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ABSTRACT

We aim to obtain a complete sample of redshift z ≥ 3.6 radio quasi-stellar objects (QSOs)
from the Faint Images of the Radio Sky at Twenty cm survey (FIRST) sources (S1.4 GHz >

1 mJy) having star-like counterparts in the Sloan Digital Sky Survey (SDSS) Data Release
5 (DR5) photometric survey (rAB ≤ 20.2). Our starting sample of 8665 FIRST–DR5 pairs
includes 4250 objects with spectra in DR5, 52 of these being z ≥ 3.6 QSOs. We found that
simple supervised neural networks, trained on the sources with DR5 spectra, and using optical
photometry and radio data, are very effective for identifying high-z QSOs in a sample without
spectra. For the sources with DR5 spectra the technique yields a completeness (fraction of
actual high-z QSOs classified as such by the neural network) of 96 per cent, and an efficiency
(fraction of objects selected by the neural network as high-z QSOs that actually are high-z
QSOs) of 62 per cent. Applying the trained networks to the 4415 sources without DR5 spectra
we found 58 z ≥ 3.6 QSO candidates. We obtained spectra of 27 of them, and 17 are confirmed
as high-z QSOs. Spectra of 13 additional candidates from the literature and from SDSS Data
Release 6 (DR6) revealed seven more z ≥ 3.6 QSOs, giving an overall efficiency of 60 per cent
(24/40). None of the non-candidates with spectra from NASA/IPAC Extragalactic Database
(NED) or DR6 is a z ≥ 3.6 QSO, consistently with a high completeness. The initial sample
of high-z QSOs is increased from 52 to 76 sources, i.e. by a factor of 1.46. From the new
identifications and candidates we estimate an incompleteness of SDSS for the spectroscopic
classification of FIRST 3.6 ≤ z ≤ 4.6 QSOs of 15 per cent for r ≤ 20.2.

Key words: methods: data analysis – surveys – galaxies: high-redshift – quasars: general –
early Universe – radio continuum: galaxies.

1 IN T RO D U C T I O N

Homogeneous statistical samples of high-redshift quasi-stellar ob-
jects (QSOs) allow not only investigation of the QSO phenomenon
itself, but also provide important information for a wide variety of
studies. In particular, the luminosity function of high-redshift QSOs
provides strong constraints on the theory of the accretion of mat-
ter on to supermassive black holes in the nuclei of galaxies. The
increasing evidence for a relation between the formation of galaxy
bulges and supermassive black holes (Kormendy & Richstone 1995;
Magorrian et al. 1998) emphasizes the importance of understanding
the role of QSO activity in the formation and evolution of galax-
ies. The luminosity function of QSOs is also essential to quantify
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their contribution to the X-ray background and the ultraviolet (UV)
ionizing flux at high redshift. In addition, the absorption spectra
of these QSOs reveal the state of the intergalactic medium at early
epochs.

Although radio-loud (RL) QSOs are a small subset of the QSO
population, samples of high-redshift RL QSOs benefit from higher
completeness, due to the drastically reduced contamination by stars
in samples of radio selected QSO candidates, compared to optically
(colour) selected QSO candidates (Richards et al. 2006). Moreover,
the connection between radio and optical activity, which still needs
to be understood, requires a comparison between RL and radio-quiet
QSO populations. Ivezic et al. (2004) provide conclusive evidence
that the distribution of radio-to-optical flux ratio for QSOs, i.e. the
radio loudness, is bimodal (the so-called QSO radio dichotomy),
on the basis of accurate optical and radio measurements of a large
sample of RL QSOs obtained from the Sloan Digital Sky Survey
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(SDSS; York et al. 2000) and the Faint Images of the Radio Sky at
Twenty cm survey (FIRST; Becker, White & Helfand 1995). Many
studies suggest that RL QSOs reside in more massive galaxies and
harbour more massive central black holes than radio-quiet QSOs,
but the point is still controversial (see references for and against
these arguments at Cirasuolo et al. 2006). A recent study by Jiang
et al. (2007) based on a QSO sample drawn from SDSS and FIRST
shows that the fraction of RL QSOs decreases with increasing red-
shift and with decreasing optical luminosity.

We aim to obtain a homogeneous sample of high-redshift RL
QSOs (z above ∼3.6) drawn from correlation of the FIRST cata-
logue (S1.4 GHz > 1.0 mJy) with unresolved objects in the SDSS Data
Release 5 (DR5; Adelman-McCarthy et al. 2007). The area of over-
lap between FIRST and the DR5 imaging survey is ∼7391 deg2 and
the number of selected FIRST–SDSS matches is 8665 (Section 2).
SDSS provides (i) ugriz photometry, which is a powerful tool for
separating high-z QSOs from other populations (e.g. stars, QSOs
with z below ∼3.6 or unresolved low-z galaxies); (ii) morphologi-
cal classification, essential for distinguishing between high-z QSOs
and galaxies or resolved low-z active galactic nuclei (AGN) and
(iii) spectroscopy of many of our candidates (4250), selected as
spectroscopic targets by SDSS DR5. Since SDSS spectroscopic
observations necessarily lag the imaging, the total DR5 spectro-
scopic area is lower, with ∼5553 deg2 included in the overlap with
FIRST. Most of the candidates with available spectroscopy were
classified by SDSS as QSOs, i.e. have a secure detection of a high-
excitation emission line with full width at half-maximum (FWHM)
≥1000 km s−1. The rest are galaxies, stars and objects of ‘unknown’
class. 52 DR5 sources were spectroscopically classified as z ≥ 3.6
QSOs (Table 1).

Our approach to obtaining a high-z QSO sample was to extend
the existing sample of 52 FIRST–DR5 high-z QSOs by applying au-
tomated learning techniques, specifically neural networks (NNs), to
the 8665 FIRST–SDSS DR5 photometric matches. NNs have been
shown to be powerful tools for both classification and regression
tasks, in many fields of astronomy, and have subsequently been
applied to predict object classes and/or astrophysical parameters.
Fields where NNs have been applied include classification of stellar
spectra (Bailer-Jones, Irwin & von Hippel 1998), morphological
star/galaxy separation (e.g. Bertin & Arnouts 1996), morphological
classification, spectral typing and/or photometric redshifts of galax-
ies (Folkes, Lahav & Maddox 1996; Lahav et al. 1996; Firth, Lahav
& Somerville 2003; Collister & Lahav 2004, this paper reports the
popular photometric redshift code ANNz; Ball et al. 2004), QSO
identification and/or QSO photometric redshifts (Carballo et al.
2004; Claeskens et al. 2006) and cross-matching of astronomical
catalogues (Rohde et al. 2005).

QSO selection and estimation of QSO photometric redshifts are
of prime importance for the SDSS project. Various studies address
the problem using different machine learning approaches. Richards
et al. (2004) applied a probability density analysis based on kernel
density estimation of the colour distribution of stars and spectro-
scopically confirmed QSOs in SDSS Data Release 1 (DR1), to
classify, as stars or QSOs, a catalogue of over 105 unresolved,
g ≤ 21 mag, UV-excess (u − g ≤ 1) QSO candidates. The resulting
efficiency and completeness (the latter evaluated for g ≤ 19.5) for
the selection of QSOs in the candidate sample was estimated to
be around 95 per cent up to z � 2.4–3.0, the redshift limit mainly
arising from the restriction of the catalogue to UV-excess objects.

