 
type. Thus, it could be used if this were the 
actual case. 

Its main drawbacks are the following: 

• Its range is unbounded on the right. This con- 
tradicts the physical reality. 

• It does not cover the Weibull domain of attrac- 
tion that could be the real situation. 

• It is an asymptotical minimum law. 

It is not stable with respect to maximum opera- 
tions. Thus, if the minimal Weibull law is satis- 
fied for yearly maxima the maxima of periods of 
duration different from one year cannot satisfy 
this law. This problem can be solved by adding 
an extra parameter to this family, which leads 
to the extended minimal Weibull family. 

Consequently, the minimal Weibull family could 
be used if and only if we were sure that the domain 
of attraction of wave heights is of a Gumbel type. 

In order to determine the domain of attraction 
of a given distribution several methods are avail- 
able, such as the Pickands' or the curvature 
methods (see Castillo [2] chapter 6 and Castillo, 
Galambos and Sarabia [3]). 

3.2   Estimation Methods 

Several methods have been used to estimate the 
parameters of the families Eqs. (7) to (10). The 
most important are: 

• The maximum likelihood method 

• The method of moments 

The least squares method 

• The probability paper method 

• The Goda's method 

• The percentile method 

3j;.l The Maximum Likelihood Method This 
method is based on maximizing the likelihood of 
data with respect to the parameters. The central 
idea consists of assuming that the sample comes 
from a population with parent distribution belong- 
ing to a parametric family and choosing the 
parameter values that maximize the probability of 
ocurrence of the sample data. 

This is the best known method in statistics and it 
is recognized as the most convenient, due to its 
statistical properties. It leads to the best estima- 
tors, which, in addition, are a.symptoticalty normal. 
This allows asymptotic confidence intervals for 
the parameters to be easily obtained. Using the 
5-method, to be described later, the confidence 
interval of any regular function of the parameters 
can be obtained, too. In particular, confidence 
intervals of percentiles can be obtained in this 
manner. 

In order to estimate an extreme value distribu- 
tion with the purpose of extrapolation beyond the 
data range, only high order statistics must be used 
and the rest must be discarded. Thus, we recom- 
mend the method indicated by Castillo [2], in 
chapter 5. 

In the case of the minimal and maximal Weibull 
families, the estimation process can lead to some 
problems, either because the likelihood function 
becomes unbounded ({3^ 1) or because some non- 
regularities, lor some values of the shape parame- 
ter (1 <)3 <2). However, it can be applied to values 
of the shape parameter larger than or equal to 2 
without any problem. Thus, once the estimates are 
available, it is necessary to check that their values 
are consistent with the initial hypothesis. Here we 
give the following recommendations: 

• If the shape parameter takes a negative value, 
this means that the data indicate a Frechet type 
domain of attraction. This suggests the pres- 
ence of at least one outlier that gives an erro- 
neous curvature in the right tail. 

If we get a value of ^^ 1, we can think on the 
presence of outliers. This value of the shape 
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parameter indicates that the probability density 
function is increasing in the tail, which contra- 
dicts the physical reality. 

• If we get 1 < ^ < 2 then the law is far from the 
Gumbei law (note that Gumbel corresponds to 
/3 = «). 

• If the value of the A parameter is less than the 
maximum of the sample this indicates that 
there is an outlier. 

3JJ The Method of Moments This method 
consists of equating the moments of the sample to 
the moments of the theoretical distribution. We 
use as many moments as there are parameters to 
be estimated and we get the same number of equa- 
tions from which the parameters can be obtained. 
The asymptotic properties of the moment estimates 
are good but worse than those associated with the 
maximum likelihood estimates. 

This method can also be applied to tail estima- 
tion, using the moments of the truncated distribu- 
tion. 

3.2J The Least Squares Method This method 
consists of minimizing the sum of squares of the 
differences between the theoretical and the empiri- 
cal values. There are many versions of this method. 
In some cases the random variable scale is used to 
measure the errors and in other cases the probabil- 
ity or the return period scales are used (see chapter 
4 of Castillo [2]). 

The main advantage of these methods is that 
they give an explicit solution and do not depend on 
convergence of any algorithm, as is the case with 
the maximum likelihood method. 

Nevertheless, these methods are sensitive to the 
plotting position formulas used in the estimation 
method. 

3.2.4 The Probability Paper Method By prob- 
ability paper method we understand a visual 
method, in which the data is drawn on probability 
paper and a straight line is visually fitted to data. 

