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Light scattering resonances in small particles with
electric and magnetic properties
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Lorenz–Mie resonances produced by small spheres are analyzed as a function of their size and optical proper-
ties (��0, ��0). New generalized ���1� approximate and compact expressions of the first four Lorenz–Mie
coefficients (a1, b1, a2, and b2) are calculated. With these expressions and for small particles with various val-
ues of � and �, the extinction cross section �Qext� is calculated and analyzed, in particular for resonant condi-
tions. The dependence on particle size of the extinction resonance, together with the resonance shape (FWHM),
is also analyzed. In addition to the former analysis, a study of the scattering diagrams for some interesting
values of � and � is also presented. © 2008 Optical Society of America

OCIS codes: 290.2200, 290.4020, 290.5850, 350.3618.
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. INTRODUCTION
he problem of electromagnetic scattering from a homo-
eneous sphere of arbitrary size was solved by Lorenz and
ie many years ago [1,2]. The Lorenz–Mie theory gives

he scattering properties of a sphere immersed in a homo-
eneous and isotropic medium, provided that the sphere
aterial is also isotropic and is characterized by a dielec-

ric constant, which can be complex and frequency depen-
ent. By means of this solution, both the absorption and
cattering cross sections are obtained as a function of the
ell known Lorenz–Mie scattering coefficients [3,4].
The study of light scattering from particles of size much

maller than the incident wavelength (Rayleigh scatter-
rs) has become an attractive topic in the last years be-
ause of the interest that has arisen especially in the field
f nanotechnology. The possibility of exciting resonances
n metallic nanoparticles, and consequently, the genera-
ion of intense local electric fields [localized surface plas-
ons (LSP)], has found important applications in the bio-
edical sciences (biosensors, nanorulers, molecular

rientation sensing, etc.) and industry (enhancement of
hotodetection in detectors and solar cells, light guiding
n telecommunications, optical computing, etc.) [5–9].
arly studies of these resonances were made by Ruppin

n the 1970’s [10,11], but it is relatively recent that nu-
erous works regarding such resonances from metallic

solated nanoparticles, dimers, aggregates of nanopar-
icles, or nanoparticles on surfaces have been developed
ither with a theoretical or applied scope [12–19].

The Rayleigh scattering approximation requires two
onditions. First, the size parameter x (x=2�R /�, where

is the radius of the sphere and � is the illuminating
avelength) should be much smaller than one, which is

he limiting case of the Lorenz–Mie formulation. Second,
he refractive index m also must be small, in such a way
hat �m�x�1. Under these conditions, scattering of elec-
1084-7529/08/020327-8/$15.00 © 2
romagnetic radiation is dominated by the first electric
erm of the Lorenz–Mie series expansion. Videen and
ickel [20] examined what happens when the second con-
ition is relaxed for very small, nonmagnetic ��=1�
pheres and found the existence of new resonances for
uch particles. They further derived simplified expres-
ions for the scattering coefficients that could be used to
xamine the behavior of these resonances as a function of
ystem parameters like the refractive index and radius of
he sphere.

For the case in which the isolated particles show a
agnetic response to the incident field ���1� and their

ize is much smaller than the incident wavelength, the
cattering properties have received much less attention.
hese particles have interesting scattering properties

21–23]. Also, with the recent appearance of engineered
aterials (known as “metamaterials”) whose optical prop-

rties can be controlled, light scattering by small particles
ith exceptional optical properties (for instance ��0 and
�0) is receiving a lot of attention from the scientific

ommunity interested in this field [24–30]. We cite, as an
xample, the possibility of building optical nanocircuits
ased on metamaterials for optical communication and
omputing applications [31].

With this in mind, the objective of our research is to
eneralize that performed by Videen and Bickel [20] for
he case of small particles with no restriction on the val-
es of � and �. We present analytical expressions of the
rst four Mie coefficients �a1 ,a2 ,b1 ,b2� that allow us to
alculate and to examine the resonance behavior of the
articles as a function of their size and optical properties.
pecial attention will be paid to the case ��0 and ��0.
The work is organized as follows. Section 2 is devoted

o presenting generalized and simplified expressions of
he Lorenz–Mie coefficients a1, a2, b1, and b2. In Section
, we analyze the Lorenz–Mie resonances as a function of
008 Optical Society of America
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he optical properties and the size of the particles. In Sec-
ion 4, we show and analyze the scattering diagrams of
he particles for different situations. Finally, the last sec-
ion summarizes the main conclusions.