Suchkov, Hanisch & Margon (2005) applied the oblique decision
tree classifier Class X to classify SDSS Data Release 2 (DR2)
photometric objects into 25 classes (stars, red stars, 10 redshift

bins for galaxies and 13 for AGN) using colour information and
morphology (attributes ‘resolved’ or ‘unresolved’) from SDSS. For
each of the 12 redshift bins for AGN with �z = 0.2 and covering
0 ≤ z ≤ 2.4, the completeness obtained for the test sample is in
the range from 43 to 81 per cent, with an average 63 per cent. For
the high-redshift bin, in the range z = 2.4–6.0, the completeness
drops to 14 per cent, the remaining high-z AGN being classified as
stars (47 per cent) or as AGN in the adjacent redshift bin 2.2 ≤ z ≤
2.4 (39 per cent). This result illustrates the difficulty in separating
high-z QSOs from other classes. The efficiency or fraction of true
high-z QSOs among the sources classified in the AGN high-z bin
was ∼75 per cent.

Ball et al. (2006) applied decision trees, trained on the SDSS Data
Release 3 (DR3) objects with available spectroscopy, to classify
all photometric objects (>108) in SDSS DR3 in one of the three
categories of star, galaxy or nsng (neither star nor galaxy), the
latter including QSOs and ‘unknown’. A blind test on the 2dF QSO
Redshift Survey (2QZ; Crom et al. 2004), using the 8739 QSOs
matching 2QZ and SDSS DR3, yielded 95 per cent completeness
and 87 per cent efficiency. The authors do not discuss how the
performance depends on redshift.

Bazell, Miller & SubbaRao (2006) use a semisupervised mixture
model approach to analyse 10 000 objects spectroscopically clas-
sified in SDSS Data Release 4 (DR4) in the categories of stars,
late-type stars, galaxies and QSOs with z ≤ 3 and unknown, using
as input data for the modelling SDSS colours and the spectroscopic
class. Since the aim was to investigate the existence of possible
new object types among the class of ‘unknown’ as well as sub-
classes among the remaining classes, 90 per cent of the sources
in the categories of stars, late-type stars, galaxies and QSOs were
also treated as unknown during the modelling. The best model in-
cludes 16 components, two of them of the non-pre-defined type,
and one of the latter captures a region of the u − g versus g
− r colour–colour diagram (2 ≤ u − g ≤ 5, 0.5 ≤ g − r ≤
1.5) within the location of high-z QSOs in Richards et al. (2002),
but intentionally rejected in the QSO selection by Richards et al.
(2004) because of the high density of stellar contaminants in that
region.

Gao, Zhang and Zhao (2008) compare the performance of
k-dimensional trees and support vector machines in the separation
between stars and QSOs, using a sample of stars and QSOs spec-
troscopically classified in SDSS DR5 and having a counterpart at
the Two-Micron All Sky Survey (2MASS; Cutri et al. 2003). Both
techniques yield a global efficiency and completeness as large as
97 per cent for 0 ≤ z ≤ 2.5. However, again the accuracy drops
significantly for z > 2.5.

Our work deals with the selection of high-z QSOs from SDSS–
FIRST matches. As stated before, our restriction to radio detected
sources drastically reduces the contamination by stars, enabling us
to obtain classification accuracies at these redshifts better than those
obtained in more general studies aimed at the selection of the whole
population of QSOs, regardless of radio detection. The paper is
structured as follows. The sample of FIRST–DR5 matches is pre-
sented in Section 2. In Section 3 we explore the performance of
supervised NNs to separate high-z QSOs from the remaining spec-
tral classes in the sample of 4250 sources with DR5 spectra, using
multiband optical photometry and radio data. In Sections 4.1 and
4.2, we apply the trained NNs to the sample of 4415 sources without
DR5 spectra, identifying 58 high-z QSO candidates. In Section 4.3
we check the reliability of this identification via comparison with
spectra from the NASA/IPAC Extragalactic Database (NED), SDSS
Data Release 6 (DR6) and follow-up spectroscopy with the William
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Table 1. SDSS classification of the 4248
FIRST–DR5 matches having SDSS spectra.

Spectral type Number

QSO z < 3.6 3754
QSO z ≥ 3.6 52
Early-type star 133
Late-type star 97
Galaxy 59
Unknown 153

Total 4248

Herschel Telescope (WHT). The discussion and conclusions are
presented in Section 5.

2 SE LEC TION O F THE SAMPLE

As an initial sample we selected all FIRST sources with an unre-
solved object in the PhotoPrimary1 view of the SDSS DR5 Catalog
Archive Server (CAS), within 1.5 arcsec of the radio position, with
dereddened point spread function (PSF) magnitude 15 ≤ rAB <

20.2 and ‘clean’ photometry (i.e. rejecting objects with magnitude
errors >0.2 in all five bands ugriz, or flagged as ‘BRIGHT’, ‘SAT-
URATED’, ‘EDGE’, ‘BLENDED’ or ‘CHILD’). We selected the r
band because QSOs with redshifts 3.6 ≤ z ≤ 4.5 are expected to
have an enhanced emission at this band, due to the Lyα emission
line falling within the covered spectral range. Vigotti et al. (2003)
estimated that more than 99 per cent of FIRST-APM quasars with
3.8 ≤ z ≤ 4.5, E ≤ 18.8 and S1.4 GHz > 1.0 mJy fall within 1.5 arcsec
of the POSS I positions, and this matching radius was adopted for
this work. In total 8665 FIRST sources fulfil the above require-
ments. Because of the exclusion of ‘CHILD’ objects (objects which
are the product of deblending a blended object), in all cases there
is one optical object per radio source. The corrections for Galactic
extinction, derived from Schlegel, Finkbeiner & Davis (1998), were
taken from SDSS. 4250 of the sources (49 per cent of the sample)
have DR5 spectra (specifically, they are included in the SpecObj2

view of the DR5 CAS). In fact, the magnitude limit r = 20.2 was
set to ensure an approximately similar fraction of sources with and
without spectra at DR5. The distribution of SDSS spectral types and
redshifts for the objects with DR5 spectra, as quoted in SpecObj,
are given in Table 1. The redshift distribution of the QSOs is shown
in Fig. 1.

The redshifts of the QSOs with z ≥ 3.6 were checked
by visual inspection of the DR5 spectra. For two of them,
SDSS 130941.36+112540.1 and SDSS 153420.23+413007.5, we
found the redshifts provided by the SDSS pipelines to be likely
incorrect, and subsequently the QSOs were identified in the SDSS
DR5 Quasar Catalog (DR5Q; Schneider et al. 2007) with revised
redshifts z = 1.362 and 1.400, respectively. These two QSOs were
not considered further and are not included in Table 1 and Fig. 1. On
the one hand the revised values were published after we had already
trained the NNs with the objects in Table 1 and carried out most of
the follow up observations of the selected candidates. On the other,

1 Best SDSS observation of the object, and the object is located
within the imaging survey area which has been finished to date. See
http://cas.sdss.org/astrodr5/en/help/docs/tabledesc.asp
2 This implies that the object was selected for spectroscopy as an SDSS
science object, and that the spectrum was taken on a main survey plate. See
http://cas.sdss.org/astrodr5/en/help/docs/tabledesc.asp
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Figure 1. Redshift distribution of the 3806 FIRST QSOs with DR5 spectra.

having been misidentified as high-z QSOs in DR5 (redshift confi-
dences 0.59 and 0.71, respectively), their exclusion from the training
sample, used for the learning, seems reasonable. Since our aim is
to obtain a high completeness for high-z QSOs, non-high-z sources
whose spectra can be confused with those of high-z QSOs should be
preferably removed from the training sample, since their inclusion
could hinder the selection of the high-z QSOs whose spectra they
resemble. We note that the redshift for SDSS 153420.23+413007.5
at DR6 has been updated to the high-confidence manual value
z = 1.400, but for SDSS 130941.36+112540.1 the redshift obtained
with the spectroscopic pipelines, z = 4.395 (confidence 0.55), has
been maintained at DR6.

