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2 Department of Structual andMechanical Engineering, University of Cantabria, Avenida de los Castros s/n,
39005 Santander, Spain

3 Mechatronics Department, Tekniker, Avenida Otaola 20, 20600 Eibar, Spain

Correspondence should be addressed to R. Sancibrian, sancibrr@unican.es

Received 24 February 2012; Revised 24 April 2012; Accepted 14 May 2012

Academic Editor: Yi-Chung Hu

Copyright q 2012 A. Sedano et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A hybrid optimization approach for the design of linkages is presented. The method is applied to
the dimensional synthesis of mechanism and combines the merits of both stochastic and determin-
istic optimization. The stochastic optimization approach is based on a real-valued evolutionary
algorithm (EA) and is used for extensive exploration of the design variable space when searching
for the best linkage. The deterministic approach uses a local optimization technique to improve the
efficiency by reducing the high CPU time that EA techniques require in this kind of applications. To
that end, the deterministic approach is implemented in the evolutionary algorithm in two stages.
The first stage is the fitness evaluation where the deterministic approach is used to obtain an
effective new error estimator. In the second stage the deterministic approach refines the solution
provided by the evolutionary part of the algorithm. The new error estimator enables the evaluation
of the different individuals in each generation, avoiding the removal of well-adapted linkages that
other methods would not detect. The efficiency, robustness, and accuracy of the proposed method
are tested for the design of a mechanism in two examples.

1. Introduction

The mechanical design of modern machines is often very complex and needs very
sophisticated tools to meet technological requirements. The design of linkages is no
exception, and modern applications in this field have increasingly demanding requirements.
The design of linkages consists in obtaining the best mechanism to fulfil a specific motion
characteristic demanded by a specific task. In many engineering design fields there are
three common requirements known as function generation, path generation, or rigid-body
guidance [1, 2]. Dimensional synthesis deals with the determination of the kinematic
parameters of the mechanism necessary to satisfy the required motion characteristics.
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Different techniques have been used for the synthesis of mechanisms including graphical and
analytical techniques [1–3]. Graphical and analytical methods developed in the literature are
relatively restricted because they find the exact solution for a reduced number of prescribed
poses and variables. However, during the last decades numerical methods have enabled an
increase in the complexity of the problems by using numerical optimization techniques [4–8].

Despite the work done in dimensional synthesis over recent decades, the design of
mechanisms is still a task where the intuition and experience of the engineers play an
important role. One of the main reasons for this is the large number of variables involved in
a strongly nonlinear problem. Under these circumstances the design variable space contains
too many local minima and only some of them can be identified as local solutions. These local
solutions provide an error below a limit established by the designer and can be considered
acceptable. However, only the global minimum leads to the solution that provides the
greatest accuracy and this should be the main objective in the design of mechanisms.

The application of local optimization techniques to the synthesis of mechanisms took
place mainly during the 80s and 90s. Although other techniques have become more important
in recent years, they remain important so far. Some local search methods have been described
in references [4–6]. The main disadvantage of these methods is their dependence on the
initial point, or initial guess, although they also require a differentiable objective function.
Several research works have been done to achieve exact differentiation, which improve the
accuracy and efficiency of these methods. For example, in [5] exact gradient is determined to
optimize a six-bar and eight-bar mechanism. In [6] a general synthesis procedure is obtained
by using exact differentiation and it is applied to different kinds of problems. However, the
dependence on the initial point cannot be avoided and therein lies the weakest point of local
search methods.

Global search methods avoid the dependence on the initial point, but there is a sharp
increase in the computational time necessary to achieve convergence. Genetic algorithms
(GAs) [7, 8], evolutionary algorithms (EAs) [9], and Particle Swarm (PS) are some of the
most frequently used optimization techniques in the literature. All these techniques mimic
the behaviour of processes found in nature and are based on biological processes.