The main drawback of this method is that it 
depends on the plotting position formula used in 
the graphic representation and the subjective 
criteria for selecting the optimal fit. 

3.2.5 The Coda Method Goda [4] fits a mini- 
mal Weibull distribution, truncated at the 
threshold value JCO, to the right tail of data. By right 
tail are meant the wave heights above a second 
threshold value xi > >xa- 

3.2.6 The Percentile Method One way of ob- 
taining quick estimates of the parameters of a dis- 

tribution is by means of the percentile method. 
This method consists of equating as many percen- 
tiles in the sample and the theoretical distribution 
as the number of parameters to be estimated. 

As an illustrative example we use this method for 
the estimation of the parameters of a three parame- 
ter maximal Weibull family. 

The cdf of the maximal Weibull distribution is: 

GOi:) = exp H'rn (11) 

Thus, the percentile or order p satisfies the equa- 
tion 

'>-p[-(^)*]- 02) 
from which we get 

x, = A-5(-logp)"^ (13) 

Equating the three percentiles of orderspi,p2,pj 
of sample and population, we get the following sys- 
tem of equations: 

;tp, = A - 5(- logpiY'"; ' = 1. 2. 3 . (14) 

where Pi can be written, using the Gringorten's 
formula, as: 

_ t-0.44 
P'    «+0.12' (15) 

where i is the rank of the order statistic associated 
with/7,. 

From Eq. (14) we get 

Xp,~x„     (-logpi)"''-(-logpi) t/p 

Xp,-Xp,        (-l0g/Jj)"*-(-|0gp2) 
.      (16) 

which depends only on the parameter ^ and thus, it 
can be easily solved by an iterative method, as the 
bisection method for example, with a personal 
computer. Once /3 is known, the values of A and fi 
can be obtained from any two of the equations in 
Eq. (14), For example: 

S = 
■^p 1   xpi 

(_logp.)'"'-(-log/i.)"''' 

A =^„-l-5(-logp,)"^ (17) 
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For the estimates to be consistent with  the 
model we must have 

A >max{xi,X2,,.. ,x„) (18) 

where {xi.Jfi,..., Jf,) is the sample. 
If the percentiles are arbitrarily chosen, this 

inconsistency can easily appear. Thus, it is good 
practice to choose as one of the percentiles the 
maximum of the sample x^. 

In addition, if we are dealing with a tail estima- 
tion we must choose the adequate percentiles, that 
is, percentiles in it. 

In order to improve the quality of the estimates 
we can use three groups of percentiles instead 
of three percentiles, that is, replace the system 
Eq. (14) by the system 

3.2.7 Plotting Position Formulas There is 
much controversy about the plotting position 
formulas to be used for representing data on prob- 
ability paper and the posterior estimation by least 
squares methods. 

The resulting estimates are sensitive to the plot- 
ting position formulas being used. This confirms 
the fact that the least squares method is not opti- 
mal. Note that maximum likelihood or moment 
methods do not depend on plotting positions. 

The discussion of the appropriateness of various 
formulas is intended to avoid or reduce some of the 
errors involved (in this case authors recommend 
using formulas leading to unbiased estimators). 

However, we mention here that all plotting posi* 
tion formulas are asymptotically equivalent. 

3.3   S-Method 

t-kj+mi-l l=*y+«f-l 

—   S   xp, = k -—    2 

} = 1,2.3 

(-Iogp,)"^ 

(19) 

The ^-method (Bishop, Fienberg, and Holland 
[1]) allows us to obtain confidence intervals of 
certain regular functions of the parameters, as 
functions of the parameter estimates, and its vari- 
ance-covariance matrix. 

Let 

where m,-, (/=1,2,3) are the numbers of percen- 
tiles included in each group. With this, equation 
Eq. (16) becomes Eq. (20). 

i-tj + Ml-I i-Jti+m,-1 

—   2   ^w —   X m2       . mi     ,'T '-*! |-=*1 

r"Jt3 + i«3- 1 

mj 
<■=*! 

mi 
Xp. 

. = *2 

T), = /i,(A,, ki A^);/ = 1,2. ...,i      (21) 

be   k   functions   of   the    set    of   parameters 
Ai, A2 A,. Then, according to the 5-method, 

(I7J. ^1) ■ • •. ^*) - C" iC-^i. -^i- ■ ■ ■ > ^j)• 

/!2(A,. A2,.... A,),..., At (A„ Aj,..., A.))    (22) 

l-Jlj+mj-t i = t| + Bil-l 

h   2 (-logp,)"''-;^   2 (-log/'O Ufi 
Ttli i-tj 

mi 
i-ti 

f-Jkj + mj-l i=k2+m2- I 
(20) 

~    2 (-logp,)""-;^    S C-logA) \!0 
mi mi 

■*i 

is an estimator of (TJI, TJ2, .. . ,i?0 which is asymp- 
totically normal and has mean 

(Ai(Aj, Aj,..., Xj),hz(\i, Aj,..., A,),.... 