The spectral types and redshifts of the remaining 4196 sources
in Table 1, most of them QSOs at z < 3.6, were taken directly
from DR5, since we did not expect among them any z ≥ 3.6 QSO
with an identification as reliable as that found for the 52 high-z
QSOs. A visual examination of the DR5 spectra of 225 of these
sources [the first 125 z < 3.6 QSOs, 25 early-type stars, 25 late-
type stars, 25 galaxies and 25 ‘unknown’, in order of increasing
right ascension (RA)] yielded no identification as a likely z ≥ 3.6
QSO. Moreover, since our approach for the automated selection of
high-z QSOs groups the remaining spectral types as a single class
(see Section 3), revisions from DR5 such as shifts in redshift below
this limit or changes between the non-high-z QSO categories would
not affect the results.

The fraction of QSOs with z ≥ 3.6 is 1.37 per cent (52/3806) and
they are listed in Table 2. All these QSOs are included in DR5Q and
only one of them, SDSS 141209.96+062406.8, with a deep and
wide absorption feature bluewards of the Lyα emission line and
starting at the Lyα line, has a revised redshift at DR5Q, z = 4.467
versus z = 4.421 at DR5. DR5Q provides interesting complementary
information for these QSOs and for the remaining ones in Table 1,
including i band absolute magnitudes, g − i ‘differential colour’
with respect to the typical value for the QSO redshift, and matches
to ROSAT All-Sky Survey (RASS; Voges et al. 1999, 2000) and
2MASS when available.

The FIRST–SDSS sample was obtained using a simple one-to-
one match between radio and optical sources (within a 1.5-arcsec
radius), therefore missing the class of double-lobe QSOs without
detected radio cores. Using the statistics found by de Vries, Becker
& White (2006, their table 2) for a sample of 5515 FIRST–SDSS
QSOs with radio morphological information within 450 arcsec, the
fraction of FIRST–SDSS double-lobe QSOs with undetected cores
with respect to the total FIRST–SDSS QSO sample is 3.7 per cent.
Since the starting samples of SDSS QSOs in de Vries et al. (2006)
and in this work obey similar SDSS selection criteria, the last value
is a good estimate of the incompleteness of the QSO samples in our
work due to the exclusion of lobe-dominated QSOs.
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Table 2. FIRST–DR5 sources with SDSS spectra, and classified by SDSS as z ≥ 3.6 QSOs.

RA Dec. rAB S1.4 GHz Redshift NN output Previous Notes
(J2000) (J2000) (mJy) ymed samples

(1) (2) (3) (4) (5) (6) (7) (8)

01 53 39.61 −00 11 05.0 18.82 4.75 4.194 1.00
03 00 25.22 00 32 24.2 19.66 7.56 4.201 1.00
07 51 13.05 31 20 37.9 19.75 5.60 3.761 0.11 abs
07 51 22.35 45 23 34.2 20.20 1.13 3.608 0.89
08 10 09.95 38 47 57.0 19.62 27.16 3.946 0.29
08 38 08.46 53 48 09.8 19.94 8.42 3.610 1.00
08 39 46.22 51 12 02.8 19.33 41.64 4.390 1.00 1, 2
08 40 44.18 34 11 01.6 19.79 13.59 3.889 1.00
08 52 57.12 24 31 03.1 19.47 159.58 3.617 0.33
09 18 24.38 06 36 53.3 19.77 26.50 4.192 0.84 2 abs
09 37 14.49 08 28 58.5 18.59 3.17 3.700 0.53
09 40 03.02 51 16 02.7 19.99 13.91 3.601 0.03 3
10 00 12.26 10 21 51.8 19.54 21.93 3.638 0.86
10 17 47.75 34 27 37.8 20.00 2.63 3.691 0.91
10 30 55.95 43 20 37.7 19.84 37.82 3.700 0.75
10 34 46.54 11 02 14.5 18.80 1.09 4.266 0.70
10 51 21.36 61 20 38.0 18.90 6.64 3.689 0.93
10 57 56.28 45 55 53.0 17.44 1.38 4.137 1.00 1, 2, 3
11 10 55.21 43 05 10.0 18.59 1.21 3.821 0.81 3
11 17 01.89 13 11 15.4 18.28 28.99 3.624 0.14
11 17 36.33 44 56 55.6 20.03 25.08 3.853 1.00
11 25 30.48 57 57 22.7 19.41 2.99 3.685 0.70 abs
11 27 49.45 05 11 40.6 19.13 2.71 3.711 0.12 abs
11 29 38.73 13 12 32.2 18.77 1.33 3.607 0.21
11 33 30.91 38 06 38.1 19.71 0.87 3.631 0.80
11 50 45.61 42 40 01.1 19.87 1.51 3.894 0.54
12 04 47.15 33 09 38.7 19.24 0.92 3.616 0.56 BAL
12 31 42.17 38 16 58.9 20.18 24.04 4.138 0.99
12 40 54.91 54 36 52.2 19.74 15.09 3.938 1.00 3
12 42 09.81 37 20 05.6 19.34 662.38 3.819 0.97
12 46 58.83 12 08 54.7 20.00 1.44 3.805 1.00 BAL
12 49 43.67 15 27 07.0 19.31 2.01 3.995 0.89
13 00 02.16 01 18 23.0 19.78 2.52 4.614 0.90
13 03 48.94 00 20 10.4 18.90 0.99 3.647 0.99 BAL
13 07 38.83 15 07 52.1 19.70 3.89 4.082 0.94
13 15 36.57 48 56 29.1 19.77 10.86 3.618 0.96
13 25 12.49 11 23 29.7 19.33 71.05 4.409 1.00 2
13 54 06.89 −02 06 03.2 19.18 719.48 3.715 0.67
13 55 54.55 45 04 21.0 19.34 2.07 4.095 1.00
14 08 50.91 02 05 22.7 19.07 1.18 4.008 0.06 abs
14 12 09.96 06 24 06.8 20.17 43.47 4.467a 0.90 abs
14 22 09.70 46 59 32.5 19.70 11.03 3.798 1.00
14 23 26.48 39 12 26.2 20.15 6.52 3.921 1.00
14 35 33.77 54 35 59.3 20.05 95.78 3.810 0.90
14 45 42.75 49 02 48.9 17.32 3.18 3.876 0.99
14 46 43.36 60 27 14.3 19.79 1.81 3.777 1.00
15 03 28.88 04 19 49.0 17.96 124.97 3.664 0.84
15 06 43.81 53 31 34.3 18.94 14.63 3.790 0.32 3 abs
16 17 16.49 25 02 08.1 19.99 2.35 3.943 0.98 BAL
16 19 33.65 30 21 15.1 19.52 4.19 3.794 0.92 3
16 39 50.52 43 40 03.7 17.96 25.23 3.990 0.20 1, 2, 3 abs
16 43 26.24 41 03 43.5 20.10 65.01 3.873 1.00

