
PHYSICAL REVIEW B 86, 085305 (2012)

First-principles modeling of the thermoelectric properties of SrTiO3/SrRuO3 superlattices
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Using a combination of first-principles simulations, based on density functional theory and Boltzmann’s
semiclassical theory, we have calculated the transport and thermoelectric properties of the half-metallic two-
dimensional electron gas confined in single SrRuO3 layers of SrTiO3/SrRuO3 periodic superlattices. Close to the
Fermi energy, we find that the semiconducting majority-spin channel displays a very large in-plane component
of the Seebeck tensor at room temperature, S ∼ 1500 μV/K, and the minority-spin channel shows good in-plane
conductivity, σ = 2.5 (m� cm)−1. However, we find that the total power factor and thermoelectric figure of
merit for reduced doping is too small for practical applications. Our results support that the confinement of
the electronic motion is not the only thing that matters to describe the main features of the transport and
thermoelectric properties with respect the chemical doping, but the shape of the electronic density of states,
which in our case departs from the free-electron behavior, is also important. The evolution of the electronic
structure, electrical conductivity, Seebeck coefficient, and power factor as a function of the chemical potential is
explained by a simplified tight-binding model. We find that the electron gas in our system is composed by a pair
of one-dimensional electron gases orthogonal to each other. This reflects the fact the physical dimensionality of
the electronic system (1D) can be even smaller than that of the spacial confinement of the carriers (2D).
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I. INTRODUCTION

The interest in thermoelectric materials has undergone
a revival over the past decade.1,2 The reason behind this
resurgence is twofold. On the one hand, recent experimental3–6

and theoretical7–10 discoveries have allowed us to observe new
ways to significantly improve the efficiency of these materials,
quantified by the thermoelectric adimensional figure of merit,

ZT = S2σ

κe + κl
T , (1)

where S is the Seebeck coefficient (also called thermopower
and denoted by α by some authors), σ is the electrical
conductivity, κe (κl) is the electronic (lattice) contribution to
the thermal conductivity, and T is the absolute temperature. On
the other hand, there is an indubitable technological interest
over these systems, as significant improvements in this field
will potentially affect fuel consumption efficiency and allow
us to build diminute cooling devices without moving parts.1

It is usually accepted that applications in this field will
only be cost-effective for materials where ZT is significantly
larger than 1. However, the task of increasing its value remains
challenging, since all the participating material’s parameters
in Eq. (1) are strongly interconnected, and also dependent on
material’s crystal structure, electronic structure, and carrier
concentration.11 Increasing the Seebeck coefficient for simple
materials requires a decrease in the carrier concentration that
yields to a concomitant reduction in the electrical conductivity.
Also, an increase in the electrical conductivity leads to a
comparable increase in the electronic contribution to the
thermal conductivity (as expressed in the Wiedemann-Franz
law.) In conventional solids, a limit is rapidly obtained where a

modification in any of these parameters adversely affects other
transport coefficients so the resulting ZT for a given material
at a given temperature does not vary significantly.12

Typical good thermoelectrics are doped semiconductors
with intermediate values of the carrier density (close to
1018–1019 cm−3) displaying, at the same time, large Seebeck
coefficients and good charge mobility. A typical example1 of
this behavior is Bi2Te3 that, after doping, displays a ZT value
close to 1 at 320 K with a resitivity ≈1 m� cm and a Seebeck
coefficient of 225 μV/K. Other heavy-metal-based materials,
such as group IV chalcogenides (lead telluride, PbTe, and
related materials), exhibit a large figure of merit at intermediate
temperatures (to 850 K). More interesting materials, such as
clathrates,13 half-Heusler,14,15 skutterudites,16–18 or strongly
correlated oxides,19–23 have also been identified. Finally, it is
noteworthy that graphene layers4 (due to the peculiar quantum-
relativistic-like electronic structure) and silicon nanowires24,25

and molecular junctions (due to their low thermal conductivity)
have also received much attention.