/i*(A,,A2 A.)) (23) 
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and variance-covariance matrix 

X* = 

*1 

<?Ai 

dh2 
dki ■ 

ahii 
■  dki 

*, dhi 3hk 

dk2 dki   ' '    dkz 

*1 

dk. "   Sk, 

*1 *2 

dki    " 

dkt dki ' '  dk2 

Shi 
dk, ak,  ■ 

dfti 
" ak. 

(24) 

The maximal Weibull distribution satisfies the 
necessary regularity conditions for the asymptotic 
normality if ^ 3= 2. Thus, if we have a sufficiently 
large sample coming from a population with maxi- 
mal Weibul! parent, we can write: 

V«((A,5j)    (A,5.^))^JV(li,i)        (28) 

where 
S = (IU)-\ (29) 

where / = (fl.y) is the information matrix associ- 
ated with the maximal Weibull family, that is. 

an = Ix ip-n 5^     ^^'~P 

«.z=/..= -|^r(2-^) 

(30) 

(31) 

where   X  is   the   variance-covariance   matrix   of 
(Ai, A2 Aj). 

3.4   Estimation of Percentiles of the Maxima) 
Weibull Distribution 

As a simple example of the 5-method we give the 
confidence interval of one percentile of the three 
parameter maximal Weibull distribution. We as- 
sume that the parameter p is larger than 2. 

3.4.1 Point Estimate The percentile Xj, of the 
maximal Weibull distribution is: 

Xp = k -S(-logp) t'» (25) 

Thus, according to the invariance principle, the 
maximum likelihood estimator of that percentile. 
is: 

Xp = A-^(-logp) up. (!») 

3.4.2 Maximum Likelihood Estimators: Asymp- 
totic Theory We assume here that the sample 
consists of those obser\'ed values above the 
threshold value / (type II censoring), that is, the 
probability density function is given by 

f(x;k,S,p 
^'^""^      l-F(t;k,S, 

§1 
^) 

(27) 

and / and F are the pdf and cdf of the maximal 
Weibull family. 

ai3 = /.^=-j^r(l-^) + |7-(2-^)+ir(2-^) 

(32) 

022 = /M = fi (33) 

«33   =   /**,   =    -^^'(2) 

fl» = /f,, =-p{l + r(2)) 

(34) 

(35) 

and / is the matrix of the second order partial 
derivatives, with respect to the parameters of the 
model, of the function 

G(r;A,5,^) = log[l-f (f; A, 5, J3)l, 

If we consider now the function: 

f{k,S,li)=Xp = A-6(-logp)"^ 

with partial derivatives; 

(36) 

f> dk 
1 

as h-^T^.^-i-^ogpy" (37) 

/3=|^=^l0g((~lOgp))(-log/,)'"' 
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then, by the S-method we have: 

\^(fCx,5j)~fiA,8,p))^NiQ,X*)     (38) 

where 

S*   =  (/■i/:/3)Z(f./2/3)' , (39) 

from which the confidence interval for the percen- 
tile Xp at level a becomes: 

(xp-Zi^aa-—^ \x^+Zi-an——). (40) 

3^   Outlier Detection 

In this section we give a method to detect the 
presence of outliers in the sample data. The method 
is based on the fact that if we make the following 
change of variable: 

y = F{X) (41) 

where F{x) is the cdf of X, the resulting random 
variable, Y, is uniform t/(0,l)- 

In addition we know that the maximum of a 
random sample of size n coming from a standard 
uniform parent has cdf 

FY^(y)=y" = ?ioh[Y^^y] (42) 

We shall say that the sample maximum is one 
outlier if the probability of being exceeded is very 
small. Thus, the value >■(! can be considered as criti- 
cal for the maximum value of the sample if 

Prob[y™ >yo] = fv™(y.,) = 1 -y"u = a       (43) 

3.6    Treatment of Incomplete Series 

If we know about the existence of r storms in a 
given series, but we ignore the peak intensities we 
can perform an estimate based on the known peaks 
and then make a correction for the unknown 
peaks. This means estimating the cdf with the 
known peaks and raise to the power (n+r)/n, 
where n and r are the number of known and un- 
known peaks, respectively. 

