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This paper introduces a new hybrid functional-neural approach for surface reconstruction. Our approach is based on the
combination of two powerful artificial intelligence paradigms: on one hand, we apply the popular Kohonen neural network to
address the data parameterization problem. On the other hand, we introduce a new functional network, called NURBS functional
network, whose topology is aimed at reproducing faithfully the functional structure of the NURBS surfaces. These neural and
functional networks are applied in an iterative fashion for further surface refinement. The hybridization of these two networks
provides us with a powerful computational approach to obtain a NURBS fitting surface to a set of irregularly sampled noisy data
points within a prescribed error threshold. The method has been applied to two illustrative examples. The experimental results

confirm the good performance of our approach.

1. Introduction

Manufacturing industries are constantly evolving in response
to the new challenges of the globalization and the grow-
ing competition in this global market. Product design is
playing a central role in this process, as current customers
are increasingly demanding a mass customization of the
products. As a result, the geometric and aesthetic properties
of the manufactured goods (shape, color, and dimensions)
have to be modified frequently in order to meet the new
market demands.

A major step in this process is the generation of real pro-
totypes with different materials to explore and analyze their
geometric properties and the feedback of potential customers
when exposed to different variations of the final product.
Prototype generation and customization can be dramatically
improved by using digital technologies, in which the physical
model is digitized, stored, and manipulated by computer,
a process called reverse engineering [1, 2]. Typically, this
process begins with data sampling by using 3D laser scanning
and other digitizing devices. This technology is intensively
used for the construction of car bodies, ship hulls, airplane
fuselage, and other free-form objects [2-7]. The resulting data

points are then fitted to mathematical entities such as curves
and surfaces, usually in parametric form. The output is a very
accurate digital version of the real product, which is also
simpler and easier to store, analyze, and manipulate. It also
simplifies the transfer and communication processes among
designers, manufacturers, and providers, making the model
available in just a few seconds all over the world, a key aspect
in our ubiquitously connected information society era.

In this paper, we are interested in one of the most
critical steps of this process, namely, the construction of
surfaces of the real objects from sets of digitized data points,
a field usually called surface reconstruction. The preferred
mathematical models for design and manufacturing are the
free-form parametric surfaces [3, 8-16], because they are very
flexible and can be readily modified by changing a small set
of parameters. In this paper, we use NURBS surfaces, the
most powerful (and most difficult to deal with) free-form
parametric surfaces, which have become the standard for
CAD/CAM data representation in industrial settings and in
many other fields, from digital effects for movies in computer
animation and advertisements to the design of characters in
computer graphics and video games. In reverse engineering
applications, data points are usually acquired through laser
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scanning and other digitizing devices and are, therefore,
subjected to measurement noise, irregular sampling, and
other artifacts [6, 7]. Consequently, a good fitting of data
should be generally based on approximation schemes rather
than interpolation [1, 13, 14, 17-19]. Because this is the typical
case in many real-world industrial problems, in this paper we
focus on the approximation scheme to a given set of noisy,
irregularly sampled data points.

Obtaining the best approximating surface in such cases is
much more troublesome than it may seem at first sight. The
main reasons are as follows.

(i) The NURBS surfaces depend on many different
parameters (data parameters, knots, control points,
and weights) that are strongly interconnected with
each other, leading to a strongly nonlinear continuous
optimization problem.

(ii) It is also multivariate, as it typically involves a large
number of unknown variables for a large number of
data points, a case that happens very often in real-
world examples.

(iii) In addition, it is also overdetermined, because we
expect to obtain the approximating surface with many
fewer parameters than the number of data points.

(iv) Finally, the problem is known to be multimodal; that
is, the least-squares objective function can exhibit
many local optima [20, 21], meaning that the problem
might have several (global and/or local) good solu-
tions.

In conclusion, we have to solve a very difficult multi-
modal, multivariate, high-dimensional continuous nonlinear
optimization problem. A number of methods have been
proposed to solve this problem (see Section 2 for details).
Among them, those based on artificial intelligence techniques
have received increasing attention during the last few years.
Most of such methods rely on the artificial neural networks
(ANN) formalism [22]. Since ANN methodology is actually
inspired by the behavior of the human brain, it is able to
reproduce some of its most typical features, such as the ability
tolearn from data. This explains why they have been so widely
applied to data fitting problems.