Genetic and evolutionary algorithms apply the principles of evolution found in nature
to the problem of finding an optimal solution. Holland [10] was the first to introduce the GA
and DeJong [11] verified the usage. In GA the genes are usually encoded using a binary
language whereas in EA the decision variables and objective function are used directly. As
coding is not necessary, EAs are less complex and easier to implement for solving complicated
optimization problems. Cabrera et al. [8] used GAs applied to a four-bar linkage in a path
generation problem. Some years later Cabrera et al. [9] used EAs to solve more complex
problems in the design of mechanisms. In this case a multiobjective problem is formulated
including mechanical advantage in the objective function as a design requirement. In [12] a
genetic algorithm is used for the Pareto optimum synthesis of a four-bar linkage considering
the minimization of two objective functions simultaneously.

Hybrid algorithms with application to the synthesis of linkages have been studied
in recent years. Lin [13] developed an evolutionary algorithm by combining differential
evolution and the real-valued genetic algorithm. Khorshidi [14] developed a hybrid approach
where a local search is employed to accelerate the convergence of the algorithm. However,
these methods are limited to the four-bar mechanism and their application is restricted to
path generation problems.

The objective function is based on the synthesis error estimation. The most widely
used error estimator in the literature is Mean Square Distance (MSD). The MSD is used to
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measure the difference between the desired parameters and the generated ones. However,
this formulation has proven to be ineffective when seeking the optimal solution [15]. In
many cases the MSD misleads the direction of the design and good linkages generated by
the algorithm can be underestimated. Therefore, error estimation is of the utmost importance
for deterministic and stochastic optimization. In EA the error estimator must be evaluated
for each individual in each generation and for this reason the lack of accuracy could lead
to poor efficiency in the optimization process. To avoid these problems Ullah and Kota [15]
proposed the use of Fourier Descriptors that evaluate only the shape differences between the
generated and desired paths. However, the proposed formulation is limited to closed paths
in path generation problems. An energy-based error function is used in [16] where the finite
element method is used to assess the synthesis error. This formulation reduces the drawbacks
of MSD, but problems with the relative distance between desired and generated parameters
remain.

The aim of this work is to propose a new hybrid algorithm that combines an
evolutionary technique with a local search optimization approach. Some of the fundamentals
in mechanism synthesis studied in this paper have been extensively discussed in the
literature. However, the originality of this work lies in two aspects: the first one is the
introduction of a new error estimator which accurately compares the function generated by
the candidate mechanism with desired function. The second one is a novel approach based
on the combination of deterministic and stochastic optimization techniques in the so-called
hybrid methods. The flowchart for the optimization process is presented in the paper together
with the results and conclusions.

2. Objective Function and Deterministic Optimization Approach

In optimal synthesis of linkages the optimization problem is defined as follows:

minimize F[q(w),w]

subject to Φ[q(w),w] = 0,

g[q(w),w] ≤ 0,

(2.1)

where the objective function F[q(w),w] formulates the technological requirements of the
mechanism to be designed. The equality constraints Φ[q(w),w] formulate the kinematic
restrictions during the motion, and the inequality constraints g[q(w),w] establish the
limitations in the geometrical dimensions. Vector q(w) is the vector of dependent coordinates
and w is the n-dimensional vector of design variables.

To illustrate the formulation the scheme of a four-bar mechanism in a path generation
synthesis problem is shown in Figure 1. The proposed method can be applied effortlessly to
any type of planar mechanism; however, the example in Figure 1 enables the formulation to
be easily understood. The equality constraints are formulated as follows:

Φ[q(w),w]i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1 cos θ1 + L2 cos(θ20 + θ2i) + L3 cos θ3 + L3 cos θ3

L1 sin θ1 + L2 sin(θ20 + θ2i) + L3 sin θ3 + L3 sin θ3

xg − x0 − L1 cos θ1 − L2 cos(θ20 + θ2i) − L5 cos(θ5 + α)
yg − y0 − L1 sin θ1 − L2 sin(θ20 + θ2i) − L5 sin(θ5 + α)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 0, (2.2)
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Figure 1: Scheme of the four-bar linkage.

