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Abstract: Recent approaches to the analysis of biological samples with 
three-dimensional linear birefringence orientation require numerical 
methods to estimate the best fit parameters from experimental measures. 
We present a novel analytical method for characterizing the intrinsic 
retardance and the three-dimensional optic axis orientation of uniform and 
uniaxial turbid media. It is based on a model that exploits the recently 
proposed differential generalized Jones calculus, remarkably suppressing 
the need for numerical procedures. The method is applied to the analysis of 
samples modeled with polarized sensitive Monte Carlo. The results 
corroborate its capacity to successfully characterize 3D linear birefringence 
in a straightforward way. 
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1. Introduction 

Polarization-sensitive optical techniques are receiving a growing interest for biological tissues 
characterization, as they provide additional contrast mechanisms for medical imaging [1]. 
Many biological tissues are anisotropic, being linear birefringence the main type of 
anisotropy mainly due to the ubiquitous presence of collagen in a wide range of tissues and 
organs. Therefore, accurate polarimetric characterization methods can take advantage of 
birefringence information for characterization and diagnostic purposes [1]. 

Most of the methods used for the polarimetric analysis of biological tissues are only valid 
when birefringence orientation is arranged parallel to the detection plane. Otherwise, effective 
values are obtained instead of the intrinsic ones [2–4]. Regarding the terminology used 
throughout this paper, it is important to highlight that the term effective has the same physical 
meaning as the “apparent” parameter used in [3,4], and the term intrinsic is equivalent to the 
“true” magnitude in [3] and the “reconstructed” parameter in [4]. A polarimetric model of 
birefringent media with arbitrary optic axis orientation was presented in [2], which is useful 
for tissues with varying polar angles such as articular cartilage. Some methods have been 
proposed for analyzing samples with three-dimensional linear birefringence orientation, 
namely the variable-incidence-angle method [3] and the dual-projection method [4]. 
However, in both of them the quantitative characterization of linear birefringence is based on 
numerical methods that obtain the best fit to experimental measures. 

We present a novel method for determining the intrinsic retardance and the 3D optic axis 
orientation of uniform turbid media with uniaxial birefringence. The main advantage of our 
method (which also requires to characterize the sample at two different angles) is that full 
birefringence characterization is performed using an analytical procedure, and therefore does 
not require any numerical approach to estimate the best fit parameters. The method is based 
on the differential generalized Jones calculus recently proposed [5], which enables to obtain 
the theoretical differential Jones and Mueller-Jones matrices of a uniaxial medium with 
arbitrarily-oriented linear birefringence. We show that the combination of such information 
with the analysis of Mueller matrices using the differential decomposition [6] enables to 
accurately obtain the 3D orientation and intrinsic retardance of the medium in a 
straightforward way. 

2. Differential Jones matrix of birefringent media with arbitrary optic axis orientation 

First, we consider a transverse totally polarized light beam propagating along an arbitrary 
propagation direction n̂  in a right-handed xyz Cartesian coordinate system. Such beam is 
completely characterized by the 3 1×  Generalized Jones Vector (GJV) [7], whose elements 
are the time-independent terms of the x, y and z electric field components. According to the 

differential Generalized Jones calculus [5], the evolution of the GJV E


 along the propagation 
direction in a uniform medium is: 

 ,d dl =E gE
 

 (1) 

where g  is the 3 3×  differential Generalized Jones Matrix (dGJM) of the sample and l  is the 
traveled distance. We have recently presented a general method for obtaining the dGJM of 
non-depolarizing uniaxial linear samples with arbitrary anisotropic properties [5]. The most 
general expression of the dGJM involves 18 differential parameters directly related to the 
complex propagation constant of the medium. If we consider the particular case of a uniaxial 
medium exhibiting linear retardance (LR) with the optic axis parallel to the z axis, we have 
previously shown [5] that the dGJM is a diagonal matrix given by: 

 ( ) ( )1 3 diag 3, 3, 2 3 ,z z z z
q q q qi i iη η η η= = −z

LR 4g O  (2) 
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4O  being the following Gell-Mann matrix: 

 ( ) ( )1 3 diag 1,1, 2 .= −4O  (3) 

Parameter z
qη  is the intrinsic birefringence of the medium, which quantifies the difference 

between the extraordinary and ordinary propagation constants ( z
q e oη η η η≡ Δ = − , using the 

same notation for the propagation constant as the one originally chosen by Jones [8]). The 
dGJM of such type of sample when the optic axis is arbitrarily oriented is given by the 
following expression: 

 ( ) ( )1, , ,θ φ θ φ−= ⋅ ⋅z
LR LRg C g C  (4) 

where θ  and φ  are the polar and azimuthal angles of the optic axis, and matrix ( ),θ φC  is: 