A completely new route to enhance the figure of merit was
opened by Hicks and Dresselhaus in the early 1990s.7 With
a theoretical model these authors showed that a significant
increase in ZT would be possible due to the modification of
the electronic properties of some materials when prepared in
the form of quantum-well superlattices7 or nanowires.8 The
model is based on three assumptions:7 (i) the calculations are
done for one-band material (assumed to be the conduction
band), (ii) the constant relaxation time approximation, and
(iii) parabolic bands, indicating free-electron-like motion. If
these three conditions are applicable to a given material,
Hicks and Dresselhaus predicted that layering the material
has the potential to increase significantly the figure of merit
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ZT for certain optimized values of the chemical potential
(doping), provided that the superlattice multilayers are made
in particular orientations. The production of low-dimensional
heterostructures has two main consequences that improve the
value of ZT . The first one is that the confinement of the charge
carriers in a plane changes the band structure and the electronic
density of states (DOS). Indeed, in the free-electron model the
DOS changes from a functional dependency with the square
root of the energy in 3D to a steplike shape in 2D. Thus, within
one of these steps in a 2D system, an increase in carrier density
per unit volume (i.e., an increase in σ ) can be obtained without
changing the Fermi energy (i.e., without changing S because,
as discussed in Ref. 26, the Seebeck coefficient is sensitive only
to the position of the Fermi energy). The second one is that the
nanostructuration of the system along a given spatial direction
also favors the dispersion of phonons that have wavelengths
comparable with the period of the superlattice, leading to a
decrease on the thermal conductivity κl, due to scattering of
the lattice vibrations by the interface between layers. The first
condition is in line with Mahan and Sofo’s proposal9 for an
“ideal thermoelectric.” From a purely mathematical point of
view, these authors found how a δ-shaped transport distribution
maximizes the thermoelectric properties.

Experimentally, these ideas have been thoroughly checked
in semiconducting heterostructures containing heavy non-
metal ions. As a proof of concept, pioneering experimen-
tal works were carried out by Hicks and coworkers12 in
PbTe/Pb1−xEuxTe multiple quantum wells, showing a good
agreement between the experimental results and the theoretical
model predictions for the increase in the figure of merit.
Values of ZT as high as 2.4 have been measured in p-doped
Bi2Te3/Sb2Te3 superlattices.5 However, these systems are far
from ideal as they decompose at the temperature where
thermoelectric materials are expected to function (they start
to decompose at T ≈ 200 ◦C) and contain poisonous elements
like lead or bismuth.

Also, in good agreement with the Hicks and Dresselhaus
prediction, Ohta et al.3 found that periodic SrTiO3/Nb-doped
SrTiO3 superlattices, where a two-dimensional electron gas
(2DEG) is formed at the Nb-doped layer, exhibit enhanced
Seebeck coefficients as the width of the doping layer is
reduced. In particular, when its thickness reaches the ultimate
thickness of one unit cell a very high value of S = 850 μV/K
was observed, and a ZT of 2.4 for the 2DEG was estimated
(this corresponds to an effectice ZT of 0.24 for the complete
device having the 2DEG as the active part). However, this
enhancement of the thermoelectric properties in 2DEG at oxide
superlattices seems not to be so universal. Recent experimental
results27 could not find any enhacement of the Seebeck effect
due to the electronic confinement in the metallic state at the
n-type LaAlO3/SrTiO3 interface.28

Very recently, we have proposed an alternative mecha-
nism to generate 2DEG at oxide interfaces,29 playing with
the possibility of generating a quantum well based on the
different electronegativity of the cations in the perovskite
structures used to build the interface. In particular, a half-
metallic spin-polarized 2DEG was theoretically predicted in
(SrTiO3)5/(SrRuO3)1 superlattices. The electron gas is fully
localized in the SrRuO3 layer due to higher electronegativity
of Ru4+ ions compared to Ti4+ ones. The 2DEG presents a

FIG. 1. (Color online) (a) Schematic representation of the unit
cell, periodically repeated in space, of (SrTiO3)5/(SrRuO3)1 super-
lattices. Ti atoms (in blue) and Ru ones (in gray) are situated at the
center of the octahedra, as denoted by the layer labeling, while O
(in red) is placed at the vertex and Sr (in green) at the interstices.
(b) Layer-by-layer PDOS on the atoms at the SrBO3 (B = Ti or Ru)
for the corresponding layer at the same height as in (a). Majority
(minority) spin is represented in the upper (lower) half of each panel.