where the vector of design variables contains the geometrical dimensions of the link. That is

wT =
[
x0 y0 θ1 θ20 L1 L2 L3 L4 L5 α

]
, (2.3)

and dependent variables are defined as

qT =
[
θ3 θ4 xg yg

]
. (2.4)

An important aspect in dimensional synthesis of linkages is the formulation of the goal or
objective function. The objective function is capable of expressing the difference between the
desired and generated paths (see Figure 1), providing an estimation of the error between the
two curves irrespective of location, orientation, and size. The minimization of this function
obliges the design variables to be changed and leads to the optimal dimensions of the
linkage which can be expressed as w∗. The generated and desired paths can be either open
or closed curves. Figure 2 shows the two paths for the case of two closed curves. In this
work the definition of both curves is assumed to be specified by a number of points named
precision points. The precision points are selected by the designer by using vector notation
and Cartesian coordinates as follows:

diT =
[
xi
d yi

d

]

giT =
[
xi
g yi

g

] i = 1, 2, . . . , p, (2.5)
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where subscript d stands for desired points, g stands for the generated ones and p is the
number of precision points. Most of the works in dimensional synthesis propose the Mean
Square Distance to assess the error between the two curves. That is

F =
1
2

p∑

i=1

[(
gi − di

)T(
gi − di

)]

=
1
2

[
(g − d)T (g − d)

]
. (2.6)

The deterministic approach used in this paper is based on a local search procedure which
uses first-order differentiation to obtain the search direction. In the synthesis problem the
generated precision points depend on the vector of design variables and (2.6) should be
rewritten as follows:

F[q(w),w] =
1
2
[g{q(w),w} − d]T [g{q(w),w} − d] (2.7)

which is the objective function that must be minimized subject to the equality and inequality
constraints to obtain the optimal dimensions of the mechanism. Differentiating (2.7) with
respect to the design variables and equating it to zero provides

∇F[q(w),w] = JT [g{q(w),w} − d] = 0, (2.8)

where J is the Jacobian that can be expressed as,

J =
∂g[q(w),w]

∂w
=

∂g[q(w),w]
∂q(w)

∂q(w)
∂w

. (2.9)

With the aim of greater clarity hereafter the dependence on the variables is omitted. The term
between brackets in (2.8) can be expanded using Taylor series expansion as

∇F ≈ JTg − JTd + JT JΔw = 0. (2.10)

From (2.10) a recursive formula can be obtained as follows:

wj+1 = wj − α JT J
[
JTg − JTd

]
. (2.11)

In this formula the stepsize α has been included in order to control the distance along the
search direction. In [6] the determination of the stepsize and the exact Jacobian is described.

Differentiation of equality constraints given in (2.1) using the chain rule yields

∂Φ
∂q

∂q
∂w

+
∂Φ
∂w

= 0. (2.12)
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Figure 2: Desired (d) and generated (g) closed paths.

Thus, (2.9) can be rewritten as

J = −∂g
∂q

(
∂Φ
∂q

)−1 ∂Φ
∂w

. (2.13)

All terms in (2.13) can be easily obtained from the objective function and constraints, and they
enable the exact Jacobian to be determined for use in the deterministic optimization method.

If there are inequality constraints in the optimization problem, they can be converted
to equality constraints through the addition of so-called slack variables. That is

gi(w) + v2
i = 0. (2.14)

In this way, each inequality constraint adds a new variable that must be included in the
formulation.

3. New Error Estimator for EA Algorithms

In EA, lack of accuracy in the error estimation could lead to overestimation of the error
and removal of good individuals from the optimization process. On the other hand,
underestimation of the error could lead to selecting individuals who are not better adapted
than others in fulfilling the goal.