4.    Critical Anal^^sis 

In this section we analyze the previous methods 
and discuss some of their inconsistencies. 

4.1    Inconsistencies due to the Lack of Stability 
With Respect to Maximum Operations 

When several design methods are recognized by 
the engineering community a certain consistency in 
the respective resuhs should be expected. We shall 
see that this is not the case for some of the previous 
methods, 

Let us assume that we try to fit the minima) 
WeibuU family 

F{x; A„, So, ^o) = 1 - exp {    (^^^ ) *} ,    (46) 

where Ac, do and fin are the parameters. Then, Eq. 
(2) transforms to 

Foix; An, 5„, /3(i) - F(x; A„. 5„. ^u)" = 

and the wave height associated with a return period 
T becomes Eq. (3): 

with a very small (0.01, 0.05, etc.). Then, we get 

yo = (!-«)"" (44) 

This critical value refers to the random variable 
y. Thus, we need to obtain X by means of the in- 
verse of Eq. (41). As one example, for the maximal 
WeibuU distribution we get 

xo=-A-5t-log(l-a)""]"^ (45) 

xr = A., + 5„{-log[l-(l-|;)'*]}"*'      (48) 

Let us assume that now we also use the minimal 
Weibuli family in Eq. (4): 

F,(x; A,. Si, J30 = 1 - exp {    (^^ )"'),   (49) 
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where Ai, 5i, ^i are the new parameters. Then, 
Eq. (5) becomes 

FD(X; AI, S,, pi) = Fi(x; A,. S,, ^0° = 

-A, ^"'11" 

FD(X; XU 5.) = { «p [ - exp (^ )]}"   (56) 

and 

{'-«4-('-ir)ir <™) ,. = A,-S,log[-log(l-i)] (57) 

and the wave height associated with a return 
period T, from Eq. (6), is 

XT = A, + 5. {-log[l-(l-|;)]}"'"        (51) 

The minimal Weibull model is inconsistent in the 
following sense: It is not stable with respect to max- 
imum operations, that is, when the cdf is raised to 
a given power s^l, then, the resulting cdf is not 
minimal Weibull. Thus, though Eq. (46) is minimal 
Weibull, Eq. (47) is not minimal Weibull for Dki^^. 
In other words, if we assume a minimal Weibull 
distribution for the peaks of storms, the yearly 
maxima cannot be minimal Weibull and vice versa. 
In fact for equations Eqs. (47) and (48) to be 
identical to Eqs. (50) and (51). respectively, i.e., for 
consistency, we must have 

Ao — A), So = Si, ^0 — /3i, A — 1 (52) 

which implies k = I, that is a mean number of one 
storm per year, which is not the case. 

However, if, instead of using the minimal Weibull 
family we use the maximal Gumbel family 

Fo(Jc; Ao, So) = exp I - exp (-y^ ) I, (53) 

then, Eqs. (47), (48), (50) and (51) become 

Foix; Ao. 5„) = { exp [- exp (^ j])** (54) 

XT = Ao- 5« log [ - log (l -i ) "*] (55) 

and, taking into account that 

{-[--(v)]r- 

the coincidence of the pairs Eqs. (54)-(56) and Eqs. 
(55)-(57) implies 

do = 5i >> Ao = Ai - 5i \0gk. (59) 

That is, the coincidence of both is possible for any 
value of k. 

The same conclusion is valid for any of the 
Weibuil Eq. (8) or the Jenkinson's Eq. (9) families. 

4.2   Inconsistencies Associated With the Lack of 
Stability With Respect to Truncation 

Goda's method is inconsistent for the following 
reasons: 

1. It gives different estimators for different values 
of JCu. 

2. If the truncated distribution belongs to the 
minimal Weibull family it cannot belong for a 
different threshold value. Thus, different 
designers using different threshold values 
necessarily arrive to different models. 

In the following paragraphs we shall make a de- 
tailed analysis of this problem. 

With respect to the first inconsistency it is clear 
that because the method only uses the data above 
the second threshold value JC|, the resulting esti- 
mates should be independent on the first threshold 
value xo- 
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In relation to the second inconsistency, the 
model should be stable with respect to truncations. 
With the purpose of clarifying this idea, let us 
assume that we choose a family of candidate distri- 
butions H(x;y), where the second argument y is 
one parameter, which, without loss of generality, 
can bs assumed to he the threshold value. Then, if 
the wave height exceeding z has as cdf the function 
mx,z), then, the wave height exceeding y should 
have a cdf given by 

H{x-z)-H{y;z) 
\-H(y\z) = H(x,y), (60) 

where the right hand term arises from the consis- 
tency condition that expresses that the family 
H(x;z) remains valid for any value of the threshold 
parameter, which in this case isy. 