The columns give the following: (1, 2) SDSS coordinates; (3) SDSS dereddened PSF rAB magnitude; (4) FIRST total radio flux density; (5) SDSS
redshift (a = revised redshift from DR5Q, see Section 2); (6) NN output (see Section 4.2); (7) labels 1, 2 and 3 indicate QSOs included in the samples
of Benn et al. (2002), Holt et al. (2004) and Carballo et al. (2006), respectively; (8) BAL – broad absorption line QSO; abs – the Lyα line appears to be
self-absorbed.
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3 SE PA R A B I L I T Y O F H I G H - R E D S H I F T Q S O S

W I T H A N E U R A L N E T WO R K

Only 52 of the 4248 sources with DR5 spectra are classified as
z ≥ 3.6 QSOs (Table 1). Our goal is to train a classifier to recognize
high-z QSOs among the 4415 objects without SDSS spectra, i.e.
the ‘unlabelled’ sources, after learning the class properties from the
4248 objects with spectra, i.e. the ‘labelled’ sources. The adopted
procedure was to consider a two-class problem, with high-z QSOs as
one class and the remaining types as the other. Since the training uses
objects whose class is known, the learning is said to be ‘supervised’.

Previous selections of high-z RL QSOs as FIRST sources with
optical counterparts on POSS-APM revealed an abrupt change in
O − E colour with redshift at ∼3.6, the latter allowing efficient
separation of high-z QSOs from the QSO population as a whole
(Benn et al. 2002; Vigotti et al. 2003; Carballo et al. 2006). We
therefore took this redshift as an initial threshold for high-z QSOs,
although we explored redshifts below z = 3.6 to find the optimal
value for the optical bands used in this work.

The learning algorithm applied was a feed-forward NN (Bishop
1995) with a layer for the input parameters, i.e. the data, and an
output layer with a single variable y, set during training to 1 for
high-z QSOs and 0 for the remaining types. Output y for object i is
given by

yi = f (ai) = 1

1 + e−ai
,

with ai = w0 +
d∑

j=1

wj xi
j ,

where (x1, x2, . . . , xd ) are the inputs, a is a linear function of the
inputs and f is the non-linear function known as a logistic sigmoid,
with outputs in the range (0, 1). This NN model is known as logis-
tic linear discriminant. w0 and (w1, w2, . . . , wd), called bias and
weights respectively, are the parameters fitted during training. The
adopted error function was the mean of the squared errors of the
outputs:

mse = 1

m

m∑

i=1

(yi − t i)2,

where m is the number of objects for the training and t is the desired
value of output y or target value. The optimal parameters for the net,
i.e. those minimizing the error, were obtained using the Levenberg–
Marquardt algorithm, available in the MATLAB Neural Network Tool-
box (http://www.matchworkds.com/). The Levenberg–Marquardt
algorithm appears to be the fastest method for training moderate-
sized NNs (Hagan & Menhaj 1994), and its efficient implementation
in MATLAB further improves its performance.

Table 3. Combinations (A–H) of optical and radio data used as input vari-
ables to the NN.

A B C D E F G H

r magnitude × × × × × × × ×
u − g × × × × × × × ×
g − r × × × × × × × ×
r − i × × × × × × × ×
i − z × × × × × × × ×
Rad–opt separation × × × ×
log10[Stotal(1.4 GHz)] × × × ×
log10(Stotal/Speak) × × × ×

As input data we tried various combinations (A–H) of variables
shown in Table 3. A pre-processing was performed normalizing
each variable to the range (−1, 1). For this step the total sample
was used (unlabelled sources included) since the inputs for the new
objects presented to the net need to have the same normalization as
the data used in the learning process. The output values, 0 ≤ y ≤ 1,
give the degree of similarity with the class of high-z QSOs. Objects
with y exceeding a given threshold yc would be classified as high-z
QSO candidates.

The quality of an NN for classification is evaluated in terms of its
efficiency, eff, and completeness, comp. Efficiency is the fraction of
sources with y ≥ yc that actually are high-z QSOs. Completeness is
the fraction of actual high-z QSOs with y ≥ yc. A good separation
between two classes will show efficiency increasing and complete-
ness decreasing as yc increases. Since our purpose is to build a
sample appropriate for statistical analysis, priority is given to com-
pleteness, accepting low yc values at the cost of lower efficiency.

The classifier has to be empirically tested using a set of objects
not used for the learning. Because of the small number of high-z
QSOs, the training and test samples were separated adopting the
partition method known as ‘leave-one-out’, repeatedly dividing the
data set of m instances into a training set of size m − 1 and a test set
of size 1, in all possible ways. This procedure yielded m classifiers,
one per test object. Since the m objects (4248) are used for testing,
a good estimate of the performance can be obtained.

The efficiency and completeness as a function of yc for each of
the eight sets of input variables is shown in Fig. 2. For all sets
of features the expected trend between eff and comp is present,
and classifiers are found yielding comp ≥90 per cent and eff
≥60 per cent for particular yc values. Among these sets of inputs, B
and E gave the maximum completeness, ∼96 per cent, both yielding
∼62 per cent efficiency. B was selected as the best classifier since it
uses a smaller number of input variables. In total, 81 sources have
y ≥ 0.1 for this set, of which 50 are QSOs with z ≥ 3.6, yielding
completeness 50/52 = 96 ± 14 per cent and efficiency 50/81 =
62 ± 9 per cent for y ≥ 0.1. The 31 contaminants include one star,
two galaxies and 28 z < 3.6 QSOs. The redshift distribution of the
latter is shown in Fig. 3. 19 of the QSOs, i.e. a fraction 19/31 =
61 ± 14 per cent of the contaminants, have redshifts 3.2 ≤ z < 3.6,
very close to the selected threshold.
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Figure 2. Efficiency versus completeness of the NN search for high-z QSOs,
for yc values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (right to left) and the
eight sets of input variables A–H. The adopted redshift cut for high-z QSOs
was z = 3.6. A sample Poisson error bar is plotted for each set.
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Figure 3. Redshift distribution for the 28 z < 3.6 QSOs with y ≥ 0.1 (i.e.
the contaminants), using the best-performing set of inputs, B.
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Figure 4. Similar to Fig. 2, but using the set of inputs B and with zcut =
3.5. The number of QSOs with higher redshift than this is 69.

Using a redshift cut zcut = 3.5 and the set of inputs B we found
comp = 90 ± 11 per cent and eff = 68 ± 9 per cent for yc = 0.1
(Fig. 4). Since completeness was prioritized we kept zcut = 3.6,
yielding completeness ∼96 per cent.

The inputs used for the learning were basically the SDSS colours,
which are known to be correlated, especially for QSOs (Weinstein
et al. 2004). This means that we could have applied some pre-
processing algorithms to reduce the input space dimension, and
therefore improve its sampling. In fact, the approach of logistic
linear regression does not need to assume that the variables are in-
dependent, and the presence of covariance in the input data does
not affect the quantification of the parameters of the optimal hyper-
plane separating high-z QSOs from the remaining classes except
for causing a sampling of the input space lower than necessary.
The good performance found for the test set of unseen data gives
us confidence that although probably redundant, the selected set of
input features is appropriate.