Equation (2.7) is used in many works as the objective function [4–9]. It has been widely
used in deterministic approaches, but it is also used in probabilistic optimization. However,
the function itself is an estimator of the error, not a representation of the actual error. This
function depends on the relative position of the two curves and under certain circumstances
the approximation may not be good enough. For instance, in the case shown in Figure 2 the
error given by (2.7) can be increased or decreased if the generated curve is translated closer
to the desired one or away from it, respectively. Moreover, rotation and scaling can be added
to the transformation in order to reduce the error. For practical applications in engineering
the translation of the curve only entails the translation of the linkage even as the rotation
only needs to change the mechanism orientation. The lack of accuracy of (2.7) can be reduced
by selecting the appropriate initial guess linkage in local optimization. However, in EA this
option is not available and it should be solved using other strategies.
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Figure 3: Translation of the desired (d) and generated (g) paths.

Thus, one can say that the error between two curves is minimum if they are compared
by the translation, rotation, and scaling. Therefore, (2.7) could underestimate the error unless
some transformations are introduced. The first transformation consists of the translation of
the generated curve towards the desired one. To do that, the geometric centroids of both
curves are determined by using the precision points as follows:

dc =
1
p

p∑

i=1

di,

gc =
1
p

p∑

i=1

gi,

(3.1)

where dc and gc are the coordinates of the geometric centroids for desired and generated
curves, respectively. The new coordinates of the precision points for the two paths are
obtained by translating the geometric centroids to the origin of the reference frame. That
is

di
0 = di − dc,

gi0 = gi − gc.
(3.2)

Figure 3 shows the translation of both curves. Thus, the error estimation can be reformulated
in the following way:

E0 =
1
2

p∑

i=1

[(
gi0 − di

0

)T(
gi0 − di

0

)]

. (3.3)

Obviously, (3.3) reduces the error and is more accurate than (2.7). However, it should be
pointed out that it still depends on the order chosen for numbering the precision points. In
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other words, (3.3) provides a comparison of the precision points with the same superscript,
which depends on the arbitrary choice previously made by the designer. Therefore, it could
be possible to reduce the error when the order of numbering is changed. Therefore, removing
the effect of the numbering requires the formulation of p error estimators. For the case of two
closed curves, as shown in Figure 3, the following matrix can be written:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1
0 − d1

0 g2 − d1
0 · · · gp−1 − d1

0 gp0 − d1
0

g2
0 − d2

0 g3
0 − d2

0 · · · gp0 − d2
0 g1

0 − d2
0

...
...

...
...

...
gp−1

0 − dp−1
0 gp0 − dp−1

0 · · · gp−3
0 − dp−1

0 gp−2
0 − dp−1

0

gp0 − dp

0 g1
0 − dp

0 · · · gp−2
0 − dp

0 gp−1
0 − dp

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×p

. (3.4)

Each column of (3.4) gives the terms of the error estimator for each possible combination.
Thus, each error estimator can be formulated as the summatory function defined by

Fj =
p−j+1∑

i=1

(
gi+j−1

0 − di
0

)2
+

p∑

i=p−j+2

(
gi+j−p−1

0 − di
0

)2
; j = 1, 2, . . . , p, (3.5)

where subscript j stands for the estimator index. Therefore, Fj is a single-valued function
providing the estimation of the error. A vector can be formulated with all the values given by
(3.5)

FT =
[
F1F2 · · ·Fp

]
. (3.6)

Only one of the terms in this vector provides the minimum error and will be selected to form
the objective function. That is

Fm = min(F). (3.7)

The matrix given by (3.4) and the summatory given by (3.5) are only valid for the comparison
of closed-closed curves. However, it is possible to have two other situations: open-open or
open-closed paths. The former case is shown in Figure 4, while the latter is shown in Figure 5.
In both cases the number of precision points may be different for the desired and generated
curves. Thus, the precision points are redefined as follows:

diT =
[
xi
d

yi
d

]
; i = 1, 2, . . . , p

grT =
[
xr
g yr

g

]
; r = 1, 2, . . . , c

c ≥ p, (3.8)

where c is the number of precision points for the generated curve. Similarly to the closed-
closed case, the centroid of the precision points is determined and the curves are translated
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Figure 4: Desired (d) and generated (g) open paths.
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Figure 5: Desired open path (d) and generated closed path (g).