magnetic moment of μ = 2μB/Ru ion. All these properties
can be seen in the layer-by-layer projected density of states
(PDOS) shown in Fig. 1, where the only contribution to
the DOS at the Fermi energy comes from the minority-spin
SrRuO3 layer, while the majority-spin channel behaves like
a wide-gap semiconductor. From the point of view of the
design of thermoelectric materials [see Eq. (1)] this system
seems very promising due to the possible combination of a
high-Seebeck coefficient (coming from the semiconducting
majority-spin channel) and metallic conductivity (coming
from the minority-spin channel).

The main objective of this work is to assess the thermoelec-
tric properties of the 2DEG in (SrTiO3)5/(SrRuO3)1 superlat-
tices and to ascertain whether the Hicks and Dresselhaus model
is applicable in this kind of system. In order to achieve this goal,
and starting from accurate first-principles electronic structure
simulations on this interface, we use the Boltzmann transport
theory30,31 within the constant scattering time approximation
to obtain the Seebeck coefficient and other transport functions.

The rest of the paper is organized as follows. Computational
details are summarized in Sec. II. The main results on the
Seebeck coefficient, electrical conductivity, and power factor
for the superlattice are presented in Sec. III. Finally, in Sec. IV
we discuss a simple model to understand the physical origin
of the previous transport coefficients.

II. COMPUTATIONAL DETAILS

We estimated the electrical conductivity and the Seebeck
coefficient through the semiclassical Boltzmann theory within
the constant relaxation time approximation, as implemented
in the BOLTZTRAP code.32 This implementation relies on
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the Fourier expansion of the band energies, provided by
a first-principles electronic structure code. Following our
previous work, we have used SIESTA33 to compute both
the relaxed atomic and electronic band structures of a
(SrTiO3)5/(SrRuO3)1 superlattice in the local density ap-
proximation (LDA) to the density functional theory. An
extra Hubbard-U term, following the rotationally invariant
LDA + U scheme of Anisimov et al.,34 is included to account
for the strong electron correlations, with a Ueff of 4.0 eV
applied only to the d orbitals of Ru, as in Ref. 29. In order to get
smooth Fourier expansion of the one-electron eigenenergies
and converged transport coefficients, we proceed in a two-
step procedure as follows: (i) first, we relax the atomic
structure and the one-particle density matrix with a sensible
number of k points (12 × 12 × 2 Monkhorst-Pack mesh)35 and
(ii) freezing-in the relaxed structure and density matrix, we
perform a non-self-consistent band-structure calculation with
a much denser sampling of 72 × 72 × 17 (5994 k points
in the irreducible Brilloin zone; 88 128 k points in the full
Brillouin zone). The rest of the computational parameters
remain the same as in Ref. 29. The robustness of the
results presented below have been doubled-checked using
the CRYSTAL09 code36 within the B1-WC hybrid functional37

that mixes the generalized gradient approximation of Wu and
Cohen38 with 16% of exact exchange with the B1 scheme.39

The atomic structure of the (SrTiO3)5/(SrRuO3)1 super-
lattice at low temperature includes the rotation of both the
TiO6 and RuO6 octahedra along the tetragonal z axis of the
system [to establish the notation, we will call the plane parallel
to the interface the (x,y) plane, whereas the perpendicular
direction will be referred to as the z axis]. Taking into account
that the temperature at which bulk SrTiO3 undergoes the
tetragonal-to-cubic transition is only 105 K, we expect that
these distortions are fully suppressed when the system is acting
as a thermoelectric generator at room or higher temperatures.
Therefore, in the present study, we do not allow rotation and
tiltings of the oxygen octahedra during the atomic relaxations
of the superlattices.