Several works described in the Introduction select QSOs from
SDSS using colour and/or photometric information covering the
five bands. Suchkov et al. (2005) apply a k-dimensional decision
tree classifier and use five colours (u − g, g − r, r − i, i − z and
g − i) as input data. Gao et al. (2008) apply decision trees and
support vector machines to select QSOs from a combined SDSS–
2MASS sample, using several sets of input data including in all
cases SDSS photometry at the five bands (magnitudes in all bands
or four colours and a magnitude). They found the best results for
the input set with four SDSS colours and the r-band magnitude,
which is the set of optical data selected in our work. Ball et al.
(2006, 2007) use decision trees to select QSOs from SDSS and
a k nearest neighbour instance-based approach to quantify QSO
photometric redshifts (Ball et al. 2008), in both cases using as
input data four colours in the four magnitude types (PSF, fibre,
Petrosian and model). Ball et al. (2007) applied genetic algorithms
to investigate subsets of the original 16 inputs in a systematic way

and found that no subset resulted in a significant improvement and
some subsets were even worse, therefore, electing to keep the full
SDSS information available.

Since we adopted the leave-one-out approach and use all the
sources as test, training and testing objects form the same sample,
i.e. the sample of sources with DR5 spectra. This means that the
quoted figures of 96 ± 14 completeness and 62 ± 9 per cent ef-
ficiency refer to the selection of high-z QSOs among the labelled
sources, i.e. within the interpolation regime.

The labelled sample contains, among the 52 high-z QSOs, 12
sources with broad absorption lines (BALs) or self-absorption at
Lyα (see Table 2). The classifier recovers 50/52 of the high-z
QSOs and 11/12 of the BALs and self-absorbed at Lyα, proving
to be effective in the selection of QSOs with this type of absorp-
tion features. On the other hand, we confirmed that all 52 high-z
QSOs in the training sample have at least an emission line with
FWHM ≥ 1000 km s−1, i.e. none of them belongs to the class of
‘narrow-lined’ (type II) QSOs. Therefore, the classifier trained in
this work targets the selection of high-z QSOs with at least a broad
emission line, including those cases presenting absorption features
in the form of BALs or Lyα absorption.

Fig. 5 shows the distribution of the six variables used as input
data r, u − g, g − r, r − i, i − z and radio–optical offset, separating
(from left to right) labelled high-z QSOs, labelled non-high-z QSOs
and unlabelled sources. For non-high-z QSOs (4196) and unlabelled
sources (4415) we used for the plot representative subsets containing
8 per cent of the sources, to improve visualization. For non-high-z
QSOs this proportion was applied separately for QSOs, galaxies,
early-type stars, late-type stars and ‘unknown’, to keep the same
fractions as in the original sample. Most of the sources in this
sample are QSOs with z < 3.6 (3906/4248 = 90 per cent). The
scale is linear, and although normalized variables were used, their
ranges in physical units can be inferred from the marked numbers
in the figure, showing the minimum and maximum value of each
variable for the represented sources. Table 4 presents the mean,
standard deviation and median for each variable, for the complete
three samples, as well as for the whole sample of labelled sources.
In Fig. 5 and Table 4 all sources were included regardless of their
photometric errors. The errors at g, r, i and z are less than 0.2 mag
(except for one unlabelled source with �r = 0.24 and eight with
�z = 0.2–0.3). For the u band the errors exceed 0.2 mag for all
high-z QSOs, 246 labelled non-high-z QSOs (out of 4196) and
313 unlabelled sources (out of 4415), with median values for these
sources of �u = 0.8, 0.5, 0.4, respectively.

Regarding the comparison among labelled sources, the variables
that taken individually better discriminate between the classes of
high-z QSOs and non-high-z QSOs are the u − g and g − r colours,
as expected from the fact that z < 3.6 QSOs dominate the non-high-
z QSO sample and the well established colour–redshift relation for
QSOs (e.g. Schneider et al. 2007). Also noticeable is the concentra-
tion of high-z QSOs at the faintest r magnitudes (fainter magnitude
and lower dispersion) and at the lowest radio–optical offsets (lower
separation and again lower dispersion), compared to the remaining
labelled sources.

4 A P P L I C AT I O N O F TH E N E T WO R K TO TH E

UNLABELLED SAMPLE

4.1 The labelled and unlabelled samples

The labelled sample consists of the FIRST–SDSS sources included
in the DR5 spectroscopic catalogue. The content of the labelled
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Figure 5. Normalized input parameters r, u − g, g − r, r − i, i − z and radio–optical separation for labelled high-z QSOs (�), labelled non-high-z QSOs
(•, 8 per cent shown) and unlabelled sources (×, 8 per cent shown). The numbers indicate the minimum and maximum value of each variable (in magnitudes
or arcsec) for the sources in the plot.

Table 4. Statistics (mean, standard deviation and median) of the selected
input variables for various SDSS DR5 subsamples.

High-z Non-high-z Labelled Unlabelled
QSOs QSOs
(52) (4196) (4248) (4415)

r 19.36 ± 0.69 18.90 ± 0.86 18.90 ± 0.86 19.33 ± 0.81
19.53 19.00 19.01 19.56

u − g 3.34 ± 1.20 0.54 ± 0.75 0.57 ± 0.82 0.53 ± 0.70
3.07 0.31 0.32 0.32

g − r 1.40 ± 0.45 0.27 ± 0.31 0.29 ± 0.33 0.27 ± 0.30
1.24 0.21 0.21 0.21

r − i 0.17 ± 0.22 0.16 ± 0.21 0.16 ± 0.22 0.15 ± 0.20
0.13 0.14 0.14 0.13

i − z 0.06 ± 0.18 0.11 ± 0.17 0.11 ± 0.17 0.12 ± 0.18
0.10 0.09 0.09 0.11

Sep (arcsec) 0.30 ± 0.20 0.40 ± 0.33 0.40 ± 0.33 0.39 ± 0.32
0.25 0.29 0.29 0.28

sample is determined by the way the photometric objects were
selected as spectroscopic targets by SDSS. The selection criteria
were mainly aimed at obtaining samples of galaxies, QSOs and
brown dwarfs, with different combinations of selected parameters
(e.g. magnitude and colour ranges, extension, proximity to cata-
logued sources at other wavelengths) being used for each object
type. The labelled sample cannot therefore be considered as statis-
tically representative of the SDSS imaging data base. Classes not
considered in the spectroscopic selection criteria may be absent
or poorly represented in the spectroscopic catalogue. The unla-
belled sample is therefore a mixture of the sources in the DR5
spectroscopic area not selected as spectroscopic targets (2059 ob-
jects within ∼5553 deg2, compared to 4248 labelled in the same
region), and the sources in the DR5 photometric area but outside
the spectroscopic area (2356 objects within ∼1838 deg2).

A general concern about classification is the application of an
algorithm trained on a sample of data to a different set of data,

likely covering other regions of input space. The extension of the
classifier beyond the original sample used for the training is framed
in the context of extrapolation versus interpolation. In our case the
training set is the DR5 spectroscopic survey or labelled sample, and
our aim is to apply the classifier to the sources in the DR5 photo-
metric sample without DR5 spectra. We expect a reasonable overlap
between labelled sources and the sources located outside the spec-
troscopic area, since a large fraction of the latter would have been
SDSS spectroscopic targets if included in the spectroscopic area
[a fraction 4248/(4248 + 2059) = 67 per cent using the statistics
in DR5 spectroscopic area]. A poorer overlap is expected between
labelled sources and the unlabelled sources in DR5 spectroscopic
area.