. SCATTERING COEFFICIENTS
or a homogeneous and isotropic sphere of radius R illu-
inated by a plane wave of angular frequency � traveling

n the z direction [k� = �0,0,k�= �0,0,� /c�, k being the
avenumber in the surrounding medium] and linearly
olarized in the x direction, the scattered electromagnetic
eld can be calculated in every point of space r� according
o the Lorenz–Mie theory [3] as

Es�r�� = �
n=1

	

En�ianNeln
�3� �kr�� − bnMoln

�3� �kr���,

Hs�r�� =� �

��
n=1

	

En�ibnNoln
�3� �kr�� − anMeln

�3� �kr���. �1�

n Eq. (1), an and bn are the Lorenz–Mie coefficients; Neln,
oln, Noln, and Meln are the vector spherical harmonics;

n= inE0�2n+1� /n�n+1�, with E0 being the amplitude of
he incident electric field, and �, � are the relative (to the
acuum) electric permittivity and the relative (to the
acuum) magnetic permeability of the sphere, respec-
ively.

The general expressions for the Mie coefficients, includ-
ng the magnetic contribution, are given by

an =
m̃
n��x�
n�mx� − 
n��mx�
n�x�

m̃�n��x�
n�mx� − 
n��mx��n�x�
,

bn =
m̃
n��x�
n�mx� − 
n��mx�
n�x�

m̃
n��x��n�mx� − �n��mx�
n�x�
, �2�

here x is the size parameter, m=��� is the complex re-
ractive index of the sphere, m̃=m /�, and 
n, �n are the
pherical Ricatti–Bessel functions.
�
c
fi
E
b
f

The extinction efficiency can be expressed as a sum of
hese coefficients as follows

Qext =
2

x2�
n

�2n + 1�Re�an + bn�. �3�

In the Rayleigh limit, x�1 and �m�x�1, only the first-
rder coefficients contribute to the scattered field and
hey can be approximated by [3]

a1 �
2i

3
x3

� − 1

� + 2
, b1 �

2i

3
x3

� − 1

� + 2
,

an � bn � 0 for n � 1. �4�

hat is, only the dipolar contribution is important when
he particle size is smaller than the incident wavelength,
nd quadrupolar and higher-order terms can be taken as
ero. As can be seen in relations (4), a1 includes only the
elative electric permittivity �, and b1 includes only the
elative magnetic permeability �. For this reason we may
efer to an or bn terms as electric or magnetic terms, re-
pectively, and the same for their corresponding reso-
ances.
When the condition x�1 is satisfied but not the condi-

ion �m�x�1, the approximations leading to relations (4)
re no longer valid. In this case, Videen and Bickel [20]
erived expressions for a1 and a2 (and because of the sym-
etry, also for b1 and b2) that are accurate for dielectric

nd nonmagnetic spheres (��0 and �=1). Here, we ad-
ress the general case (�, ��1) as follows: From the con-
ition of x�1, we substituted sine and cosine functions
hose argument is the size parameter x by the first two

erms of their Taylor expansion and neglected the contri-
ution of higher-order powers. The resulting coefficients
re approximate expressions valid for any pair of optical
onstants �� ,�� and can be written as
a1 =
m̃mx3�mx · cos�mx� − sin�mx��

cos�mx��− m̃m2x4 − im̃m2x + imx3 + imx� + sin�mx��m̃mx3 + im̃m − ix2 + im2x4 − i + im2x2�
,

2 =
cos�mx��6m̃m2x2 − 6mx2 + m3x4� + sin�mx��6x − 3m2x3 − 6m̃mx + 2m̃m3x3�

	cos�mx�
3im̃m3x2 + 2m̃m3x3 − im̃m3x4 + 6im̃m3 − 9im̃m − 6m̃mx + 3im̃mx2 + 18
im̃m

x2
− �−

3i

x2
− 2i − x��6 − 3m2x2�
 + sin�mx�
9im̃m2x + 6m̃m2x2 − 3im̃m2x3 + 18

im̃m2

x
− �−

3i

x2
− 2i − x��− 6mx + m3x3�
�

.