to the origin of the reference frame. The possible combinations that allow the estimation of
the error are given by the following matrix:

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1
0 − d1

0 g2
0 − d1

0 · · · gc−p0 − d1
0 gc−p+1

0 − d1
0

g2
0 − d2

0 g3
0 − d2

0 · · · gc−p+1
0 − d2

0 gc−p+2
0 − d2

0
...

...
...

...
...

gp−1
0 − dp−1

0 gp0 − dp−1
0 · · · gc−2

0 − dp−1
0 gc−1

0 − dp−1
0

gp0 − dp

0 gp+1
0 − dp

0 · · · gc−1
0 − dp

0 gc0 − dp

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×(c−p+1)

. (3.9)

The sum of the squared elements of each column in (3.9) leads to

Fj =
p∑

i=1

(
gi+j−1

0 − di
0

)2
; j = 1, 2, . . . , c − p + 1. (3.10)

Equation (3.10) provides the different error estimators and the minimum value given by this
formula is selected as the objective function.
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When the desired path is an open curve and the generated path is a closed curve (see
Figure 5), the aforementioned process can be used. However, the error estimator should be
adapted to this situation. That is

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1
0 − d1

0 g2
0 − d1

0 · · · gc−1
0 − d1

0 gc0 − d1
0

g2
0 − d2

0 g3
0 − d2

0 · · · gc0 − d2
0 g1

0 − d2
0

...
...

...
...

...
gp−1

0 − dp−1
0 gp0 − dp−1

0 · · · gp−3
0 − dp−1

0 gp−2
0 − dp−1

0

gp0 − dp

0 gp+1
0 − dp

0 · · · gp−2
0 − dp

0 gp−1
0 − dp

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×c

. (3.11)

Thus, the error estimators can be formulated as follows:

Fj =
p∑

i=1

(
gi+j−1

0 − di
0

)2
, 1 ≤ j ≤ c − p + 1,

Fj =
c−j+1∑

i=1

(
gi+j−1

0 − di
0

)2
+

p∑

i=c−j+2

(
gi+j−c−1

0 − di
0

)2
, c − p + 1 ≤ j ≤ c.

(3.12)

Equations (3.5), (3.10), and (3.12) provide a better comparison because they remove the effect
of the translation and avoid the influence of the numbering. However, the error estimation
can be enhanced by rotation and scaling. Indeed, if the generated curve is rotated and scaled
with respect to the desired one, the difference between the two curves could be reduced. To
do this, two new parameters must be introduced. The first one is a reference angle which
provides the orientation of each curve. In Figure 2 the orientation angles are given by βd and
βg . In practical design of mechanisms the modification of βg implies the rotation of the whole
linkage in the plane, which is allowed for most of the cases. The second parameter is the
scaling factor s. This parameter allows the generated curve to be expanded or contracted to
reduce the difference with respect to the desired path. For the case of closed-closed curves
the introduction of the rotation and scaling factor in the formulation modifies equations as
follows:

Fm

(
βg, s

)
=

p−j+1∑

i=1

[
sAgi+j−1

0 − di
0

]2
+

p∑

i=p−j+2

(
sAgi+j−p−1

0 − di
0

)2
; j = 1, 2, . . . , p, (3.13)

where

A
(
βg

)
= A =

[
cos βg − sin βg
sin βg cos βg

]

, (3.14)

is the rotation matrix and provides the rotation of the generated precision points.
The error estimator given by (3.13) is now the objective function in a local optimization

subproblem with two variables, βg and s. This optimization subproblem attempts to find the
best orientation and size of the generated curve (and also the linkage) in order to reduce the
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error with respect to the desired path. The objective functions for the open-open curves may
be readily derived as