Fig. 5 and Table 4 allow to compare the distribution of each input
variable for the classes of labelled and unlabelled sources. Although
Fig. 5 does not include labelled sources as a whole, the distributions
for this set are approximately similar to those for labelled non-high-
z QSOs, since high-z QSOs make only 1.2 per cent (52/4248) of the
labelled sources. The main effect of including high-z QSOs would
be to increase the ranges of the u − g and g − r colours. The statistics
of mean, standard deviation and median for the whole labelled and
unlabelled groups are given in Table 4 (columns 3 and 4). Fig. 5 and
Table 4 show a good agreement between the distributions of each of
the input variables for unlabelled and labelled sources, except for the
r-band magnitudes, which are fainter for unlabelled sources, with
mean and median of 19.33 and 19.56 versus 18.90 and 19.01. These
comparisons between unlabelled and labelled sources use each input
variable individually. More complex separations between labelled
and unlabelled sources would be expected in the six-dimensional
input space.

We applied the trained classifier to the unlabelled sample in or-
der to select new high-z QSO candidates and to obtain an esti-
mate of the completeness of SDSS spectroscopy for radio QSOs
with 3.6 ≤ z ≤ 4.6. The sample of new high-z QSO candidates
is presented in Section 4.2. In Section 4.3 we discuss the perfor-
mance obtained in the unlabelled sample, on the basis of available
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Figure 6. Distribution of NN output y for the unlabelled FIRST–DR5
sources and the separation high-z QSO versus remaining classes, assum-
ing the trained NNs (see Section 4.2). The boxes mark the median values.
The sources to the left of the vertical line (2356) are located outside the DR5
spectroscopic area, and those to right (2059) inside this area.

spectroscopic identifications from observations in this work, taken
from the literature or from SDSS DR6.

4.2 The sample of high-z QSO candidates

In Section 3 we demonstrated the good performance of simple NNs
for separating, on the basis of optical photometry and radio data,
high-z QSOs from the remaining classes in the labelled sample.
This evaluation was based on the outputs of m = 4248 labelled
objects, using for each object a NN trained with the remaining
4247. We adopted set B of input variables, which for threshold
yc = 0.1 yielded completeness 96 ± 14 per cent and efficiency
62 ± 9 per cent. The m NNs were applied to the unlabelled sample
and the resulting m values of y for each source, and their medians,
ymed, are shown in Fig. 6. The number of unlabelled sources with
median outputs exceeding yc = 0.1 is 58 (31 outside and 27 within
the DR5 spectroscopic area), and these are our ‘high-z QSO candi-
dates’. Their properties are listed in Table 5, including the median
of the NN outputs. The same parameter for the high-z QSOs in
the labelled sample is listed in Table 2 (but in this case the QSOs
themselves were used in the training).

4.3 Spectroscopic check of the QSO selection

The quality of the selection of high-z QSO candidates was tested
by comparison with spectroscopy from the NED, from a dedicated
observing programme with Intermediate-dispersion Spectrograph
and Imaging System (ISIS) at the WHT, and from spectroscopic
classifications from SDSS DR6. The resulting classifications and
redshifts are included in Table 5.

4.3.1 Spectroscopic classifications from NED

Counterparts of the 58 high-z QSO candidates and the 4357 non-
candidates (4415 unlabelled sources) were sought in NED in 2007
February, using a search radius of 5 arcsec. A similar radius is used
in the SDSS DR5 Quasar Catalog (Schneider et al. 2007) to quote
the association with a NED object. Four of the candidates were
spectroscopically classified, all QSOs with z > 3.3. Benn et al.

(2002) identified three of them, with redshifts 4.33, 4.17 and 3.694,
the remaining candidate, with z = 3.305, was identified by Mason
et al. (2000).

Amongst the non-candidates, 382 were associated with QSOs
(blazars excluded) with secure redshifts, and none of them had
z ≥ 3.6. Another 13 QSOs had ambiguous or uncertain redshifts but
none was consistent with z ≥ 3.6.

4.3.2 Spectroscopy with ISIS

Spectra of 27 of the remaining 54 candidates were obtained with the
WHT’s ISIS dual-arm spectrograph in two runs on 2007 April 3, 4, 6
and 7 and on 2007 July 8, 9 and 10. The R158R grating was used on
the red arm, yielding a wavelength range 5300–10000 Å with dis-
persion 1.8 Å pixel−1. On the blue arm the R300B grating was used,
giving a spectral range 3000–6000 Å with dispersion 0.9 Å pixel−1.
Exposure times were 600 s. Spectrophotometric standard stars were
observed in order to calibrate the instrumental spectral response.
Seeing was typically better than 1 arcsec and the slit width was set
to 1 arcsec, yielding spectral resolution, as measured from sky lines,
of 7.7 and 4.5 Å in the red and blue arms, respectively. Standard
data reduction was carried out using the IRAF3 package. Arc-lamp
exposures were used for wavelength calibration, giving solutions
with residuals <0.1 Å.

We observed 15 sources in April, prioritizing the candidates with
higher NN output y, brighter r magnitude and at lower air mass,
regardless of their location inside or outside the DR5 spectroscopic
area. All 15 sources were classified as QSOs and their redshifts were
determined as the average of the values measured from individual
emission-line centroids, usually Lyα, Si IV and C IV. 13 of the QSOs
have 3.60 ≤ z ≤ 4.21, and the remaining two z = 3.55 and 3.42.

The 12 sources observed in July consist of all the remaining
candidates with RA in the range 13–24 h and without spectra in
DR6. The results of the spectroscopic classification were as follows.
11 sources were classified as QSOs: four with 3.6 ≤ z ≤ 3.9, four
with 1.07 ≤ z ≤ 1.34 and three with z = 3.17, 3.34 and 3.59.
One candidate remained unclassified due to both low signal-to-
noise ratio and lack of clear absorption or emission features in the
spectrum.

Fig. 7 shows the spectra of the 21 candidates identified with ISIS
as z ≥ 3.2 QSOs (17 of them with z ≥ 3.6).

4.3.3 Spectroscopy from SDSS DR6

SDSS DR6 (CAS SpecObj view) includes spectra of nine of the
remaining 27 candidates (and also of six of those already observed
with ISIS in April, and two from the NED). These nine include four
QSOs with 3.6 ≤ z ≤ 3.8, one at z = 3.40, two galaxies with z =
0.45 and 0.58 and two sources labelled as unknown.

Amongst the 4357 non-candidates, 898 have spectra from DR6,
and are classified as stars or galaxies (71), unknown (62) or
QSOs (765). The latter include some of the QSOs with spectra
from NED cited in Section 4.3.1. Two QSOs have z ≥ 3.6,
but their SDSS redshifts are incorrect (see the DR6 spectra in
Fig. 8). For SDSS 075558.88+113210.9, with quoted z = 4.340
(confidence = 0.51), we measured from the emission lines of Mg II

3 IRAF is distributed by the National Optical Astronomy Observatories, which
is operated by Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.
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Table 5. z ≥ 3.6 QSO candidates identified by the NN in the FIRST–SDSS DR5 unlabelled sample.

RA Dec. rAB S1.4 GHz NN output Redshift Notes In DR6
(J2000) (J2000) (mJy) ymed NED WHT DR6 spec. area?