 ( )
sin cos cos sin cos

, cos cos sin sin sin ,

0 sin cos

φ θ φ θ φ
θ φ φ θ φ θ φ

θ θ

 
 = − 
 − 

C  (5) 

which implements the coordinate transformation according to the convention established in 
[7]. It should be noted that Eq. (4) was first applied in [5] to the GJM, but remains obviously 
valid to the dGJM, exactly in the same way as two-dimensional rotations in the Jones calculus 
[8]. The dGJM constitutes an extension of the differential Jones matrix j  to the three-

dimensional framework [5], being j  the upper-left 2 2×  block of g : 

 
( ) ( )
( ) ( )
1,1 1,2

.
2,1 2, 2

 
=  
 

g g
j

g g
 (6) 

Therefore, the differential Jones matrix of a uniaxial medium with arbitrarily oriented linear 
birefringence can be obtained by extracting the upper-left block of LRg  (given by Eq. (4)), 
which results in the following matrix: 

 

2 2

2 2

1 1
cos cos 2 cos 2 cos sin sin

2 2 6
.

1 1
cos sin sin sin cos 2 cos 2

2 2 6

i

η φ θ φ η φ φ θ

ηη φ φ θ φ θ φ

Δ  − + −Δ    =
 Δ  −Δ + +  

  

LRj (7) 

3. Three-dimensional birefringence characterization from polarimetric measurements 

The differential Jones matrix obtained in the previous Section enables to develop an 
analytical method to determine linear birefringence in a biological sample with arbitrarily 
oriented optic axis. Polarization-sensitive optical imaging techniques for the polarimetric 
characterization of biological tissues can provide the Jones matrix (e.g. Jones and Mueller-
Jones PS-OCT [9,10]) or the Mueller matrix (e.g. Mueller confocal microscopy [11], Mueller 
PS-OCT [12]) of the sample. Regarding the former group, it is well-known that Jones 
matrices and non-depolarizing Mueller matrices constitute a unique equivalent representation 
of the sample, so the non-depolarizing Mueller matrix can be readily obtained from any 
measured Jones matrix [13]. Therefore, our method is based on Mueller matrix analysis, 
providing a unified approach to the problem. 

According to the differential Mueller decomposition [6,14], the accumulated differential 
Mueller matrix l=m m  of the sample is the matrix logarithm of its Mueller matrix: 
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 ( )logm ,=m M  (8) 

which is valid for diagonalizable Mueller matrices. In general, the differential Mueller matrix 
of a depolarizing anisotropic sample involves a total of 16 differential parameters [15]. The 
non-depolarizing part of m is its Minkowski antisymmetric component [16]: 

 ( )T1
,

2
= −ndm m Gm G  (9) 

where G  is the Minkowski metric ( )diag 1, 1, 1, 1= − − −G . The azimuthal orientation angle of 

linear birefringence is obtained as: 

 
1

a tan ,
2

u

q

δϕ
δ
 

=   
 

 (10) 

in which ( )3, 4qδ = ndm  and ( )2,4uδ = − ndm . Effective linear retardance is given by: 

 ( )1 22 2 .ef
q uδ δ δ= +  (11) 

The correspondence between a differential Jones matrix and its equivalent non-depolarizing 
Mueller matrix is given by the following well-known relationship [13]: 

 ( ) 1,−= ⊕ *
ndm A j j A  (12) 

where A  is the conversion matrix [13]. Substituting Eq. (7) into (12), the accumulated 
differential Mueller matrix of the linear birefringent medium considered in this work is: 

 
2

2

2 2

0 0 0 0

0 0 0 sin 2 sin
,

0 0 0 cos 2 sin

0 sin 2 sin cos 2 sin 0

δ φ θ
δ φ θ

δ φ θ δ φ θ

 
 
 =
 −
 − 

LRm  (13) 

where lδ η= Δ  denotes the intrinsic retardance of the sample. We recall that matrix LRm  is 
defined in the xy plane of the laboratory reference system. Following Eq. (11), the effective 
linear retardance is given by: 

 2sin .efδ δ θ=  (14) 

It can be observed that the effective linear retardance is not equal to the intrinsic linear 
retardance of the sample unless the optic axis is parallel to the detector xy plane (i.e. 

90ºθ = ). Although this critical issue is well-known, to the best of the Authors’ knowledge 
the correspondence between the effective and intrinsic linear retardances has not been 
analytically stated before in the clear and precise terms of Eq. (14). From this expression, an 
analytical method for determining the magnitude and orientation of linear birefringence can 
be proposed. The first step of the method is to measure the Mueller matrix of the sample at 
two different incidence angles of the probing beam, denoted 1χ  and 2χ . In this sense, the 
proposed method requires the same experimental geometry as the variable-incidence-angle 
method [3] and the dual-projection method [4]. In this work we use the same notation for the 
incidence angle as the latter. The analysis of both experimental Mueller matrices following 
the procedure described above gives two effective linear retardances: 
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( )
( )

2
1 1

2
2 2

sin
.

sin

ef

ef

δ δ θ χ
δ δ θ χ

= −
= −

 (15) 

From these magnitudes, the polar angle can be obtained by: 

 2 1

2 1

sin sin
a tan ,

cos cos

D

D

χ χθ
χ χ

 −
=  − 

 (16) 

where ( )1 2

1 2
ef efD δ δ= . Regarding the azimuthal angle, it is readily determined from a 

single Mueller matrix by Eq. (10). Finally, once the linear birefringence polar angle is known, 
the intrinsic retardance can be calculated as: 

 
( )

( ) ( )

1 2

1 2

1 2

.
sin sin

ef efδ δ
δ

θ χ θ χ
=

− −
 (17) 

For those techniques in which the optical path undergone by the measured photons could be 
precisely determined, the intrinsic birefringence would be obtained as lη δΔ = . 