Fm

(
βg, s

)
=

p∑

i=1

(
sAgi+j−1

0 − di
0

)2
; j = 1, 2, . . . , c − p + 1, (3.15)

and (3.12) for the open-closed curves becomes

Fm

(
βg, s

)
=

p∑

i=1

(
sAgi+j−1

0 − di
0

)2
, 1 ≤ j ≤ c − p + 1,

Fm

(
βg, s

)
=

c−j+1∑

i=1

(
sAgi+j−1

0 − di
0

)2
+

p∑

i=c−j+2

(
sAgi+j−c−1

0 − di
0

)2
, c − p + 1 ≤ j ≤ c.

(3.16)

These expressions might suggest that the problem must be solved as an optimization with
two variables. However, the authors’ experience shows that better results are obtained
when the problem is solved independently for each variable. In other words, the results
obtained are very accurate when the rotation optimization problem is solved before the
scaling problem.

In summary, the aforementioned transformations are the core of the comparison
between the desired curve and the candidate, avoiding the influence of location, orientation,
and size all at once. This provides an important contribution that improves the efficiency in
the exploration of the search space when using evolutionary algorithms.

4. Hybrid Approach for the Synthesis of Mechanisms

The design space of linkages contains a large number of local minima. Deterministic
approaches based on local optimization start from a random point converging to the nearest
local minimum. Thus, the solution may be an unsatisfactory solution because the design
space is not sufficiently explored. The strength of stochastic optimization approaches lies in
searching the entire design space of the design variables in order to locate a region with the
lowest values of the objective function. This region probably contains the global minimum.
However, the cost of the computational time required to achieve the convergence by using
EA could be very expensive when an accurate solution is demanded. Local search approaches
need less time to achieve solutions, but the accuracy depends on the quality of the initial
guess. To ensure convergence and enhance its ratio hybrid methods combine the benefits of
both techniques. The main advantages expected from this approach are the generality and
total independence of the initial guess. The evolutionary process for searching among the
optima is briefly outlined below.

4.1. Evolutionary Strategy

It should be highlighted that the efficiency of an evolutionary algorithm is given by both the
quality of the objective function and the structure of the chromosomes and their genes. In
this work the objective function is formulated as was described in the previous section. The
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chromosomes are encoded using real-valued genes instead of a binary code because several
works [9, 13] have demonstrated the advantages of this procedure in the design of linkages.
Thus, each gene gives the real value of a design variable in the mechanism to be synthesized
and all genes are grouped in a chromosome which in classical optimization is known as the
vector of design variables. That is

wT
r,g =

[
w1,g w2,g · · · wm,g

]
; r = 1, 2, . . . , rmax, (4.1)

where m represents the dimensionality of wr,g , g is the generation subscript, and rmax is
the number of individuals in each generation. The dimension of w is given by the type of
mechanism to be synthesized and the kind of coordinates used in their definition. In this work
natural coordinates are used for this purpose, as well as in the definition of the generated and
desired paths. The starting and successive populations are randomly generated:

Pg = wr,g ; r = 1, 2, . . . , rmax; g = 1, 2, . . . , gmax, (4.2)

where gmax is the number of generations. In this work rmax does not change during the
optimization process so the population neither increases nor decreases. After a generation has
been created, the fitness of each individual is evaluated in order to sort them for the selection.
The evaluation of the fitness depends on the type of curves involved in the problem, selecting
(3.13), (3.15) or (3.16) according to the case. The algorithm uses an elitism strategy in order to
preserve the best individuals for the next generation. To obtain the number of best individuals
an elitism factor, ef, is used as follows:

nE = Round (ef rmax), (4.3)

where nE is the number of individuals whose genetic information is preserved for the
following generation. After that, the tournament selection starts and the parents are chosen
for reproduction. The first step in reproduction is to establish the number of offspring
generated by the crossover, whose valued is given by the following formula:

nC = Round [rf(rmax − nE)], (4.4)

where nC is the number of offspring generated by the crossover operator and rf is the
reproduction factor. Mutation is another operator used to change the genes randomly during
the reproduction. The number of offspring affected by mutation is given by

nM = rmax − nE − nC. (4.5)