(1) (2) (3) (4) (5) (6) (7) (8)

07 25 18.26 37 05 18.3 19.61 26.56 1.00 4.33
07 47 11.15 27 39 03.3 18.35 1.55 0.11 4.17 Yes
07 47 38.49 13 37 47.3 19.37 6.62 1.00 4.04 BAL
08 07 10.74 13 17 39.4 20.01 48.88 0.56 3.70 3.726 Yes
08 15 55.01 46 53 21.4 19.88 3.73 0.14 Yes
08 23 23.32 15 52 06.8 19.31 79.33 1.00 3.79 3.781 Yes
08 33 16.91 29 22 28.0 20.13 12.73 0.49 Yes
08 43 23.69 16 56 56.1 19.66 2.36 0.20 DR6 unknown Yes
08 48 18.88 39 38 06.0 20.15 0.72 0.18 Yes
08 52 58.87 22 50 50.5 20.16 45.33 0.95 3.55 Yes
08 55 01.82 18 24 37.8 19.96 9.43 0.79 3.96 3.966 Yes
08 59 44.06 21 25 11.1 18.72 23.96 0.82 3.70 3.699 Yes
09 02 54.17 41 35 06.5 20.12 0.93 0.99 3.69 Yes
09 09 53.84 47 49 43.0 19.89 383.67 0.37 Yes
09 14 36.22 50 38 48.5 20.16 51.00 0.30 Yes
10 09 33.22 25 59 01.2 20.13 3.42 0.37 DR6 unknown Yes
10 10 20.85 28 51 50.1 20.11 2.62 0.28 DR6 z = 0.58 galaxy Yes
10 19 39.00 19 03 12.0 20.11 0.74 0.20 DR6 z = 0.45 galaxy Yes
10 29 40.93 10 04 10.9 19.47 3.22 0.25 Yes
10 34 20.43 41 49 37.5 20.12 1.98 0.50 Yes
10 52 25.06 25 15 41.3 20.10 5.26 0.16 3.404 Yes
10 58 07.47 03 30 59.6 19.92 4.62 0.15 Yes
11 05 43.86 25 53 43.1 20.09 2.76 0.98 3.779 Yes
11 09 46.44 19 02 57.6 20.04 6.95 1.00
11 23 39.59 29 17 10.7 19.47 3.14 0.78 3.771 Yes
11 46 41.02 12 52 02.9 20.19 3.01 0.11 Yes
11 51 07.42 50 15 58.5 20.08 1.22 0.54 Yes
11 54 49.36 18 02 04.4 19.63 39.06 0.87 3.688 Yes
12 04 07.83 48 45 48.2 19.97 2.64 0.15 Yes
12 05 31.73 29 01 49.2 20.17 1.46 0.55 Yes
12 13 29.42 −03 27 25.7 19.64 25.53 0.47 Yes
12 20 27.96 26 19 03.5 18.12 35.04 0.94 3.694 3.697 Yes
12 21 35.64 28 06 13.8 19.77 28.76 0.11 3.305 3.288 Yes
12 28 19.96 47 40 30.4 19.32 2.22 0.59 Yes
12 31 28.22 18 47 14.3 19.41 11.17 0.13
12 43 23.16 23 58 42.2 19.87 63.44 0.63
12 44 43.06 06 09 34.6 19.78 1.36 0.20 Yes
13 12 42.86 08 41 05.0 18.53 3.93 0.43 3.73 3.743 Yes
13 20 53.63 10 37 51.5 19.46 8.43 0.23 3.42 3.431 Yes
13 22 27.58 53 52 09.2 19.68 2.51 0.10 1.23 Yes
13 37 59.43 36 34 20.6 20.17 2.88 0.12 1.07 Yes
13 42 01.42 05 01 56.0 20.11 27.24 0.14 3.17 Yes
13 48 54.37 17 11 49.6 19.13 1.90 0.99 3.60
13 49 18.52 35 24 15.7 19.77 81.88 0.11 1.22 Yes
14 06 35.67 62 25 43.3 19.72 11.50 0.47 3.89 abs Yes
14 34 13.05 16 28 52.7 19.86 4.95 1.00 4.21
14 53 29.01 48 17 24.9 20.11 3.75 1.00 3.77 Yes
15 11 46.99 25 24 24.3 19.95 1.39 1.00 3.719 BAL Yes
15 20 28.14 18 35 56.1 19.82 6.94 0.96 4.11
15 24 24.35 07 31 29.9 20.13 1.51 0.39 3.59 Yes
15 33 36.14 05 43 56.5 19.84 28.29 0.99 3.93
15 37 56.90 48 23 32.3 20.00 3.07 0.97 1.34 Yes
16 37 08.29 09 14 24.6 19.56 9.43 0.93 3.75
17 02 53.54 23 57 58.0 19.74 19.24 0.25 Unknown Yes
17 20 02.17 24 55 48.8 19.82 12.90 0.16 3.34 BAL
22 28 14.39 −08 55 25.7 20.19 1.99 0.99 3.64 Yes
22 35 35.59 00 36 02.0 20.14 4.32 0.98 3.87 Yes
23 50 22.39 −09 51 44.3 19.68 6.51 0.10 3.70 Yes

The columns give the following: (1, 2, 3, 4) similar to Table 2; (5) NN output (see Section 4.2); (6) redshifts from NED (SDSS 072518.26+370518.3,
SDSS 074711.15+273903.3 and SDSS 122027.96+261903.5 from Benn et al. 2002; SDSS 122135.64+280613.8 from Mason et al. 2000), from this work or
from DR6; (7) BAL – broad absorption line QSO; abs – the Lyα line appears to be self-absorbed; (8) indicates the sources located within the spectroscopic
plates available in DR6.
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Figure 7. WHT spectra of 21 of the 58 NN ymed ≥ 0.1 candidates (six also included in DR6), including 17 z ≥ 3.6 QSOs, and four QSOs at z = 3.34, 3.42,
3.55 and 3.59. Emission features are labelled by ion. Symbol ⊕ indicates the position of the atmospheric absorption band O2 A.

(erroneously taken as Lyα by the SDSS pipelines) and C III] a red-
shift z = 1.295. The spectrum of SDSS 161836.09+153313.5, with
z = 4.376 (confidence = 0.00), resembles that found for sources
SDSS 130941.36+112540.1 and SDSS 153420.23+413007.5 (see
Section 2), classified in DR5 as QSOs with redshifts z = 4.395
and 4.426, but with revised values in DR5Q z = 1.362 and 1.400,
due to the re-interpretation of the assumed Lyα emission line as
Mg II. A similar revision gives z = 1.322 for SDSS 161836.09+
153313.5.

4.3.4 Performance of the selection of high-redshift QSOs

Spectra are available for 40 candidates, obtained from NED, SDSS
DR6 or observed for this work, and 24 of them are confirmed z ≥
3.6 QSOs.

Fig. 9 shows a plot of the NN output ymed versus r magnitude
for the 58 high-z QSO candidates. Different symbols correspond to
the different spectral classes (high-z QSOs are shown as diamonds).
The two panels separate the candidates located within and outside
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Figure 7 – Continued

the spectroscopic area available in DR6 (as noted in the last column
of Table 5). Fig. 9 shows a larger fraction of high-z QSOs among the
candidates with higher NN outputs, a trend also evident in Fig. 2.
The efficiency for 0.55 ≤ y ≤ 1 is 91 per cent (20 z ≥ 3.6 QSOs
out of 22 candidates with available spectra), dropping to 22 per cent
(four of 18) for 0.1 ≤ y < 0.55. Spectra are available for all 20
high-z QSO candidates with 13h < RA < 24h, and this set therefore
forms a complete subsample with regard to the distribution of NN
outputs. With 12 confirmed z ≥ 3.6 QSOs out of 20 candidates, the
efficiency from this sample is 60 ± 17 per cent. This value is in
good agreement with the efficiency 24/40 = 60 ± 12 per cent

for the total sample of candidates with spectra, and with the
62 ± 9 per cent efficiency obtained within the labelled sample
(Section 3).