Although they are very popular, the ANN are however
limited in many aspects. A major drawback is their inability
to reproduce mathematically the functional structure of a
given problem. This limitation can be overcome with the
use of a new paradigm in artificial intelligence, the so-
called functional networks (FN) (see Section 4 for details).
In short, functional networks are a generalization of the
standard neural networks in which the scalar weights are
replaced by neural functions. These neural functions can
exhibit, in general, a multivariate character. Furthermore,
different neurons can be associated with neural functions
from different families of functions. These FN features allow
us to reproduce exactly the functional structure of the
problem by a careful choice of the functions involved, which
can hereby be associated with one or several neurons of the
network. This procedure yields a functional structure that is
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typically a replica of the underlying structure of the given
problem.

1.1 Aims and Structure of the Paper. In this paper, we propose
a hybrid artificial intelligence approach to solve the surface
reconstruction problem. Our approach is based on the com-
bination of two powerful artificial intelligence paradigms: on
one hand, we apply the popular Kohonen neural network
to address the data parameterization problem. On the other
hand, we take advantage of the remarkable properties men-
tioned in previous paragraph by introducing a new functional
network, called NURBS functional network, whose topology
is specially targeted to reproduce the functional structure of
the NURBS surfaces. These neural and functional networks
are then applied iteratively for further surface refinement.
As it will be shown later on, the hybridization of these
two networks provides us with a powerful computational
approach to solve the surface reconstruction problem. To
check the performance of our approach, it has been applied to
two illustrative examples. Our experimental results show that
the method performs very well, being able to reconstruct the
approximating surface of the given set of data points with a
high degree of accuracy.

The structure of this paper is as follows: in Section 2,
previous work regarding the surface reconstruction prob-
lem is reported. Then, some basic concepts about NURBS
surfaces and the optimization problem to be solved are
given in Section 3. Section 4 describes the fundamentals of
the functional networks along with their main components
and the differences between neural and functional networks.
The proposed hybrid functional-neural method for surface
reconstruction with NURBS surfaces is described in detail in
Section 5. Then, some illustrative examples of its application
are reported in Section 6. A comparison of our approach
with other ANN alternative methods is analyzed in detail in
Section 7. The paper closes with the main conclusions of this
contribution and our plans for future work in the field.

2. Previous Work

Surface reconstruction has been a topic of increasing atten-
tion from the scientific community during the last 20 years,
with outstanding applications in both theoretical and applied
domains. Regarding the theoretical side, it is a remarkable
subject in approximation theory [23, 24], statistics [25],
numerical analysis [26, 27], geometric modeling [2, 8, 28],
and computer-aided geometric design (CAGD) [5, 29]. In
addition, there is a bulk of applications in several fields,
such as computer-aided manufacturing (CAM) [6, 7], data
visualization [30], cultural heritage preservation [31], virtual
reality [32], medical imaging [33], and computer animation
[34], to mention just a few.

In general, surface reconstruction methods are classified
in terms of the available input (2D slices, isoparametric
curves, clouds of points, mixed information, etc.). For
instance, authors in [35-39] address the problem of obtaining
a surface model from a set of given cross-sections, a classical
problem in medical science, biomedical engineering, and
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CAD/CAM. Other classical input data include isoparametric
curves on the surface [40] and even mixed information, such
as scattered points and contours [41-43] or isoparametric
curves and data points [4, 5, 44].

In most cases, however, the available information about
the surface is typically a dense set of (usually unorganized)
3D data points obtained by using some sort of digitizing
devices (see, e.g., [14, 45-48]). In that case, the reconstructed
surface can be described using three different representations
providing different levels of accuracy. The simplest one
is given by the polygonal meshes, where the data points
are used as vertices connected by lines (edges) that work
together to create a 3D model, comprised of vertices, edges,
and faces. Although it is the coarsest representation, it is
also the most popular because of its simplicity, flexibility,
and excellent performance with current graphical cards.
Surface reconstruction methods with polygonal meshes can
be found, for instance, in [30, 31, 47, 49-51] and references
therein. The next level is given by the constructive solid
geometry (CSG) models, where elementary geometries (such
as spheres, boxes, cylinders, or cones) are combined in order
to produce more elaborated shapes by applying some simple
(Boolean) operators: union, intersection, and difference. This
methodology works well but presents a low level of flexibility,
being severely limited to very simple shapes. The most
sophisticated and most accurate level consists of obtaining
the real mathematical surface fitting the data points. This
issue has been analyzed from several points of view, such as
parametric methods [52], subdivision surfaces [53], function
reconstruction [54, 55], implicit surfaces [48], and algebraic
surfaces [56]. Other approaches are based on the application
of metaheuristic techniques, which have been intensively
applied to solve difficult optimization problems that can-
not be tackled through traditional optimization algorithms.
Recent schemes in this area involve particle swarm optimiza-
tion [10, 57, 58], genetic algorithms [59-62], artificial immune
systems [63, 64], estimation of distribution algorithms [65],
firefly algorithm [66, 67], and hybrid techniques [68, 69].