4. Application to tissue-like samples modeled by polarization sensitive Monte Carlo 

The method proposed above is now applied to the analysis of uniaxial linear birefringent 
turbid samples modeled by the polarized light Monte Carlo method [17] including anisotropy 
[18] in transmission configuration. The procedure requires to first calculate the accumulated 
differential Mueller matrix from the original Mueller matrix provided by the Monte Carlo 
method, and subsequently follow the proposed method to obtain the azimuthal and polar 
angles and the intrinsic retardance that completely characterize the sample birefringence. 

We have considered a wavelength of 632.8 nm. The medium refractive index is 1.341, and 
the sample length is 1 mm. Spherical scattering particles with a diameter of 1 µm and 
refractive index 1.59 have been modeled using Mie theory. The calculated scattering 
coefficient is 64.59 cm−1, with a scattering anisotropy of 0.92. The refractive index difference 
along the extraordinary and the ordinary axes is 1.5·10−4. We have considered four azimuthal 
angles of the optic axis (0°, 30°, 60° and 90°), and the polar angle was varied between 0° and 
90° in steps of 10° for each of them. Regarding the measurement geometry, Mueller matrices 
are obtained for normal incidence ( 1 0ºχ = ) and oblique incidence ( 2 5ºχ = ) of the incoming 
beam. A minimum of 105 photons were detected in transmission for each simulation. 

 

Fig. 1. a) Measured polar angles of the optic axis for all the samples. b) Measured optic axis 
azimuthal angles. In both cases, the dotted lines are where the calculated values should fall on. 
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The optic axis polar angle is first calculated following the procedure described in the 
previous Section. The results are presented in Fig. 1(a). The dotted line has been included to 
better compare the results with the input control values. The measured polar angles 
determined by our method follow the expected values, and the small deviations in the polar 
angles for the different azimuths corroborate the consistency of the results. Next, Fig. 1(b) 
shows the azimuthal angle determined for each sample. The agreement of the results with the 
theoretical control values is excellent in practically all the simulated samples. It can be 
observed that in both the polar and azimuthal angles the deviation from the nominal values 
increase for the smallest polar angles ( 10ºθ =  and 20°), which is due to the reduced accuracy 
when the optic axis is nearly orthogonal to the detection plane (i.e. nearly-isotropic situation). 

Finally, once the optic axis orientation is known, we obtain the intrinsic retardance of the 
sample using Eq. (17). The results are depicted in Fig. 2 (diamonds), which represents the 
mean and standard deviation calculated for the four azimuthal angles considered. The 
retardance obtained when the optic axis is parallel to the detector xy plane has been taken as 
the intrinsic retardance control value (upper dotted line). Additionally, the effective 
retardance is included (squares), which perfectly corresponds to the expected behavior 
determined by Eq. (14) (lower dotted curve). Moreover, we note that these results are in 
agreement with those presented in [4], which reinforces the validity of our analytical method. 
It can be appreciated that the method successfully determines the intrinsic retardance of the 
samples, with a maximum calculated relative error of 5.30% for polar angles greater than 30°. 
Regarding 10ºθ =  and 20°, the relative errors are 31.22% and 12.05% respectively due to the 
experimental errors produced for the near-isotropic situation as pointed out above. As a 
comparison, the relative errors entailed by the corresponding effective retardance are 96.98% 
and 88.30%. These results corroborate the potential of the method proposed in this work. 

 

Fig. 2. Measured intrinsic (diamonds) and effective (squares) retardance. The dotted lines are 
where the calculated values should fall on. Results are averaged for the four azimuthal angles. 

5. Conclusion 

We have presented a novel method for the analysis of uniform turbid samples with arbitrarily-
oriented uniaxial linear birefringence. The method takes advantage of the differential 
generalized Jones calculus, which enables to model the sample and interpret experimental 
results in a rigorous way. We have shown that the differential analysis of Mueller matrices 
measured at two different incidence angles enable to determine the intrinsic retardance and 
3D orientation of the optic axis using analytical expressions. The procedure has been verified 
for birefringent turbid samples simulated with polarization sensitive Monte Carlo. Our 
method can be applied to a wide range of polarization-sensitive optical imaging techniques, 
and holds potential for further analyzing anisotropic tissue samples with simultaneous three-
dimensional optical effects. Likewise, the method could be applied to the polarimetric 
analysis of a wide range of anisotropic media in other experimental fields. 
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