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Abstract: In this research we introduce the formalism of the extension
of the discrete dipole approximation to a more general range of tensorial
relative permittivity and permeability. Its performance is tested in the
domain of applicability of other methods for the case of composite mate-
rials (nanoshells). Then, some early results on bianisotropic nanoparticles
are presented, to show the potential of the Extended Discrete Dipole
Approximation (E-DDA) as a new tool for calculating the interaction of
light with bianisotropic scatterers.

© 2010 Optical Society of America

OCIS codes:(050.1755) Computational electromagnetic methods; (160.1190) Anisotropic ma-
terials; (160.2710) Inhomogeneous media; (160.3918) Metamaterials; (260.2110) Electromag-
netic optics; (290.5850) Scattering, particles.

References and links
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2. B. Seṕulveda, J. B. Gonźalez-D́ıaz, A. Garćıa-Mart́ın, L. M. Lechuga, and G. Armelles, “Plasmon-induced
magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).

3. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties
of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9(1), 1–6 (2008).

4. D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt.
Express14(12), 5746–5754 (2006).

5. N. B. Piller and O. J. F. Martin, “Extension of the generalized multipole technique to three-dimensional
anisotropic scatterers,” Opt. Lett.23(8), 579–581 (1998).

6. V. Agranovich and Y. Gartstein, “Electrodynamics of metamaterials and the Landau–Lifshitz approach to the
magnetic permeability,” Metamaterials3(1), 1–9 (2009).

7. A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express17(7), 5723–5730
(2009).

8. Y. You, G. W. Kattawar, P.-W. Zhai, and P. Yang, “Zero-backscatter cloak for aspherical particles using a gener-
alized DDA formalism,” Opt. Express16(3), 2068–2079 (2008).

9. P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative-refraction materials,” J.
Quant. Spectrosc. Radiat. Transf.110(1-2), 22–29 (2009).
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1. Introduction

Recentadvances in nanotechnology and nanoscience have been performed, involving materi-
als with magnetic properties (magneto-optical materials) [1, 2, 3, 4, 5] as well as those with
unconventional optical properties (metamaterials) [6, 7] and awakening a growing interest in
this matter. The possibility of modeling the properties of such materials, and even design them
in a customized way, is highly appreciated and currently constitutes a hot point. Furthermore,
comparison and further agreement between experimental results and some theoretical frame-
work is a constant requirement by researchers in those fields. In particular, the presence of
a relative magnetic permeabilityµr different from 1 (even negative or tensorial) requires the
revision and upgrading of the commonly available electromagnetic numerical methods [8, 9].
The widely accepted behaviour for all materials in the optical range assumes no magnetic re-
sponse at high frequencies (µr = 1). However, effective values for the magnetic permeability
different from 1 have been found for real materials within the optical range, mainly as an effect
of electric currents localized within the sub-micron structure of the material, giving rise to an
inherent anisotropy [10, 11]. For this reason, implementingµr 6= 1 in a realistic way means
considering bothεr andµr as tensorial constituent constants. In this sense, our Group has been
working, during the last years, in the generalization of some widely used numerical methods,
such as the extinction theorem [12]. Other approaches include Mie theory applied to materi-
als with arbitrary optical constantsεr and µr [13, 14] and the discrete dipole approximation
(DDA by its acronym in English) [15, 16]. In this work we focus on the second: an extension
of the DDA to the case of bianisotropic materials (bothεr andµr tensorial magnitudes), that
we shall refer to as E-DDA, and is described in the next section. Commercial software, like
COMSOL and FDTD, can also deal with bianisotropic media. In fact, they have been used in
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many researches to solve 1-D [19] and 2-D [20] problems. In this work, where 3-D systems are
involved, DDSCAT (based on DDA) [17, 18], has been used, when possible, to check the relia-
bility and precision of our calculations, being very helpful in the understanding of the required
new point of view.