Thus, the number of parents is twice the number of offspring selected for crossover plus the
number of individuals selected for mutation. To decide whether or not it should become a
member for reproduction, the roulette wheel method [8] is used for the selection of parents
from the complete population. The number of slots in the roulette is equal to the number of
individuals and the size of the slots is equal to their expectation. Once the parents are selected,
crossover is used to increase the diversity of the individuals in the complete population.
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Crossover generates the offspring by taking genetic information from the two parents. The
chromosomes of the descendents are obtained using the arithmetic mean of the same genes
taken from each parent using a random coefficient with normal distribution. The mutation
operator is controlled by two coefficients. The first one is the scale, sM, which controls the
range of the variation allowed in the genes. The second one is the shrink coefficient, hM.
This coefficient allows mutations with a wider interval of variation in the first generations
but gradually reduces this interval in the following generations. In this way the algorithm
provides exploration and exploitation of the global optimum and maintains a suitable balance
during the optimization process. The authors have verified that the control of the shrink
coefficient is fundamental to obtain the optimal solution when the range of the design
variables is very different.

After the reproduction has finished for one generation, the new generation is evaluated
by using the fitness value for every individual and the same process is repeated until the
convergence of the evolutionary algorithm is achieved. Different convergence criteria may
be used to stop the algorithm. The first one is based on the accuracy obtained for the best
individual in the last generation, but a limit in the number of generations is also established
to stop the process. Once the convergence is achieved, the fitness of the last generation is
evaluated and a family of best individuals is obtained. The family of best individuals is
selected from those linkages whose fitness value is below a threshold. This family of linkages
is used as the initial guess for the deterministic approach to form the hybridization process
which is described in the following subsection.

4.2. Hybrid Algorithm

Figure 6 shows the flowchart of the hybrid algorithm including the stochastic and
deterministic optimization. On the left-hand side of Figure 6, the scheme of the evolutionary
technique is shown. The right side in the same figure shows the deterministic part of the
hybrid algorithm. The algorithm starts with the definition by the designer of the desired
function based on the required motion for the linkage. The designer also establishes the EA
parameters that will be used in the algorithm (e.g. the operators for selection, crossover,
etc.). After that the optimization process starts with the generation of the first population.
The fitness evaluation of this first generation requires the estimation of the error by using
deterministic optimization to obtain the orientation angle, βg , and scaling factor, s. If the
fitness value is below a threshold, a family of linkages is selected to be optimized by the
deterministic approach. This rarely occurs in the first generation and several generations
are necessary to cross from the probabilistic approach to the deterministic optimization as
is shown in Figure 6. The deterministic approach uses the best individuals selected from
the evolutionary algorithm which are called Family 1. These individuals are optimized
irrespective of their fitness values because local optimization could lead to obtaining
better individuals among those with worse initial expectation. The deterministic approach
optimizes each individual independently to obtain a second family called Family 2. The
solution is selected as the best linkage of this second family.

5. Numerical Examples

In this section two examples are presented in order to demonstrate the capacity of the
hybrid algorithm. In the first example a four-bar mechanism is selected to be synthesized to
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Figure 6: Flowchart of the hybrid algorithm.

generate a right angle path. The example does not correspond to any actual implementation
in engineering design, but this type of path is a challenging objective and demonstrates
the accuracy, robustness, and efficiency of the proposed approach. The second example is
a practical application in the design of an actual machine. The results in these examples are
divided into two stages. The first one is the result obtained by the evolutionary algorithm
and the second one is the result obtained by the complete hybrid algorithm which includes
the local optimization approach in the dimensional synthesis.