Artificial neural networks have also been applied to this
problem [45, 70], mostly for arranging the input data in
case of unorganized points. After this preprocessing step,
any other classical surface reconstruction method operating
on organized points is subsequently applied. A work using
a combination of neural networks and partial differential
equation (PDE) techniques for the parameterization and
reconstruction of surfaces from 3D scattered points can be
found in [71]. Two previous papers by the authors have
also addressed this problem by using functional networks
[4, 8], a powerful generalization of neural networks based on
functional equations [72, 73]. Both works show, however, that
the single application of functional networks is still unable
to solve the general case. The work in [4] addresses the
particular case of B-spline surface reconstruction when some
additional information (isoparametric curves) is available
in addition to the data points. The fitting surfaces are a
generalization of the Gordon surfaces [40]. The work in
[8] combines functional networks with genetic algorithms
in order to solve the (much simpler) polynomial Bézier
case. The approach presented here solves the general NURBS

surface reconstruction problem based exclusively on neural
and functional networks. To the best of our knowledge, no
previous method is reported in the literature providing all
these features.

3. Basic Concepts and Definitions

3.1. NURBS Surfaces. Let & = {s3,81,S3>--+>8_1>S,} C
[a,b] be a nondecreasing sequence of real numbers called
knots. § is called the knot vector. Without loss of generality,
we can assume that [a,b] = [0,1]. The ith B-spline basis
Sfunction N;; (u) of order k (or equivalently, degree k — 1) is
defined by the recurrence relations:

1 ifs;<u<s

N- u) = i+1 1
i () <]O otherwise @
withi=0,...,r—1and
u-—=s;
Ny (u) = —lNi,k—l (u)
itk—1 — i
. (2)
+ LNi+1,k4 (u)

Sitk ~ Sit1

for k > 1. Note that ith B-spline basis function of order
1, N;,(u), is a piecewise constant function with value 1 on
the interval [s;, s;,,), called the support of N;,(u), and zero
elsewhere. This support either can be an interval or reduce to
apoint, as knots s; and s;, ; must not necessarily be different. If
necessary, the convention 0/0 = 0 in (2) is applied. Any basis
function of order k > 1, N, (u), is alinear combination of two
consecutive functions of order k — 1, where the coefficients
are linear polynomials in u, such that its order (and hence
its degree) increases by 1. Simultaneously, its support is the
union of the (partially overlapping) supports of the former
basis functions of order k — 1 and, consequently, it usually
enlarges.

With the same notation, given a set of three-dimensional
points (called control points as they roughly determine the
shape of the curve) {P;;};_g uj-0,.,» in @ bidirectional net
and two knot vectors & = {sy,5;,5,,...,5,_1,5,} and I =
{to>t1>-->thi>tn}, @ NURBS surface S(u,v) of order (k,I)
(where NURBS stands for Non-Uniform Rational B-Spline)
is a rational B-spline parametric surface given by

Yito Z?:o w; ;jP; jNix () Ny (v)
TiZo Limo wi,iNige (W) Nj; ()

where the {N;,(u)}; and {Nj’l(v)}j are the B-spline basis
functions of orders k and [, respectively, defined following
(1) and (2), and {w; j},-,- are nonnegative scalar values called
weights associated with the control points {P; ;}; ;. Without
loss of generality, parameters u, v can be assumed to take
values on the interval [0,1]. For a proper definition of a
NURBS surface in (3), the following relationships must hold
(see [29]):r=m+k,h=n+1.

In general, a NURBS surface does not interpolate any of
its control points; the interpolation only occurs for nonperi-
odic knot vectors (in that case, the NURBS surface does inter-
polate the corner control points) [11, 29]. Since they are the

S(u,v) = , (©)




most common in computer graphics and industrial domains,
in this work we will consider the case of nonperiodic knot
vectors. Note, however, that our method does not depend on
the kind of knot vectors used for the approximating surfaces.

3.2. Surface Reconstruction Problem. In clear contrast with
many previous methods, in this paper we focus on the general
surface reconstruction problem, which assumes that no other
information about the problem is available beyond the data
points. In particular, our problem can be stated as follows.
Given a set of (usually irregularly sampled) noisy data points
Q assumed to lie on an unknown surface U, construct,
to the extent possible, a full mathematical representation
of a surface model S that approximates U. Because of its
remarkable applications in real-world engineering problems,
we also demand such a mathematical representation to be a
NURBS surface.