�5�
ecause of the symmetry of the scattering coefficients [20]

bn�1/m̃,m,x� = an�m̃,m,x�. �6�

In Fig. 1 we show log�Qext� obtained for an isolated par-
icle with R=0.01� for the cases ��0, �=1 [Fig. 1(a)] and
�0, �=1 [Fig. 1(b)]. In both, we used three methods to
alculate the extinction efficiency: (i) The exact Mie coef-
cients, (ii) our approximate coefficients (AC) given by
qs. (5) (AC1), and (iii) other approximate expressions
ut with the first four terms of the Taylor expansion of the
unctions’ sine and cosine (AC2). As can be seen, our ex-
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ressions reproduce very accurately the position of the
esonances and allow us to make a qualitative study of
he width of them.

It can be seen in Fig. 1(b) that for the dielectric case
nd outside the resonance, the values of log�Qext� calcu-
ated with the reduced coefficients proposed here differ
rom exact values. To reproduce this area exactly, a longer
xpansion of trigonometric functions is needed. However,
his gives more complex expressions for the coefficients an
nd bn than those of Eqs. (5) and (6). In what follows, we
ill use these equations, as the main interest of this re-

earch is focused on the analysis of resonances, in par-
icular their shape (FWHM) and position.

ig. 1. (Color online) Comparative plot of Qext for three different
xpressions of Mie coefficients: Exact (solid curve), approximate
ith Eqs. (5) and (6) (AC1), and approximate using more coeffi-

ients in the expansion of sine and cosine (AC2) for �=1. (a) Me-
allic case ���0�, (b) dielectric case ���0�.

Fig. 2. (Color online) 3D plots of log�Q � as a function of t
ext
. RESONANCES
esonant scattering in a spherical particle is caused by a
harge oscillation resonance inside the particle, and is
herefore determined by the optical properties at the inci-
ent frequency and the size of the particle, i.e., the con-
tituents of the resonator. From a mathematical point of
iew and for small particles, resonances appear when the
enominators of the Lorenz–Mie coefficients [Eq. (2)] are
qual to zero. In this section, we analyze the dependence
f these zeros on both the optical properties of the particle
nd its size.
For small particle size, we consider only values that al-

ow us to use the first four Lorenz–Mie coefficients, so
hat Eq. (3) can be written as

Qext =
2

x2 �3 Re�a1 + b1� + 5 Re�a2 + b2��. �7�

n this equation we use the approximate expressions for
1, a2, b1, and b2 shown in Eq. (5), where a1 and b1 are the
ipolar terms (electric and magnetic, respectively), and
2, b2 are the quadrupolar ones. Fig. 2 shows a 3D plot of

og�Qext� as a function of �� ,�� for a sphere of radius R
0.01�, including every possibility (��0 and ��0). Note

hat semilog representation is used. Also, the symmetry
etween coefficients an and bn given by Eq. (6) has been
onsidered. Some interesting features in the resonance re-
ions of this plot have been enlarged and are shown in
ig. 3 for clarity.
Case 
�0, ��0: First, when 
�0, �=1 the well-known

orenz–Mie resonances appear. Resonances are organized
n branches, each having an origin in the electric or mag-
etic terms depending on the values taken by 
 and �. By

ncreasing the magnetic permeability, resonances shift to
maller values of 
 in a discontinuous sequence as can be
een in Fig. 3(a). The coefficient associated with a given
ranch of resonances is indicated in the figure.

cal properties (� and �) for a spherical particle of R=0.01�.
he opti
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Case 
�0, ��0: Only electric resonances are observed
n this region (a1 or a2 may take high values). Dipolar
esonances due to high values of a1 appear around 
�
2, reaching the exact value when the particle size ap-
roaches zero. Electric quadrupolar resonances �a2� ap-
ear around 
�−1.5.
Case 
�0, ��0: This region corresponds to the well-

nown anomalous situation of a negative refractive index
24]. In this region and for low values of the modulus of
he electric permittivity ��
��10�, both magnetic and elec-
ric resonances are observed [Fig. 3(b)]. The electric ones
ppear for the same values of 
 as those observed for �
0 in the previous case: 
�−2, 
�−1.5. Another two

esonances appear associated with coefficients b1 and b2.
he dipolar one (corresponding to coefficient b1) is located
round ��−2, and the quadrupolar (corresponding to co-
fficient b2) at ��−1.5. As we can see, there is an inter-
sting 
–� symmetry. The electric modes appear for val-
es of 
 equal to those of � for which the magnetic modes
ppear. This symmetry is similar to that observed in Mie
oefficients for dipolar modes and in the very small par-
icle regime [Eq. (4)] but now extended to the quadrupolar
odes.
For larger values of the electric permittivity ��
��102�

he behavior of the resonances is similar to that found for
�0 and ��0, in the sense that by increasing the modu-
us of the magnetic permeability � resonances shift to
ower values of �
�.