2. E-DDA code

2.1. Method description

E-DDA stands for Extended Discrete Dipole Approximation. The formalism of the currently
available DDA methods is restricted to materials with relative magnetic permeabilityµr = 1.
One of the main contributions of this work is the generalization of the method to materials
with arbitrary electric and magnetic susceptibility tensors (bianisotropic materials). Along this
section, we will describe in detail the theoretical formalism of the E-DDA method. As You et. al
[8] have already suggested, following Lakhtakia’s steps, at each lattice site we must locate two
dipoles, one electric and one magnetic, so that we can take into account both the electric and
magnetic responses of the material. The dipole momentp of an electric dipole under the action
of an electric fieldE is given byp = ε0εm ¯̄αE, whereεm is the relative electric permittivity of
the surrounding media, and̄̄α is the electric polarizability tensor. In the same way, the dipole
momentm of a magnetic dipole under the influence of a magnetic fieldH is given bym =

¯̄χ
µ0µm

B = ¯̄χH, whereµm is the relative magnetic permeability of the surrounding media, and
¯̄χ is the magnetic susceptibility tensor. Both̄̄α and ¯̄χ can be related to the optical properties
(¯̄εr, ¯̄µr) through the well-known Clausius-Mossotti relation:

¯̄αCM = 3V
(

¯̄εr − εm
¯̄I
)(

¯̄εr +2εm
¯̄I
)−1

(1)

¯̄χCM = 3V
(

¯̄µr −µm
¯̄I
)(

¯̄µr +2µm
¯̄I
)−1

(2)

A radiative correction is also included to take into account the phase lag between the incident
light and the scattered light radiated by the dipole [21]:

¯̄α = ¯̄αCM

(

¯̄I − ik3 ¯̄αCM

6π

)−1

(3)

¯̄χ = ¯̄χCM

(

¯̄I − ik3 ¯̄χCM

6π

)−1

(4)

Although this radiative correction is precise enough in most of the real situations, further
corrections on the dipole polarizabilities are being used by several authors, developing pre-
scriptions aimed to improve the accuracy [22, 23].

As in the conventional DDA [17, 24], each dipole feels an electromagnetic field sum of the
incident field at that site, and the contributions due to all the other dipoles. Working with the
same formalism used by Mulholland et. al [25], which utilizes the M.K.S. unit’s system, we
can express the total electric and magnetic fields at lattice sitej as:

E j = Einc, j +
N

∑
k 6= j

¯̄α j
¯̄C jkEk −

√

µ0µm

ε0εm

N

∑
k 6= j

¯̄χ j
¯̄f jkHk (5)

H j = H inc, j +
N

∑
k 6= j

¯̄χ j
¯̄C jkHk +

√

ε0εm

µ0µm

N

∑
k 6= j

¯̄α j
¯̄f jkEk (6)
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, where Einc, j = E0exp(ik · r jk) and H inc, j = H0exp(ik · r jk), with H0 =

[ε0εm/(µ0µm)]1/2(k × E∗
0) and where label[∗] denotes the complex conjugate. The ma-

trixes ¯̄C jk and¯̄f jk involved in Eqs. (5) and (6) can be found in Ref. [25].
In order to solve the set of equations in Eqs. (5) and (6), it is convenient to rewrite them using

its associated matrix form. Then, one can easily obtain the system of equations in the form:

¯̄Ax = b (7)

, where ¯̄A is a 6N× 6N matrix, x is the 6N-dimensional vector of unknowns given by
x = (E1,H1,E2,H2, . . . ,EN ,HN) andb is the 6N-dimensional vector of independent terms con-
taining the incident field at each lattice site:b = (Einc,1,H inc,1,Einc,2,H inc,2, . . . ,Einc,N ,H inc,N).
This system can be solved using some of the iterative methods already available. Initially we
used the successive approximations method, proving to be very slow and not convergent on
most cases. At this time, E-DDA implements the Complex-Conjugate Gradient (CCG) method
through the Botchev’s subroutine [26].