With the first-principles band structures, εi,k, computed as
indicated above, together with the space group symmetry of
the superlattice, we feed the BOLTZTRAP code. There, after
performing the Fourier expansion, the conductivity tensor can
be obtained as

σαβ(i,k) = e2τi,kvα(i,k)vβ(i,k), (2)

where e is the electronic charge, τi,k is the relaxation time, and

vα(i,k) = 1

h̄

∂εi,k

∂kα

(3)

is the α component of the group velocity for an electron
in band i. Now, from the previous conductivity matrix, we
can compute the relevant transport tensors that relate the
electric current with an external electric field [σαβ(T ,μ)]
or temperature gradients [ναβ(T ,μ)]. These tensors depend
on the temperature, T , and the chemical potential, μ, that
determines the number of carriers or the level of doping. The
final expressions are given by

σαβ(T ,μ) =
∑

i

∫
dk
8π3

[
−∂f (T ,μ)

∂ε

]
σαβ(i,k) (4)

and

ναβ (T ,μ) = 1

T

∑
i

∫
dk
8π3

[
−∂f (T ,μ)

∂ε

]
σαβ(i,k)[ε(k) − μ],

(5)
where f is the Fermi-Dirac distribution. Finally, the compo-
nents of the Seebeck tensor can be computed as

Sij (T ,μ) =
∑

α

(σ−1)αiναj . (6)

The electronic contribution to the figure of merit is
summarized in the power factor, PF = S2σ , which is the
numerator of the right-hand side in Eq. (1). For a magnetic
system the value of the PF can be calculated from the individual
spin bands using Eqs. (4) and (5) and

PF = (σ ↑
αβ + σ

↓
αβ)−1(ν↑

αβ + ν
↓
αβ )2. (7)

For a given temperature, T , we can estimate in our
calculations the chemical potential μ that optimizes the power
factor, and, hence, the figure of merit.

While computing the previous transport properties two
major approximations are considered: (i) the relaxation time
τ is treated as constant, independent of temperature, band
number, occupation, and the k vector direction. While this
approximation is fairly strong, tests of this method32 with semi-
conductor thermoelectrics like Bi2Te3 and systems including
electron correlation like CoSb3 lead to a reasonable agreement
with experiment.

After Eq. (6), this approximation allow us to compute
the Seebeck coefficient on an absolute scale (independent
of τ ). However, the conductivity can be calculated only
with respect the relaxation time, and a value of τ has to
be introduced as a parameter [typically using the theoretical
σ/τ value obtained from Eq. (4) to reproduce exactly the
experimental conductivity at a given temperature and carrier
density n]. Here, the relaxation time value τ = 0.43 × 10−14 s
employed in the calculations was obtained from fitting the
room-temperature conductivity σ = 1.667 × 105 S/m of bulk
SrTiO3 at electron concentration n = 1 × 1021 cm−3,40,41

which is very similar to that obtained from SrRuO3.42,43

The second approximation is the “rigid band approach”
that assumes that the band structure does not change with
temperature or doping and, therefore, is fixed independently
on the chemical potential.

III. RESULTS

A. Electron localization and band structure

In Fig. 1 we show the DOS of the (SrTiO3)5/(SrRuO3)1

superlattices projected layer by layer. As previously discussed
in Ref. 29, the electronic structure displays a half-metallic state
where the conduction only takes place for the minority-spin
electrons that are completely confined to the SrRuO3 layer.
For the majority spin our LDA + U calculations predict a gap
of ≈1.4 eV around the Fermi energy, which is typical for
wide-gap semiconductors.

A more detailed description of the nature of the states
around the Fermi energy is obtained when we plot the PDOS
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FIG. 2. (Color online) Total DOS (solid black lines) and PDOS
on some Ru(4d) orbitals, showing the main character of the bands
around the Fermi energy in (SrTiO3)5/(SrRuO3)1 superlattices. Green
dot-dashed lines are the projections on the 4dxy orbitals, blue dashed
lines those on the 4dxz,yz orbitals (these curves are exactly degenerate),
and red dotted lines those on the 4dx2−y2 orbitals. The zero of energies
is aligned at the Fermi level. The wiggles around zero are caused by
the finite k resolution.