None of the non-candidates in the unlabelled sample with avail-
able spectrum from NED or DR6 is a z ≥ 3.6 QSO, therefore,
we have no evidence of incompleteness, with respect to DR5 un-
labelled sources with matches in any of these data bases. In fact
a good completeness was expected for the matches with the DR6
spectroscopic survey, since the selection of sources, classification
and measured properties respond to the same scheme as for the DR5
spectroscopic catalogue used for the training, where we had found
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Figure 7 – Continued

96 per cent completeness. However, the NED provides spectro-
scopic identifications assigned from other surveys, and the absence
of NED high-z QSOs among the non-candidates gives therefore
independent evidence that the classifier has a good completeness
in its extension to DR5 unlabelled sources. Three DR5 unlabelled
sources are identified as z ≥ 3.6 QSOs in NED, all of them selected
as high-z QSO candidates in our work.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we aimed to obtain a sample of z ≥ 3.6 QSOs, starting
from an initial complete sample of 8665 FIRST sources with star-
like counterparts in the SDSS DR5 photometric survey, of which
4250 have spectra in DR5, 52 of them being z ≥ 3.6 QSOs. We
found that simple supervised NNs, trained on the sources with
DR5 spectra, and using optical photometry and radio data as input
parameters, allow separation of high-z QSOs from the remaining
spectral classes with 96 per cent completeness and 62 per cent
efficiency. The application of the NNs to the sample of 4415 sources
without DR5 spectra yielded 58 high-z QSO candidates.

We obtained spectra of 27 of the 58 candidates, and 17 were
confirmed as high-z QSOs. Spectra of 13 additional candidates

from the NED and from DR6 revealed seven more high-z QSOs,
yielding a total 40 candidates with spectra available, of which 24
are high-z QSOs. The number of high-z QSOs was then increased
from 52 in the initial sample to 76 (a factor of 1.46).

The overall efficiency in the selection of new high-z QSOs is
60 ± 12 per cent (24/40). The estimate from a subsample unbiased
with respect to the NN outputs is 60 ± 17 per cent (12/20), and both
values are in good agreement with the 62 ± 9 per cent efficiency
obtained for the DR5 labelled sample (Section 3).

None of the non-candidates with spectra available from NED or
DR6 is a z ≥ 3.6 QSO, therefore, we have no evidence of incom-
pleteness regarding high-z QSOs with matches in these catalogues.
Since the NED spectroscopic identifications are assigned from a va-
riety of surveys different than SDSS, the database provides a blind
test of the good completeness of the classifier for DR5 unlabelled
sources.

The efficiencies found are well above the values obtained for pre-
vious samples of RL high-z QSOs, based on less accurate optical
photometry and with fewer wavelength bands than SDSS, although
already highly complete (≥95 per cent) regarding optical colour
selection. The efficiencies for various samples, summarized by
Carballo et al. (2006) for z ≥ 3.7, are 12–13 per cent (Holt et al.
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Figure 8. DR6 spectra of two non-candidates with revised redshifts z = 1.29 and 1.32 listed in SDSS DR6 as z ≥ 3.6 QSOs, due to misidentification between
the Lyα and Mg II emission lines.
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Figure 9. NN output y versus r magnitude for the 58 high-z QSO candidates, located either within (left-hand panel) or outside (right-hand panel) the
spectroscopic area available in DR6. �: QSOs with z ≥ 3.6; ◦: QSOs with 3.2 ≤ z < 3.6; +: other classification or unknown; ×: without spectrum.

2004; Carballo et al. 2006; S1.4 GHz > 1 mJy, APM-POSS E, O),
6 per cent (Hook et al. 2002; S5 GHz > 30 mJy and radio flat, APM-
POSS E, O) and 19 per cent (Snellen et al. 2001; S5 GHz > 30 mJy
and radio flat, APM UKST (United Kingdom Schmidt Telescope)
B, R, I).

Adopting for the 18 candidates which still lack spectroscopy
a weighted efficiency of 37 per cent (four candidates with y ≥
0.55 and 14 with y < 0.55, with expected efficiencies of 91 and
22 per cent, respectively), we calculate ∼seven additional z ≥ 3.6
QSOs. The FIRST–DR5 sample of high-z QSOs is thus expected
to contain ∼83 QSOs (52+24+7). Adopting as a lower limit for
completeness the nominal value of 96 per cent found for the labelled
sample, we calculate for the set of 31 high-z QSOs obtained by the
classifier (24 discovered and seven predicted) a minimum ∼one
missed high-z QSO.

The NNs found 31 contaminants, i.e. non-high-z QSOs erro-
neously selected as high-z QSOs, in the labelled sample, with a
fraction 61 ± 14 per cent (19/31) being QSOs with 3.2 ≤ z ≤ 3.6.
Among the 40 high-z QSO candidates with available spectra we
found 16 contaminants, seven of them being QSOs with 3.15 ≤ z ≤

3.6, confirming a high rate of QSOs with z near the threshold z =
3.6 among the contaminants, 7/16 = 44 ± 17 per cent.

Our results allow us to obtain an estimate of the incompleteness
of SDSS for the spectroscopic classification of FIRST high-z QSOs.
47 of the high-z QSO candidates are located in the spectroscopic
area covered by DR6 (Table 5, Fig. 9, left-hand panel), and 17
of them are z ≥ 3.6 QSOs, 10 included in the DR6 spectroscopic
catalogue and seven not included. 15 candidates in this area still
lack spectroscopy, and assuming for them a weighted efficiency of
31 per cent (two candidates with y ≥ 0.55 and 13 with y < 0.55), we
expect another four high-z QSOs. From this calculation we estimate
11 FIRST high-z QSOs missed by SDSS (seven QSOs and four can-
didates), which when compared to 62 (52+10) identifications yields
an incompleteness of SDSS for the spectroscopic classification of
FIRST 3.6 ≤ z ≤ 4.6 QSOs of ∼15 per cent (11/73) for r ≤ 20.2.

The definition of the original sample of 52 high-z FIRST QSOs
excluded lobe-dominated morphologies and ‘narrow-lined’ QSOs,
and included QSOs with BALs or self-absorbed at Lyα. The same
conditions hold for the larger sample of 76 QSOs, obtained from
the application of the NNs trained using these 52 objects to DR5
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photometric sources without spectra in DR5, and covering a slightly
wider region of input space than that used by SDSS for QSO
targeting.

In a future paper we plan to analyse the optical luminosity
function of FIRST–SDSS QSOs at 3.6 ≤ z ≤ 4.6 on the basis
of this sample. Concurrently we expect to carry out spectroscopic
observations of the 18 candidates without spectra. Given the efficacy
of our approach, we intend to extend the sample using more updated
SDSS data releases, increasing the number of training sources and
the number of high-z QSO candidates, for which subsequent spec-
troscopy will be planned. We envisage using additional infrared data
via UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky
Survey (UKIDSS).
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