Mathematically speaking, we assume that we are provided
M, N >» r, h. Our goal is to obtain the NURBS surface S(u, v)
that fits the data points better in the discrete least-squares
sense. To do so, we have to compute all the parameters of the
approximating surface by minimizing the least-squares error,
E, defined as the sum of squares of the residuals:

m n 2
B f i(Q Yiso Zj:o wi,jPi,jNi,k(uzx)Nj,l(Vﬁ) )
a=1p=1 F Z:io Z?:o wi,jNi,k(“a)Nj,l(Vﬁ) '

(4)
In the case of scattered data points {Q,},; g, our

method will work in a similar way by simply replacing the
previous expression (4) by

R
E= Z<Q# -
u=1

The minimization of either (4) or (5) leads to the system
of equations:

2
Yito Lico i P iNik W, )N, (v,) ) %)
220 Z?:o wi,jNi,k(uy)Nj,l(Vy)

Q'=MP, (6)

where the symbol ()" denotes the vectorization operator
of the given matrix and M in (6) is a matrix given by

v T
M, (g vg) = [(RY (g vp)) " ® Riye(u”,vp)) ], with u =

(uy, ..., upg). R; j(u,v) is given as
w; iN; () N;; (v)
Ry ) = s 2O
2ito Zj:O w; iNii (W) Nj; (v) (7)
i=0,....,m; j=0,...,n

while ® and ()" represent the outer product operator and the
transpose of a vector or matrix, respectively. The indices in
(4)-(7) vary in the ranges of values indicated throughout the
section.

It is worthwhile to mention that since the lengths of Q"
and PV are, respectively, M x N and (m + 1) x (n + 1),

Mathematical Problems in Engineering

the system (6) is overdetermined. Premultiplication of both
sides by M" yields

M. Q'=M"-M-P'=A-P, (8)

where A = M™ - M. Note also that the tensor-product basis
functions R; ;(u, v) are generally continuous and nonlinear,
so the minimization of (8) leads to the continuous nonlinear
optimization problem:
min [M*-Q" - AP,
{P; ;1R {w; ;}203{ (s, p))DoOm(8)s{s, 1,{t, }[0,1]
)

where || - || represents the Euclidean norm.

4. Functional Networks

Roughly speaking, a functional network is a generalization
of the standard neural network in which the scalar weights
are replaced by neural functions. Functional networks were
firstly introduced in 1998 by Castillo in [72] as a way to
enhance the neural networks with new capabilities. Since
then, they have been successfully applied to several problems
in science and engineering. The interested reader is referred
to [73, Chapter 9] (Chapter 9) for in-depth explanation about
functional networks along with several illustrative examples
and applications. In this section we describe the main
components of a functional network. Differences between
neural and functional networks are also discussed in this
section.

4.1. Components of a Functional Network. As an explanatory
example, Figure 1(a) shows the functional network of the
associative operation F between two real numbers; that is,
function F satisfies

F(F(x.y),2) = F(x.F(y.2)). (10)

It can be proved that the general solution of this equation is
given by [73]

F(xy)=f[f )+ fO)], (n
where f(x) is an arbitrary continuous and strictly monotonic
function, which can be replaced only by ¢ f(x), where ¢ is an
arbitrary constant. Such a solution can be represented by the
functional network in Figure 1(b). Note that, because of the
uniqueness (except arbitrary constants) of the solution, both
networks do actually represent the same problem. In other
words, the functional network in Figure 1(b), is equivalent
to (but arguably simpler than) that in Figure 1(a). From
Figure 1(b) the main components of a functional network
become clear.

(i) Several Layers of Storing Units

(a) A Layer of Input Units. This first layer contains the input
information. In this figure, this input layer consists of the
units x and y.

(b) A Set of Intermediate Layers of Storing Units. They are
not neurons but units storing intermediate information. This
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FIGURE 1: The associativity functional network: (a) original network; (b) simplified network.

set is optional and allows more than one neuron output to
be connected to the same unit. In Figure 1(b), there are two
intermediate layers of storing units, which are represented by
small circles in black.

(c) A Layer of Output Units. This last layer contains the output
information. In Figure 1(b), this output layer is reduced to the

unitu = £ (f(x) + f(y)).

(ii) One or More Layers of Neurons or Computing Units. A
neuron is a computing unit which evaluates a set of input
values, coming from the previous layer, of input or interme-
diate units, and gives a set of output values to the next layer,
of intermediate or output units. Neurons are represented by
circles with the name of the corresponding neural function
inside. For example, in Figure 1(b), we have three layers of
neurons. The first one gives outputs of functions with one
variable. The second layer exhibits the sum operator of its two
inputs. The last layer computes the inverse of the first layer
function applied to output of the previous layer.