for the 4d orbitals of Ru (Fig. 2). Since Ru4+ is a low-spin d4

transition metal ion, we expect the conduction band to have
a strong t2g(4dxy ,4dxz,4dyz) character. Indeed, the conduction
band in the minority spin is formed by the half-filled degenerate
Ru(4dxz,yz) orbitals while the Ru(4dxy) band is mainly situated
at an energy slightly above the Fermi level. Similarly, the
majority-spin valence band is composed by Ru t2g orbitals,
but since they are shifted to lower energies they are strongly
mixed with O(2p) bands. In Ref. 29 these features were
explained with the use of a simplified tight-binding model,
including three main physical ingredients as follows: (i) the
bidimensionality of the SrRuO3 layer, (ii) the difference
of in-plane and out-of-plane bonding for the Ru ions, and
(iii) the electron-electron interactions as described by a
Hubbard term. In Fig. 2 we can also see the Ru(4dx2−y2 )
band; however, as it lies at relatively high-energies, its presence
is negligible when discussing the transport properties in this
system.

B. Transport calculations

In Fig. 3 we show the calculated electrical conductivity,
Seebeck coefficient, and power factor for T = 300 K as a
function of the position of the chemical potential (i.e., doping
level) for both the majority- and minority-spin channels. We
also compare them to their corresponding DOS. Due to the
tetragonality of the superlattice, all the previous transport
tensors are diagonal with only two independent components:
one parallel to the interface (xx = yy) and a second one
perpendicular to the interface (zz component). Since all the
carriers are confined to move in the SrRuO3 plane, from now
on we will only focus on the parallel one.

As expected for a half-metal, the behavior of these
quantities around the Fermi energy at zero doping differs
substantially according to the different nature of each spin
channel.

In the case of the minority spin, the system is metallic
in the SrRuO3 layer (Fig. 2), and the conductivity presents

FIG. 3. Results of the calculation of the electronic DOS and
transport properties at 300 K [conductivity (σ ), Seebeck coefficient
(S), and power factor (PF)] of (SrTiO3)5/(SrRuO3)1 superlattices as
obtained by Boltzmann’s semiclassical transport theory. On the left
column we show results for the majority-spin bands and on the right
for the minority-spin ones.

a local maximum close to μ = 0. Then σ decreases quickly
as the chemical potential decreases and gets closer to the Ru
(4dxz,yz) band edge (around −0.6 eV below the Fermi energy;
see Fig. 2). The other spin component (the majority one)
is semiconducting and the small nonzero contribution to σ

(indiscernible from zero in the scale of the figure) comes from
the use of a finite temperature in the simulation (electrons
thermally excited to the conduction bands, leaving behind
holes in the valence band). In both cases, the conductivity
quickly increases when |μ| > 1.5 eV as the doping starts
to involve the large density of states associated with SrTiO3

levels. When we compare these values with those of typical
high-efficiency thermoelectrics, σ ≈ 1 (m� cm)−1, we find
that the value for the minority spin is larger [≈3 (m� cm)−1]
while that of the majority channel is much smaller.

Similarly, the curves for S also reflect the different nature of
the spin components. In the case of the majority-spin channel
that displays a semiconductor-type behavior, we note a typical
discontinuity of the Seebeck coefficient, showing the change
from hole (region with μ < 0) to electron (region with μ > 0)
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doping. The maximum absolute value for this channel is S ∼
1500 μV/K and occurs for relatively small hole dopings
(μ = −0.25 eV) At first sight, this value is significantly larger
than the room temperature S = 480 μV/K found by Ohta
et al.3 for the 2DEG in one-unit-cell-thick Nb-doped SrTiO3

superlattices, larger than the value of S = 1050 μV/K in
TiO2/SrTiO3 heterointerfaces with an electron concentration
of 7 × 1020 cm−3,3 and larger than those typical associated
to good bulk thermoelectrics, which are usually1 around
150−250 μV/K. However, it is worth noting that we are
comparing here the maximum value of the Seebeck coefficient
to experimental values corresponding to systems with different
carrier concentrations. In the present case, the maximum value
is reached for a carrier concentration for the majority-spin
channel of 1.6 × 1013 cm−3 at which the conductivity is totally
negligible; at a concentration of 7 × 1020 cm−3, S reduces
to 160 μV/K. In fact, the peak value we get is usual in
semiconductors; it is around 3000 μV/K in bulk SrTiO3 for a
chemical potential of 0.9 eV at room temperature.