Equation (60) is a functional equation. Its gen- 
eral solution can easily be obtained by making 
z = zo, that is. 

where 

fi<^>y)- l_G(y)       ' 

G(x) = H(x;zo). 

(61) 

(62) 

For H{x;y) to be a cdf, then G{x) must also be a 
cdf. 

Equation (61) proves that any consistent family 
H{x;y) must come from another family G(x) by 
means of a truncation procedure. 

The minimal Weibull family, used by Goda, does 
not satisfy this condition. Thus, it is inconsistent. 

With the purpose of having a consistent family in 
the two previously given senses, one solution would 
consist of assuming G{x) to be extended minimal 
Weibull with null location parameter. This would 
imply that the sample data above the threshold 
value J:I should be fitted to the family 

rnx,y,o,t}) l-[F(y;6,^)]" ' ^   ■' 

where 

F(A:; 5. P) = l-exp [-(!)'], (64) 

Nevertheless, we remind the reader that this 
solution can be satisfactory only in the case of a 

parent distribution in the domain of attraction for 
maxima of a Gumbel type. 

Consequently, as a summary, we recommend to 
fit the sample data above the threshold to one of 
the following three families: 

If the domain of attraction is Weibull type, fit 
the right tail to the maximal Weibull family 

f<.(j:Ao,5u,^a) = exp(-(^^)*'}     (65) 

if the maximal domain of attraction is Gumbel 
type, fit the right tail to the maximal Gumbel 
family 

Fo(x; Ao, 5(K) = exp   - exp I   °      j      (66) 

or to the extended minimal Weibull family 

Fo(x;A,5,^)= {l-exp[-(|)^]}'; 

jf&O (67) 

where j8, 5 and rj are the parameters to be esti- 
mated. In the last case we are assuming that 
the cdf of the maximum wave height in an 
indeterminate period, to be estimated, is mini- 
mal Weibull. 

Note that fitting the right tail means fitting a 
truncated model with basic distribution given by 
Eqs. (65), (66) or (67). 

All these models are consistent in the previously 
mentioned sense. 

4J   Inconsistencies Associated With the Use of 
H. and T, 

It is very common in the Ocean Engineering field 
to work with the significant wave height, H,, and 
period, Tt, as the basic variables for extreme value 
analysis of waves. However this is not correct 
because Ti is the mean zero up-crossing period and 
H, is defined as the mean of the 1/3 largest waves. 
These two random variables are convenient to jus- 
tify normality assumptions in wave spectra, but can- 
not be accepted if an extreme value analysis of wave 
height, H, is to be performed. In fact, distributions 
in different domain of attraction types can lead to 
the same distribution for H, and/or T^, thus, obscur- 
ing the tail properties of single waves. 
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5.   Conclusions Acknowledgments 

From all the above we get the following conclu- 
sions: 

1. The most convenient families to fit wave height 
data in the tails are: 

• The maximal Weibull family 

• The maximal Gumbel family 

However, the extended minimal Weibull family 
can be used too. 

Before fitting the Gumbel or the extended 
minimal Weibull families, the domain of attrac- 
tion for maxima must be checked using, for 
example, the Pickands or the curvature meth- 
ods. For the estimation of the parameters, 
the maximum likelihood or the method of 
moments applied to the truncated distributions 
is recommended. 

In the case of the maximal Weibull family, the 
shape parameter ^ must be larger than unity. If 
it is not, the data suggests an increasing proba- 
bility density function in the tail, which contra- 
dictsthe reality. 

2. It is recommended the elimination of outliers 
by means of the following iterative method: 

(a) Estimate all parameters with all data but 
the maximum 

(b) Check for the outlier character of the 
maximum by the previously indicate 
method 

(c) If it is an outlier, remove the maximum 
and start the process again; if it is not, 
repeat the estimation with all the valid 
data 

3. If there are missing data correct the obtained 
cdf by raising to the power (n +r)/n where n 
and r are the number of known and unknown 
data, respectively. 

4. Significant wave height H, and mean up-cross- 
ing periods Tt are not adequate variables to 
analyze the extreme value behaviour of wave 
heights. 
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