(iii) A Set of Directed Links. They connect the input or
intermediate layers to its adjacent layer of neurons and
neurons of one layer to its adjacent intermediate layers or
to the output layer. Connections are represented by arrows,
indicating the information flow direction. We remark here
that information flows in only one direction, from the input
layer to the output layer.

All these elements together form the network architecture
or topology of the functional network, which defines the
functional capabilities of the network.

4.2. Differences between Functional and Neural Networks.
In next paragraphs, we discuss the differences between
functional and neural networks and the advantages of using
functional networks instead of standard neural networks.

(1) In neural networks, each neuron returns an output
y = f(Q wyx,) that depends only on the value

Y wy Xy, where x,,x,,...,x, are the received inputs
(see Figure 2(a)). Therefore, their neural functions
have only one argument. In contrast, neural functions
in functional networks can have several arguments, as
shown in Figure 2(b).

(2) In neural networks, the neural functions are univari-
ate: neurons can show different outputs but all of them
represent the same values. In functional networks, the
neural functions can be multivariate.

(3) In a given functional network, the neural functions
can be different (such as functions f;, f,, and f;
in Figure 2(b)), while in neural networks they are
identical.

(4) In neural networks, there are weights, which must be
learned. These weights do not appear in functional
networks, where neural functions are learned instead.

(5) In neural networks the neuron outputs are different,
while in functional networks neuron outputs can be
coincident. This fact leads to a set of functional equa-
tions, which have to be solved [73, 74]. These func-
tional equations impose strong constraints leading to
a considerable reduction in the degrees of freedom
of the neural functions. In most cases, this implies
that neural functions can be reduced in dimension or
expressed as functions of smaller dimensions.

All these features show that the functional networks
exhibit more interesting possibilities than the neural net-
works. This implies that some problems can be solved more
efficiently by using functional networks instead of neural
networks.

5. Our Method

In this section, we describe the proposed method for solving
the surface reconstruction problem indicated in Section 3.2.
Firstly, a general overview of the method is presented. Then,
each step of the method is discussed in detail.
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F1GURE 2: Differences between (a) neural networks and (b) functional networks.

5.1. Overview of the Method. The graphical workflow in
Figure 3 summarizes the main steps of our method. The
initial input consists of a set of irregularly sampled noisy
3D data points assumed to lie on an unknown surface.
The goal is to obtain the NURBS surface that approximates
these data points optimally. To this purpose, we need to
solve two important subproblems: data parameterization and
surface approximation. To address data parameterization,
we firstly perform a principal component analysis (PCA) to
obtain a parametric plane that accounts for the variability
of data. Then, the data points are projected onto that para-
metric plane. A 2D surface parameterization is subsequently
obtained by applying a Kohonen neural network to the set
of projected 2D data points. Then, we apply our NURBS
functional network to compute all other parameters of the
NURBS surface approximating the data points for this initial
parameterization. We call that surface a base surface. The
next step consists of computing the fitting error for the
approximating surface. Finally, the data points are projected
onto the new base surface in order to yield a new (more
accurate) parameterization. All previous steps are repeated
iteratively until a stopping criterion is reached. Usual stop-
ping criteria are that the fitting error becomes smaller than
a given threshold value or that successive iterations of this
reconstruction pipeline no longer improve current solutions.

5.2. Data Parameterization. The parameterization step con-
sists of establishing the relationships among the data points
in the surface parametric domain. This process is essential
for a good fitting of data points. Some standard procedures
are given by the uniform, chord length and centripetal
parameterizations. However, these methods are only suitable
for data points distributed in a uniform grid and tend to
fail for unorganized, irregularly sampled data. An alterna-
tive procedure is based on the idea of projecting the data
points onto an additional surface, usually called base surface,
reflecting the distribution of data points and then computing
a parameterization by using the projected 2D points. The
simplest case of this approach consists of using a parametric
plane [11], usually orthogonal to the main viewing direction
of the digitizing device. A better alternative is to use a
suitable 3D surface for data projection [14], usually a coarse
approximation of final fitting surface, which is expected to be
modified by successive improvements of this initial surface.
In our method, we combine these ideas to develop a
refinement process in iterative fashion. At the initial stage,
we project the data points onto a parametric plane reflecting

Input
3D data points

L Data projection ontoJ PCA
a plane
T
[ Data Kohonen
L . neural
parameterization
' J network
!
Base NURBS surface NU.RBS
fitti functional
tting
. J network
Fitting error
computation