The opposite happens to the minority-spin channel that
displays a metallic-type behavior, where the Seebeck coef-
ficient S is very small at μ = 0 as the conduction changes
from being dominated by electrons to holes in the half-filled
Ru(4dxz,yz) bands. When the system is doped, the absolute
value increases linearly with the chemical potential but the
energy scale is two orders of magnitude smaller than in
the majority-spin case, a typical factor when comparing the
Seebeck coefficients of metals and semiconductors. Only
when the chemical potential is close to the lower edge of the
conduction band (μ ∼ −0.6 eV) does the minority spin show
a pronounced enhancement of the thermopower, reaching a
moderate value of S = −35 μV/K.

Calculation of the power factor for each of the spins
shows strong compensation of the Seebeck coefficient and
conductivity in both channels, giving rise to very small values
(<0.5 μW/K2 cm) around the Fermi energy. Indeed, while
the majority spin displays a large Seebeck coefficient and
a very small conductivity, in the minority spin a reversed
situation is found. In both cases, the power factor for the
undoped system is almost negligible when compared to those
of good thermoelectrics (20–50 μW/K2 cm). Only for very
strong hole doping, close to one hole per Ru4+ ion, is an
appreciable enhancement observed for the power factor, both
for the majority-spin component, PF = 3.6 μW/K2 cm, and
the minority-spin one, PF = 1.7 μW/K2 cm. Going from the
PF for each spin to the global PF of the system is not completely
trivial, since the spin-up and spin-down contributions are
mixed, as indicated in Eq. (7). This result is summarized in
Fig. 4. There we can observe that the total power factor is
still very small for low dopings, and only when the system
is strongly hole-doped (>1e/Ru) is an appreciable PF. In
any case, this value remains smaller than the theoretical PF
obtained for bulk SrTiO3 at optimum doping, which amounts
to 10 μW/K2 cm.

IV. DISCUSSION

In the previous section, we have found that even though
(SrTiO3)5/(SrRuO3)1 superlattices exhibit a 2DEG, whose
width is confined just within a single perovskite unit cell, the

 

FIG. 4. Total PF for the (SrTiO3)5/(SrRuO3)1 superlattices at
300 K as a function of the chemical potential.

power factor does not display any enhancement at any value
of the chemical potential. In order to understand the previous
results, we will analyze them using both a free-electron and
a tight-binding model. The discussion implicitly focuses on
the behavior of the conducting minority-spin channel which
contains the 2DEG and dominates the transport properties
around μ = 0. The choice of the free-electron model was
motivated by the fact that this was one of the assumption on
top of which Hicks and Dresselhaus based their predictions (as
discussed in the Introduction), while the tight-binding model
has proven to be very successful to explain the first-principles
results of the superlattice under study.

We define a simple one-band free-electron model in one,
two, and three dimensions using the energy dispersion

ε(k) = h̄2

2m


∑
i

k2
i , (8)

where m
 is the (isotropic) effective mass and i runs over
the dimensions of the system. Similarly, we define the energy
dispersion for a one-band tight-binding model as

ε(k) = 2γ
∑

i

cos(kia), (9)

where γ is the characteristic interaction energy (band width)
of the tight-binding center with its first neighbors along 〈100〉
and a is the cubic lattice spacing. A graphical representation
of the free-electron and tight-binding bands is presented in
Fig. 5.

In Fig. 6 we compare the DOS and transport properties for
both models using the formalism developed in Sec. II. For ease
of comparison with the (SrTiO3)5/(SrRuO3)1 superlattice, this
plot is structured in a way similar to that in Fig. 3.