Case 
�0, ��0: For 
�0 and ��0 only the magnetic
ipolar or quadrupolar modes (coefficients b1 and b2, re-
pectively) appear. For a large range of values of 
, whose
ength depends on the actual radius of the particle, the

agnetic modes are located around ��−2 and ��−1.5
or dipolar and quadrupolar modes, respectively. Out of
his range the location of the resonances has a more com-

ig. 3. (Color online) Enlargement of two interesting zones of
ig. 2: (a) Region with ��0, ��1; (b) region with ��0, ��0.
he coefficient that takes the highest value when this resonance

s excited is indicated.
lex behavior. In Fig. 4 two different regions are shown:
�0, ��0 [Fig. 4(a)] and 
�0, ��0 [Fig. 4(b)]. As can be
een, in these ranges there is 
–� symmetry, similar to
hat described above.

Another interesting feature observed in these plots is
he resonant range for either the 
 or � constant. These
esonant intervals and their actual shape are very sensi-
ive to the particle size.

The simplicity of the expressions found for coefficients
1, a2, b1, and b2 make it very easy to extend our former
nalysis to other values of the particle radius. As an ex-
mple, Fig. 5 shows, for 
�0, ��0, the curves obtained
hen log�Qext� is plotted against 
 for a resonant � and for

everal values of the particle radius. Resonant permeabil-
ty values �=−2 and �=−1.5 correspond to Figs. 5(a) and
(b), respectively. Again the coefficient that takes the
ighest value in a maximum is labeled in the figure.
As can be observed in Fig. 5(a) only dipolar resonances

re observed in the case �=−2 for very small particles
R=0.01��: the electric one due to a1 and located at 
�
2, and the magnetic one due to b1 and located at ��
5. As the particle size increases, the parameter Qext
akes lower values on these resonances, and a new reso-
ance appears at 
�−1.5 due to coefficient a2. For even
igher values of the particle radius, only the electric qua-
rupolar resonance associated with a2 remains as a well-
efined resonance.
In the case �=−1.5 [Fig. 5(b)] the quadrupolar mag-

etic resonance �
�−2.33�, associated with coefficient b2
s observed even for the lowest values of the particle size
R=0.01��. As the particle size increases, the resonance

ig. 4. (Color online) 3D plots of log�Qext� as a function of the
ptical properties (� and �) for two different ranges: (a) ��0 and
�0, (b) ��0 and ��0, when the range of values of � and � is
qual.
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hifts and broadens, finally losing its well-defined shape,
hile the values of Qext grow within a large range of val-
es of 
.
As was mentioned before, the validity of Eqs. (5) and (6)

nd their corresponding expression for bi over a wide
ange of values of R and for any pair of values �
 ,�� al-
ows a systematic study of the resonances as a function of
he particle size, including the two main features ob-
erved: the location and the width of such resonances.
ig. 6 shows the evolution of the location �
max� and width
WHM of four different resonances, each associated with
different coefficient, as a function of the particle radius

n the range R /�� �0.01,0.1�. In all cases 
 is taken as
egative, and the resonant value of � is indicated in the

ower part of the figures.
For the electric resonances shown in Figs. 6(a) and 6(b)

he position of 
max shifts to higher values of �
� as R in-
reases, the dipolar resonance showing a larger shift
from 
=−2 to 
=−2.3) than that of the quadrupolar one
from 
=−1.5 to 
=−1.525).

For the magnetic resonances shown in Figs. 6(c) and
(d) the shift of 
max is different for coefficients b1 and b2.
hile the dipolar b1 tends to lower values of �
� when par-

icle size increases, the quadupolar b2 moves in the oppo-
ite direction. Again, the shift of the dipolar resonance is
arger than that of the quadrupolar one.