Data projection onto Output
base surface final fitting
NURBS surface

FIGURE 3: Graphical workflow of the proposed method.

the variability of data. This parametric plane is computed
by using the principal component analysis (PCA), a very
popular descriptive technique in data analysis and many
other fields. PCA is a powerful statistical method aimed at
performing dimensionality reduction by using the analysis of
the correlation of data. A great advantage of this method is
its nonparametric nature, meaning that it does not require
any parameter tuning in order to get an output. Furthermore,
the answer is unique and available regardless of the way the
data has been recorded or obtained. Other main reasons
for our choice are that PCA is very efficient at preserving
distances between the points and each principal component
has the highest variance possible under the constraint that it
is uncorrelated with preceding components. In fact, the first
principal component corresponds to a line passing through
the multidimensional mean. It also minimizes the sum of
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squares of the distances to the points from that line. Because
of these properties, the parametric plane obtained by PCA is
very adequate for the initial 2D projection.

Projected 2D points are then used for an initial surface
parameterization by applying a Kohonen neural network
(also called self-organizing map (SOM) neural network). This
is a very popular artificial neural network for unsupervised
learning. The interested reader is referred to the nice books
in [75, 76] for a comprehensive overview about the Kohonen
neural network, its fundamentals and mathematical basis,
along with the most important variants and modifications
and several interesting applications.

Algorithm 1. Kohonen neural network for 2D data parame-
terization.

(1) Initialize position ¥ of all neurons ® with random
values within the surface boundaries.

(2) Initialize the weights o; ; randomly around the cen-
troid of the input space.

(3) Pick a new input sample Qj.
(4) Compute

R

d; =Y (¥ ) -0;;9)

i=1

g (12)

(5) Select the active neuron y for which dy =
min;_; r(d;). The winner is the closest active

neuron to the sample data Qg with parametric
coordinates (7, 7).

(6) Compute the neighborhood of neuron y as follows.
The radius p is given by

R

_ 13
2elX01(1/10+i/10)]) a3)

p(y)=

The bubble neighborhood of the winner neuron is
defined as all neurons at positions (i, j) such that

i-+li-<p(1-3). (1)

where 0 is the run length.

(7) Update the weight of neuron y and all neurons in its
neighborhood as

0,;0+1)=0,;(8) +1(®) (% () -0,;()) (15
with

1) = (s (16)

1
\V2me /2’

where the learning rate (s is given by

car(a(0) W

(8) Increment 6.
(9) Repeat the steps (3)-(8) until § reaches the limit value.

A very remarkable feature of the Kohonen neural network
is that it incorporates a neighborhood function to preserve
the topological properties of the input space [75]. This prop-
erty is very useful to generate a 2D grid for parameterization,
where the neurons represent the grid nodes. The neural
network is trained by using the projected 2D data so that
its topology eventually reflects their shape and neighborhood
relations. To this purpose, each neuron contains geometrical
information about the coordinates of the associated node and
the topological relations with its neighbors. It is important
to remark that the connections among the neurons do
not change during the training stage; instead, the changes
occur on the geometrical values stored in the neurons. In
other words, the network performs a topological ordering of
the competitive neurons such that the neighboring neurons
represent clusters in the two-dimensional space. Eventually,
the weights will specify cluster centers whose distribution
approximates the distribution of data points and hence a suit-
able 2D parameterization. Because of these good properties,
the Kohonen neural network has already been used in several
ways for data parameterization in some previous works [49,
70,71,77]. The algorithm used in this paper combines some of
the best features of previous methods. It is briefly summarized
in Algorithm 1.

5.3. Surface Fitting. A major property of functional networks
is their ability to reproduce the functional structure of the
underlying mathematical function of the data points. In this
paper, we introduce a new functional network (depicted in
Figure 4) especially designed to reproduce the functional
structure of NURBS surfaces: the NURBS functional net-
work. Its workflow can be traced graphically by proceeding
upwardly in Figure 4: given the surface parameter values u
and v and two orders k and I, what this functional network
essentially does is to compute the values of the basis functions
N; at u and N;; at v and then the bivariate tensor-product
basis functions Ny@)Ny(v), i = 0,....,m; j = 0,...,n).
Each bivariate basis function is then multiplied twice, firstly
by the scalar weight w; ; and then by such a weight and its
associated vector weight P; ;. Summation on indices i and
j is applied to both expressions to obtain the numerator
and denominator of (3), to which the quotient operator is
subsequently applied. Note that two different (scalar and
vector) time operators are considered, to account for the
multiplication by w; ; and P, ;, respectively. Note also that
those vectors P;; play the role of weights of the neural
functions as well, with the meaning that a functional network
with d-dimensional vectors as weights can be understood as d
parallel functional networks with scalar weights. Note finally
that the first three layers of this functional network apply
functions to either the same or independent arguments of the
previous layer, so NURBS functional networks are well suited
for partial bottom-up parallelization.