The DOS plots correspond with the textbook examples31,44

of the corresponding models where, for example, the 2D
free-electron model involves a step function. Comparing both
models for the same dimensionality, we observe that, at
the band bottom, both are quite similar, with a logarithmic
divergence (in 1D), a finite discontinuity (in 2D), and a
functional dependence with the energy ∝√

ε (in 3D). However,
the models quickly differ at higher energies. In particular,
the tight-binding bands are symmetrical around the center of
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PABLO GARCÍA-FERNÁNDEZ et al. PHYSICAL REVIEW B 86, 085305 (2012)

 

 h
–

h–

FIG. 5. (Color online) Graphical representation of (a) one-
dimensional tight-binding and (b) free-electron bands that illustrate,
respectively, Eqs. (9) and (8). In (a) we show with red dashed
parabolae the free-electron band approximation to the tight-binding
model at the band edge while the blue dash-dotted line depicts
the group velocity at the midband (ε = 0) and the band bottom
(ε = −2γ ).

the band, while the free-electron ones are not. The reason
behind the similitudes between the two models comes from
the fact that the tight-binding dispersion curves can be approx-
imated by parabolae (see Fig. 5) at the band edges. Comparing
these simple models to the first-principles calculated DOS
of the conduction band (top-right panel of Fig. 3), we find
that the most similar one is the 1D tight-binding model. In
particular, both pictures display a very characteristic two-
peaked structure. While it is reasonable that a tight-binding
model is more adequate than a free-electron one to describe
the narrow 4d bands of Ru, it seems surprising that the DOS
resembles that of a 1DEG rather than a 2DEG one. The reason
for this behavior is that, in the case of Ru(4dxz) and Ru(4dyz)
bands, the hopping parameter in the conducting plane is only
large along x or y directions, respectively [see Fig. 7(a)].
Thus, the 2DEG in the (SrTiO3)5/(SrRuO3)1 superlattice is,
in fact, formed by two half-filled orthogonal 1D bands. In
contrast, in the Ru(4dxy) and Ru(4dx2−y2 ) bands, the orbitals
bond equally in the x and y directions [see Figs. 7(b) and 7(c)]
forming a proper 2DEG. Indeed, if we compare the DOS of
the majority-spin Ru(4dx2−y2 ) band in Fig. 2 we observe a very
similar shape to that of the ideal bidimensional tight-binding
model shown in Fig. 6. For the Ru(4dxy) a good agreement
with the model can be also be achieved if the tight-binding
expansion is extended to include interactions with in-plane
neighbors along 〈110〉 directions that shift the central DOS
peak to higher energies.

Regarding the electric conductivity, the results obtained
for both the free-electron and the tight-binding models are
equivalent at the band bottom where the tight-binding bands
can be approximated by parabolae. This can be seen in the
way the conductivity curves decay in a quicker way as the
energy gets closer to the lower bound of the band. However,
the behavior for half-filling differs markedly in both models.
In particular, the tight-binding model predicts a maximum
conductivity in the middle of the band, a behavior not ob-
served for the free-electron approximation. This conductivity
maximum corresponds to the maximum of the group velocity
as deduced from Eq. (9) and can be graphically determined
as the location of the maximum slope in the band diagram of
Fig. 5. This maximum can clearly be seen around μ = 0 in the
full conductivity calculation for the minority-spin channel in

FIG. 6. (Color online) Density of states (DOS), electrical conduc-
tivity (σ ), Seebeck coefficient (changed sign, −S), and power factor
(PF) for a free-electron model as described in Eq. (8) (left panels),
and the tight-binding model of Eq. (9) (right panels). Different colors
represent the dimensionality of the system: solid black lines denote
three dimensional, blue dashed lines denote two dimensional, and red
dash-dotted lines denote one dimensional.

(SrTiO3)5/(SrRuO3)1 (Fig. 3), and the 1D character of the band
can also be observed in the abrupt reduction of conductivity
around μ ≈ −0.5 eV.