Concerning resonance FWHM it is clear that in all situ-
tions under study for 
�0, the smaller the particle size,
he narrower the resonance peak. In other words, slopes
re positive in all FWHM curves of Fig. 6, the effect being
ore noticeable in the case of dipolar resonances.

of the resonances as a function of particle size.
ig. 5. (Color online) Evolution of the extinction cross section as
function of the electric permittivity in the range ��0 for differ-

nt values of particle radius R. The value of the magnetic perme-
bility is indicated in the bottom right corner. Resonances are la-
eled with the Lorenz–Mie coefficient that takes the highest
alue at this point.
Fig. 6. (Color online) Evolution of FWHM and position
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. SCATTERING DIAGRAMS
n addition to our former analysis, we show in this section
he far-field scattering results corresponding to spherical
articles of different size and properties, considering the
cattering patterns associated with the resonant condi-
ions established in the previous section. Incident linearly
olarized beams will be assumed, and the scattering
lane will be chosen perpendicular (TE) or parallel (TM)
o incident polarization.

For values of R lower than 0.1�, our approximate coef-
cients reproduce very accurately the scattering dia-
rams obtained by using the exact Mie coefficients. In Fig.
and Fig. 8, we show for the electric and magnetic reso-

ances, respectively, the scattering patterns for a set of
ve different sizes (0.01, 0.02, 0.03, 0.04, and 0.05�). For
he results shown in Fig. 7(a) and 7(b), �=−2 and 
�−2
the exact value depends on the excitation of the dipolar
esonance associated with a1 for each particle size) where
he electric dipolar resonance associated with a1 is excited
see Fig. 5 for a better identification of these values). For
he results shown in Figs. 7(c) and 7(d), �=−2 and 
�
1.5 (the exact value depends on the excitation of the qua-
rupolar resonance associated with a2 for each particle
ize) where the electric quadrupolar resonance associated
ith a2 is excited.
Figures 8(a) and 8(b) correspond to a case in which the
agnetic dipolar resonance due to b1 is excited: �=−2

nd 
�−5 (again with small variations depending on the
article size) while in Figs. 8(c) and 8(d) the magnetic
uadrupolar resonance associated with coefficient b2 is
xcited by choosing the values �=−1.5 and 
�−2.3 (with
orresponding small variations due to particle size).

All these figures have been normalized to the maxi-
um value (not always the forward scattering) for better

bservation of the evolution of the angular structure, thus
llowing no absolute comparison among patterns of differ-
nt sizes, properties, or polarization. In Table 1, we in-
lude the maximum values of the scattered intensity (and

ig. 7. (Color online) Normalized scattering diagrams when ele
or different particle size. (a), (c) Figures correspond to TE incide
ts corresponding scattering angle) for each case for pos-
ible further comparative calculations.

The range of particle radii has been selected for the
urpose of observing the interesting changes produced in
he backscattering direction (let us remember that larger
articles will produce a dominant scattering in the for-
ard direction). For instance, the dipolar electric reso-
ance, Figs. 7(a) and 7(b), shows an evolution from an al-
ost null backscattering to a considerable one at R
0.05�. The null backscattering is explained by the prox-

mity at 
 to −2 for the smallest particle, almost satisfying
he condition 
=� [21]. This condition is less satisfied
hen the sizes increases, and the backscattered intensity

ncreases. For the quadrupolar electric resonance, scat-
ering at 90° seems to be more sensitive to polarization,
nd whole observation in the TE case does not produce
mportant size-dependent changes. In the TM case, an im-
ortant angular dependence arises in the interval from
=0.01� to 0.05�, reaching the characteristic shape of a

uadrupolar. This means that quadrupolar terms are be-
oming dominant for that size.

When the dipolar magnetic resonance is excited, Figs.
(a) and Fig. 8(b), the classic shape of an emitting dipole
s observed, though the shapes for TE and TM modes are
nverted with respect to those of an electric dipole. As R
ncreases the scattering values also increases, but with no
oticeable change in the shape.
In Figs. 8(c) and 8(d) the magnetic quadrupolar reso-

ance appears very well defined, even for particles as
mall as R=0.01�.

As above, in Table 2 we include the maximum values of
he scattered intensity (and its corresponding scattering
ngle) for each case for possible further comparative cal-
ulations.

A final remark about these results must be made. The
ombination �=−2 and 
�−2 satisfies Kerker’s condition
21] for obtaining zero forward scattering, but, as can be
bserved in Fig. 7, the resonance obtained for this par-

polar (a),(b) and electric quadrupolar (c),(d) resonance is excited
arization; (b) (d) to TM polarization.
ctric di
nt pol
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icular pair of values produces forward scattering differ-
nt from zero. This must be considered an exception to
he rule of zero forward established by Kerker.