Now, we use the surface parameterization obtained in
previous steps to compute an approximating surface to
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FIGURE 4: Graphical representation of the NURBS functional network.

the data points. This functional network is trained by super-
vised learning in which couples of input-output values D =
{(I,0;) | i = 1,...,R}, corresponding to the surface
parameters {(uﬂ, vﬂ)}“ and their associated data points Qu
are presented to the network. Unlike ANN, where the neuron
functions are assumed to be fixed and known and only the
weights are learned, in functional networks the functions are
learned during the structural learning (which obtains the
simplified network and functional structures) and estimated
during the parametric learning (which consists of obtaining
the optimal neuron function from a given family). In our
case, the structural learning corresponds to the topology of
the NURBS functional network, where the input data are
the order (k,I) and the length (r, ) of the knot vectors of

the approximating surface. These values determine the num-
ber of neurons in each layer of the functional network.

The parametric learning concerns the estimation of the
neuron functions. It is usually accomplished by considering
linear combinations of given functional families and estimat-
ing the associated parameters from the available data. For
our choice of B-spline basis functions during the structural
learning, the parametric learning is required to determine the
scalar and vector weights of our NURBS functional network.
Vector weights are learned by using expression (8) where A
is a symmetric square matrix. This system is solved by using
the singular value decomposition (SVD), which provides the
best numerical answer for the minimization problem in (9)
in those cases in which the exact solution is not possible
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TABLE 1: Number of data points and input parameters of the
approximating NURBS surfaces for the two examples discussed in
this paper.

Example Number of data points Order  (r,h)  Iterations
Mask 11830 (4,4) (17,14) 2
Umbrella 8926 (3,3) (6,27) 4

(see [78] for details). Finally, the scalar weights are obtained
by least-squares minimization of expression (9), where all
other relevant parameters of this minimization problem have
already been obtained as described in previous steps.

5.4. Surface Refinement. Once the approximating surface is
obtained, the initial parametric plane used for data param-
eterization is replaced by this approximating surface, which
becomes the new base surface. Data points are then projected
onto this base surface by computing the nearest point on the
surface to each 3D data point by following the procedure
indicated in [79]. A new data parameterization and surface
fitting steps are computed according to Sections 5.2 and 5.3,
respectively. The resulting fitting surface becomes the new
base surface and so on. In general, this procedure yields
a more refined (i.e., more accurate) fitting surface to data
points.

This process is repeated iteratively until a stopping cri-
terion is reached. Usual stopping criteria are that the fitting
error becomes smaller than a given threshold value or that
successive iterations of this reconstruction pipeline no longer
improve current solutions. In the former case, we assume
that an error threshold value is provided as an input of the
problem (as it usually happens in many industrial problems)
and we compute the fitting error according to either (4) or
(5). In the latter case, we compare the fitting error between
successive iterations, and the process is stopped when no
further improvement is achieved.

6. Illustrative Examples

Our method has been tested with several examples of differ-
ent clouds of data points. To keep the paper at manageable
size, we discuss here two of them. Examples in this paper
are shown in Figures 5-6. For each example, two different
pictures are displayed: at (a), we show the original cloud of
input data points, represented as small red points; at (b), the
best approximating NURBS surface, is shown as obtained
with our functional-neural approach. Our input consists of
sets of irregularly sampled data points (this fact can readily
be seen from simple visual inspection of the point clouds
at (a)), which are also affected by measurement noise of a
signal-to-noise ratio of 15:1 in all examples. In this paper, a
fitting error threshold value € = 107 is considered. The other
relevant parameters of the approximating NURBS surfaces
are reported in Table 1, where the examples are arranged in
rows. For each example, the following data are arranged in
columns: number of data points, order of the approximating
NURBS surface, length of knot vectors, and number of

iterations required to obtain the fitting surface with a fitting
error below the given threshold.

A simple visual inspection of the figures clearly shows that
our method yields a very good approximating surface to data
points in all cases. The low number of iterations required to
obtain the fitting surface for the given threshold also confirms
the good behavior of the method. From these examples and
many others not reported here for the sake of brevity, we
conclude that the presented method performs very well, with
remarkable capability to provide a satisfactory solution to the
general reconstruction problem with NURBS surfaces.