The Seebeck coefficient follows a similar trend, with the
free-electron and tight-binding results closely matching each
other at the band bottom. At this point, the absolute value
of the Seebeck coefficient is larger for bulk (3D) than in
lower-dimensionality systems (2D and 1D). This might be
surprising since it was experimentally shown that in the
2DEG in Nb-doped SrTiO3

3 the Seebeck constant increases
with reduced dimensionality. However, in that case, it was
argued3,40 that polarons are responsible for transport45 and,
thus, the present model cannot account for their behavior.
Going back to the comparison between both the free-electron
and the tight-binding one-band models, we find that, in the
former, S cannot change sign, while in the latter the bands
transit with filling from electron (S < 0) to hole- (S > 0)
dominated behavior. The value S = 0 is achieved exactly in the
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FIG. 7. (Color online) Illustration of the 4d orbitals of Ru in the
RuO2 layer and hopping parameters, γ , for (a) the dxz (an equivalent
schema, rotated 90◦, could be made for the dyz), (b) the dxy , and
(c) the dx2−y2 orbitals. In (a), the hopping along z is strongly hindered
as it involves moving into Ti levels which are much higher in energy.
From the overlap of the orbitals it is clear than γ � γ ′. Meaning of
the colors for the atoms as in Fig. 1(a).

middle of the band of the tight-binding model (i.e., assuming
half-filling of the cosine bands), as shown in Fig. 6. The fact
that the minority-spin conducting band is exactly half filled
in undoped (SrTiO3)5/(SrRuO3)1 superlattices explains their
very poor thermoelectric properties around μ = 0 shown in
Fig. 3, even though they display a half-metallic 2DEG with a
width of a single SrRuO3 layer.

Finally, we analyze the power factor in both models. Ac-
cording to Hicks and Dresselhaus,7,8 there is an enhancement
of the figure of merit at optimal dopings locating the chemical
potential close to the band bottom. And, indeed, within the
tight-binding model, the PF reaches a maximum value at
the band bottom that is significantly enhanced when the
dimensionality is reduced, in agreement with parabolic band
models within effective mass theory.7,8 This enhancement
might be surprising, taking into account the facts that the
Seebeck coefficient is reduced with dimensionality and PF =
S2σ . However, the decrease of S is overcompensated by the
increase of the conductivity close to the band minimum,
as can be seen in Fig. 6. The model therefore predicts
an enhancement, but it does not allow quantification of it.
Precisely, for a full quantification, first-principles calculations,
such as the ones carried out in the present work, are
required.

In undoped (SrTiO3)5/(SrRuO3)1 superlattices the poor
thermoelectric properties have been explained above by the
fact that the conducting band is exactly half filled. As shown in
Sec. III, an enhancement of the PF with respect to the undoped
values is observed when moving the chemical potential to
the edge of the conduction band, as accessible through strong
doping of one hole per Ru atom. Unfortunately, even in such a
case, the increase is not large enough to promote this interface
between the best choices for thermoelectric applications: The
PF remains small for any value of the chemical potential. In
other words, the strong confinement of the electron gas in
(SrTiO3)5/(SrRuO3)1 superlattices does not seem to involve
a significant enhancement of the thermoelectric properties
at any reasonable value of doping (i.e., of the chemical
potential).

V. CONCLUSIONS

In this work we have studied theoretically from first-
principles the transport properties of the 2DEG present
in the half-metallic (SrTiO3)5/(SrRuO3)1 superlattice. Using
Boltzmann’s transport theory, we have shown, on the one hand,
that the semiconducting spin channel displays a maximum
value of the Seebeck coefficient, S ≈ 1500 μV/K, that
is quite large but at carrier concentration, for which the
conductivity is negligible. On the other hand, the metallic
minority-spin channel provides a high conductivity but a very
poor Seebeck coefficient, mainly due to half-filling of the
band. As a whole, the undoped system therefore exhibits
very modest thermoelectric properties. The power factor can
be enhanced by doping the system with holes to align the
chemical potential with the bottom edge of the conduction
band of the minority-spin channel. However, even under such
conditions, the total power factor is too small for the system
to be considered a good thermoelectric material.

The most important features of the transport properties are
well described within a tight-binding approximation. Using
this model, we show that the 2DEG in (SrTiO3)5/(SrRuO3)1 is
unusual in the sense that it is composed of two orthogonal
bands where the hopping parameter is strong only in one
dimension, having, thus, the properties of a 1DEG.
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