. CONCLUSIONS
e have proposed new generalized and approximate ex-

ressions for the first four Mie coefficients for spherical
articles with electric and/or magnetic response whose
ize does not exceed 0.1�.

Using these expressions we have studied light scatter-
ng resonances, dipolar and quadrupolar, for different op-
ical properties, 
�0, 
�0, ��0, and ��0. Typical reso-
ances due to coefficients a1, b1, and b2 for 
�0 and �
1 [20] have been reproduced accurately. Furthermore,
e have analyzed how these modes shift to lower values
f 
 as magnetic permeability increases from �=1.

Because of the recent developments with double-
egative materials (
�0, ��0) in the optical range, we
ave paid special attention to the analysis of resonances

n this range. It is remarkable the symmetry shown by
he electric resonances that appear at 
�−2 (dipolar) and

Table 1. Maximum Intensity of Light Scattered by
a Small Sphere as a Function of Size of the Sphere

and for Both Polarizations of the Incident Light
When an Electric Resonance Is Exciteda

R /�

TE TM

Dipolar Quadrupolar Dipolar Quadrupolar

0.01 0.05418(0°) 0.01234(0°) 0.05418(0°) 0.01234(0°)
0.02 0.06131(0°) 0.0187 (0°) 0.06131(0°) 0.0187 (0°)
0.03 0.07554(0°) 0.02087(0°) 0.07554(0°) 0.02087(0°)
0.04 0.09727(0°) 0.02088(0°) 0.09727(0°) 0.02088(0°)
0.05 0.09961(0°) 0.20629(0°) 0.09961(0°) 0.20629(0°)

aIn parentheses, we include the angle at which the maximum appears.

ig. 8. (Color online) Normalized scattering diagrams when ma
ited for different particle size. (a), (c) Figures correspond to TE i
s for a better visualization of the curves.
�−1.5 (quadrupolar) and the magnetic ones that appear
t ��−2 (dipolar) and ��−1.5 (quadrupolar). This sym-
etry tends to disappear as particle size increases.
In this work, we have observed that the position, shape,

nd number of resonances that appear depend strongly on
he particle size. As particle radius increases, resonances
hift and become less sharp and broader. These shifts de-
end on the type of the resonance; because of that we
ave studied these for the four modes due to a1, a2, b1,
nd b2. Furthermore, as expected, as particle size in-
reases, more resonances appear.

In Section 4, we have studied scattering diagrams for
ifferent values of � and � where representative reso-
ances appear. In those we have shown the evolution of
cattering as a function of particle size and how the influ-
nce of the dipolar and quadupolar terms changes. As R
ncreases, quadrupolar terms become to be important and
cattering losses dipolar character. In addition, at ���= ���
ackscattering is zero [21].
In this study, we have used particle sizes in the range

�0.01�–0.1�. For visible wavelengths, this is R
10–100 nm, so they are nanometric particles.

Table 2. Maximum Intensity of Light Scattered by
a Small Sphere as a Function of Size of the Sphere

and for both Polarizations of the Incident Light
When a Magnetic Resonance Is Exciteda

R /�

TE TM

Dipolar Quadrupolar Dipolar Quadrupolar

0.01 0.05077(0°) 0.04527 (90°) 0.05321(0°) 0.01299 (0°)
0.02 0.05248(0°) 0.05163 (90°) 0.05471(0°) 0.01799 (0°)
0.03 0.05482(0°) 0.07001(270°) 0.05665(0°) 0.0346 (0°)
0.04 0.05689(0°) 0.11177(270°) 0.05809(0°) 0.08278 (0°)
0.05 0.05748(0°) 0.17536(180°) 0.05819(0°) 0.1762 (180°)

aIn parentheses, we include the angle at which the maximum appears.

dipolar (a),(b) and magnetic quadrupolar (c),(d) resonance is ex-
t polarization; (b), (d) to TM polarization. The scale shown in (b)
gnetic
nciden
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The work presented simplified expressions for the first
our Mie coefficients �a1 ,a1 ,a2 ,b1 ,b2� that permit deter-
ining the position and shape of the resonances without

ifficulty. This simplicity is a new step in the design of
aterials in the optical range with applications in fields

ike biomedicine, optics sensors, design of left-handed me-
ia devices, or optical storage of information.
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