2.2. Code Performance

The main achievement of our code in its current version is versatility, in the sense that it is
able to deal with situations involving arbitrary electric and magnetic susceptibilities in a broad
sense. In the following section we shall survey the most representative situations at reach for
this code, from the most basic one of a dielectric, to the most generals, like bianisotropic ma-
terials, metals, metamaterials (in particular left-handed materials, with both real parts ofεr and
µr negative) or magneto-optical materials (with¯̄εr an antisymmetric tensor). Some of these sit-
uations admit direct comparison with past DDA versions, while other can only be treated with
other calculations methods, and not in a feasible way. The former will contribute to validate
our code, while the latter constitute genuine novel results. Both together, prove the potential
of E-DDA as a new and reliable computing tool. It is interesting to remark that the incident
wave polarization can be arbitrary (elliptical in the most general case), allowing polarimetric
calculations to be performed. As for extinction and absorption cross-sections (and efficiencies),
they have been implemented following [9]:

Cext =
k

ε0εm|E0|2
N

∑
j=1

ℑ
[

E∗
inc, j ·p j + µ0µmH∗

inc, j ·m j
]

(8)

Cabs=
k

ε0εm|E0|2
N

∑
j=1

{

ℑ
[

E∗
j ·p j

]

− k3

6πε0εm
|p j|2 + µ0µm

[

ℑ
[

H∗
j ·m j

]

− k3

6π
|m j|2

]}

(9)

The scattering cross-section can be easily obtained by the difference of the extinction and
absorption cross-sections:Csca= Cext−Cabs, but a more convenient way is to compute the far-
field scattered by the object [27]:

Csca=
k2

16π2ε0εm|E0|2
∫

∣

∣

∣

∣

∣

N

∑
j=1

exp(−ikn · r j)

{

1√
ε0εm

[p j − (n ·p j)n]−√
µ0µmn×m j

}

∣

∣

∣

∣

∣

2

dΩ

(10)
, wheren is an unit vector in the direction of scattering. Additionally, we can also define the

phase-lag cross-section in terms of the imaginary part of the forward-scattering amplitude [21]:

Cpha=
k

2ε0εm|E0|2
N

∑
j=1

ℜ
[

E∗
inc, j ·p j + µ0µmH∗

inc, j ·m j
]

(11)
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Conventional angular scattering patterns (scattered intensities) can be obtained, as well as the
full Mueller Matrix of the system, completing the far-field results list. As for local magnitudes,
these include dipole moments, fields or Poynting vector distributions, local phase functions,
etc.

3. Testing the code

To check the reliability of E-DDA, we have performed some calculations on systems that con-
ventional methods can solve. Fig. 1 shows the extinction, absorption and scattering efficiencies
for both a gold sphere of radiusR = 20nm, and a sphere with a dielectric (εc = 2) core (in-
clusion) of radiusR = 12nm and a metallic (gold, optical constants taken from Johnson and
Christy [28]) shell, for an external radiusR = 20nm. Comparison between our code and the
well-proved DDSCAT code from B. T. Draine [17, 18] is also presented, finding a very good
agreement in both, the spectral shape and the absolute differences for all the efficiencies within
the optical range.

Fig. 1. Extinction, absorption and scattering efficiencies for both a gold sphere of radius
R = 20nm, and a sphere with a dielectric (εc = 2) core (inclusion) of radiusR = 12nm and
a metallic (gold) shell, for an external radiusR = 20nm. Comparison between our code and
the well-established DDSCAT code is also provided. The dipole spacing wasd = 4nm, with
N = 515.