Regarding the implementation issues, all computations
in this paper have been performed on a 2.9 GHz. Intel Core
i7 processor with 8 GB. of RAM. The source code has been
implemented by the authors in the native programming
language of the popular scientific program Matlab, version
2010b.

7. Comparison with Other Approaches

In this section, we compare the presented method with other
alternative approaches for surface reconstruction based on
neural networks. A careful revision of the literature in the
field gives six previous contributions in the field, the works
in [4, 8,49, 70, 71, 77]. This small number is a clear indication
of the difficulty and originality of the present work.

Comparative results of these methods are summarized
in Table 2. The different methods are arranged in rows and
sorted by year of publication. For each reported method,
the columns give a brief description about its main features.
Columns 2, 4, and 6 give a binary answer to three different
questions: whether or not the indicated method provides
algorithms for the subproblems of data parameterization,
surface fitting, and support for NURBS surfaces, respectively.
Answer true is marked with a check (v), otherwise with
symbol (x). Wherever a positive answer is found, a short
description about the specific techniques incorporated in that
method for the reported subproblem is given in columns
3 and 5, respectively. Note that all methods except [4, 8]
address the data parameterization subproblem with a Koho-
nen neural network, and all methods except [70, 77] provide
a procedure to compute the approximating surface, either as
a Bézier surface [8], a B-spline surface [4, 71], or a polygonal
mesh [49]. The works in [70, 77] assume that any traditional
surface fitting technique will be used for this particular sub-
problem.

The most important difference of this method with
respect to alternative approaches is that previous methods
do not provide support for NURBS surfaces (see column
6 in Table 2). On the contrary, NURBS surfaces are fully
supported in our method. In fact, the examples shown in the
paper are more difficult to reconstruct through simple poly-
nomial surfaces and require a larger number of parameters.
In clear contrast, our method requires only a small number of
parameters. Furthermore, the solution is reached with a small
number of iterations. To the best of our knowledge, this is
the first neural-based approach providing full support for all



10

Mathematical Problems in Engineering

(b)

FIGURE 5: Mask example: (a) original data points; (b) fitting surface.

(b)

FIGURE 6: Umbrella example: (a) original data points; (b) fitting surface.

steps of the general surface reconstruction problem by using
NURBS surfaces.

8. Conclusions and Future Work

This paper proposes a new hybrid functional-neural
approach to solve the surface reconstruction problem. In our
approach, we combine two powerful artificial intelligence
paradigms: the popular Kohonen neural network to address
the data parameterization problem and a new functional
network, called NURBS functional network, to reproduce
the functional structure of the NURBS surfaces. These
neural and functional networks are then applied iteratively
for further surface refinement. The hybridization of these
two networks provides us with a powerful computational

approach to solve the surface reconstruction problem.
The performance of our approach has been tested by its
application to two illustrative examples. Our results show
that the method performs very well, being able to reconstruct
the approximating surface of the given set of data points with
a high degree of accuracy and a low number of iterations.
The main limitation of this approach is that it requires
some initial input such as the order of the approximating
NURBS surface and the length of knot vectors, which are
strongly dependent on the particular set of data points. Con-
sequently, their optimal values might be difficult to choose for
end users, thus preventing the method for automatic, human-
independent reconstruction. This limitation opens the door
for future research in the area in order to develop efficient
algorithms for automatic determination of those optimal
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1

TABLE 2: Comparison of the proposed method with other alternative methods based on neural networks for the surface reconstruction

problem.
Author, year, and Datg . Method used Surface Method used NURBS
reference parameterization fitting supported?
Hoftmann and Vérady
(1998) [70] Y Kohonen neural network X X
Yu (1999) [49] Y Kohonen neural network Y Polygonal mesh (edge swap) X
Hoffmann (1999) [77] v Modified Kohonen neural «
network
(i) Kohonen neural (i) Gradient descent algorithm
Barhak and Fischer v network y (GDA) «
(2001) [71] (ii) Partial differential (ii) Random surface error
equations (PDE) correction (RSEC)

. Tensor-product functional
Iglesias et al. (2004) [4] X Y network X
Galvez et al. (2007) [8] Y Genetic algorithms Y Functional network X
This method (2013) Y Kohonen neural network Y NURBS functional network

values. Another important limitation of the method occurs
when the data points cannot be unambiguously projected
onto the base surface. This problem can arise with closed
surfaces often represented in implicit form. In those cases,
the PCA method might fail to extract the real tendency of
data. We are currently working on new strategies to overcome
this problem. Future work also includes the extension of
this approach to other kinds of approximating surfaces as
well as the possible application of this methodology to some
interesting industrial problems.
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