4. Bianisotropic media

When the E-DDA is used in the most general case of a bianisotropic scatterer, it is possible
to find a situation in which we already have a knowledge of the system’s behavior. Such is
the case of particles with directional scattering imposed by their optical constants as, for in-
stance, the null-scattering conditions proposed by Kerker et. al. [29]. It will be shown here
that these well-known conditions remain valid for bianisotropic media. As a reminder, Kerker’s
null scattering conditions are obtained when the electric and magnetic polarizabilities meet
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certain stipulations. In particular, when̄̄α = ¯̄χ the backscatter gain equals zero, and when
¯̄α = − ¯̄χ the forward scatter is zero. These conditions lead to¯̄εr = ¯̄µr for the first case, and
¯̄εr = (4¯̄I − ¯̄µr)(2¯̄µr + ¯̄I)−1 for the latter. However, these relations fail to include the radiative
correction [21]. It can be shown that the zero-backward scattering condition remains valid, that
is, ¯̄εr = ¯̄µr. But, for the zero-forward scattering condition, we obtain the new relation:

¯̄µr =

[

4¯̄I − ¯̄εr −
i(kd)3

π
( ¯̄εr − ¯̄I)

][

2¯̄I + ¯̄εr −
i(kd)3

π
( ¯̄εr − ¯̄I)

]−1

(12)

Let us now consider a set of three different permittivity tensors. The first case (isotropic
material) is the scalar case:

¯̄εr1 =





2.0+0.01i 0 0
0 2.0+0.01i 0
0 0 2.0+0.01i



 = (2.0+0.01i)̄̄I (13)

The second case is chosen in the form of a typical magneto-optical material, with an anti-
symmetric relative electric permittivity tensor̄̄εr2 given by (magnetization along z-axis):

¯̄εr2 =





2.0+0.01i 0.3+0.2i 0
−0.3−0.2i 2.0+0.01i 0

0 0 2.0+0.01i



 (14)

For the third case we propose a symmetric permittivity tensor¯̄εr3:

¯̄εr3 =





2.0+0.01i 0.3+0.2i 0
0.3+0.2i 2.0+0.01i 0

0 0 2.0+0.01i



 (15)

For each of these three cases we shall define two values of the relative magnetic permeability
tensor in order to fulfill each of the zero scattering conditions (this makes six different materials
as a whole). We now consider an sphere of diameterD = 20nm made of those materials, illu-
minated with a wavelength ofλ = 500nm, obtaining that the zero-forward scattering condition
is, for each case:

¯̄µr1
= (0.4−3.6005×10−3i)¯̄I (16)

¯̄µr2
=





3.9232×10−1−2.0508×10−2i −1.0899×10−1−6.8489×10−2i 0
1.0899×10−1 +6.8489×10−2i 3.9232×10−1−2.0508×10−2i 0

0 0 0.4−3.6005×10−3i





(17)

¯̄µr3
=





4.0712×10−1 +1.3870×10−2i −1.0804×10−1−7.3802×10−2i 0
−1.0804×10−1−7.3802×10−2i 4.0712×10−1 +1.3870×10−2i 0

0 0 0.4−3.6005×10−3i





(18)
and ¯̄µri

= ¯̄εri(i = 1,2,3) for the zero backward. The scattering patterns show that Kerker’s
conditions are being satisfied (Fig. 2). It is worth noticing that, while the isotropic case can
be computed by means of conventional numerical methods (producing a perfect match), the
bianisotropic ones do not admit such comparison in a feasible way. By using E-DDA, we obtain
results that show that the systems behave exactly as expected from the theoretically imposed
condition, that is, exhibiting zero-back and zero-forward scattering.
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Fig. 2. a) Zero-backward scattering (¯̄µr = ¯̄εr). b) Zero-forward scattering. In every case,
the dipole spacing wasd = 2nm, withN = 515.

5. Conclusions

We have extended the applicability range of the discrete dipole approximation to the case of
anisotropic and magnetic materials, including the bianisotropic case. We have tested the valid-
ity of the method for a case where its applicability range overlaps with the one of a well-proved
code, which includes inhomogeneities and presence of metallic and dielectric media, finding a
very good agreement. We have applied the proposed method to a situation out of reach for cur-
rent implementations of the DDA, like the null-scattering (backward and forward) conditions
for bianisotropic media. We have verified numerically these conditions in its tensorial form.
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