5.1. Four-Bar Linkage Generating a Right Angle Path

In this example the methodology is applied to the synthesis of a four-bar mechanism. The
scheme of the mechanism is the same as that used in Section 2 (see Figure 1). Likewise the
constraints and design variables are given by (2.2) and (2.3), respectively. The aim of the
problem is that the coupler point, P, of the synthesized linkage describes a right angle path
during the motion. The path is defined by 11 prescribed points whose coordinates are shown
in the first two rows in Table 1. Table 2 shows the values of the operator factors used in the
evolutionary algorithm. It is important to highlight the small size of the population and the
maximum number of generations.

The best resulting mechanism and the path followed by the coupler point in the
evolutionary part of the algorithm is shown in Figure 7(a), in addition to the desired precision
points. The evolutionary algorithm takes 189.59 seconds to achieve the convergence with an
error of 2.439 mm2 using an Intel Core I5 PC. As can be observed in this figure, the generated
path approximates well to the desired one; however, there is clearly a lack of accuracy. In
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Table 1: Desired path and the path generated at the convergence with the proposed algorithm.

Paths 1 2 3 4 5 6 7 8 9 10 11

Desired (mm) xd 0 0 0 0 0 0 3.00 6.00 9.00 12.00 15.00
yd 15.00 12.00 9.00 6.00 3.00 0 0 0 0 0 0

EA (mm) xg 0.21 0.06 0.08 −0.24 −0.29 0.82 2.96 5.70 8.77 11.92 14.97
yg 15.33 12.20 8.75 5.27 2.76 1.14 0.03 −0.59 −0.68 −0.17 0.94

Hybrid (mm) xs 0.22 −0.16 −0.18 0.04 0.11 0.00 3.00 5.99 9.00 12.01 14.93
ys 14.95 12.01 8.99 6.00 2.98 0.24 0.05 −0.17 −0.26 −0.11 0.32

Table 2: Values of the different factors used in the evolutionary algorithm.

EA factors rmax gmax ef rf sM hM
Values 150 10 0.02 0.8 0.8 0.4

order to compare the result with the desired path, the third and fourth rows of Table 1 show
the coordinates of the generated points. The solution for the hybrid algorithm is shown in
Figure 7(b) where the path followed by the coupler point fits very well with the desired one.
In the last two rows of Table 1 the coordinates of the generated path are shown and the last
row of Table 3 shows the values for the design variables.

The error at convergence is 0.2025 mm2 and the time necessary to achieve the
convergence was 212 seconds, which is a very reasonable computational cost in this kind
of problem.

Since it is stochastic, the results differ each time the algorithm runs. In order to evaluate
the robustness, the algorithm was run 30 times and the sample mean error obtained at
convergence was 0.309 mm2 with a sample standard deviation of 0.211 mm2. The sample
mean CPU time to achieve the convergence was 215.05 seconds with a standard deviation
of 19.031 seconds.

5.2. Application to a Mechanism for Injection Machine

In this example the methodology has been applied to the design of a mechanism for die-cast
injection machine. Figure 8(a) shows the scheme of such a machine, where the system for
the injection of zamak alloys is shown at the top. The mould is located below the injection
system (not shown in the figure). The system for the displacement of the mould is shown on
the left-hand side of the figure. Figure 8(b) shows the detail of the injection system where it is
possible to see the linkage used for this purpose. The mechanism selected for this application
is a combination of a four-bar linkage together with a slider-crank mechanism connected by
the coupler link. The motion of the slider follows a straight line pushing the zamak alloy
through the entrance to fill the mould. This motion must be controlled in order to fill the
mould adequately. To obtain good quality in the manufacturing process a rapid, motion of
the slider is necessary initially, then a slower motion, and finally a fast backward motion
when the mould has been filled. This motion of the slider is coordinated with the input link
which is driven by an electric motor with constant velocity (see Figure 8(b)). The precision
points are set every 18 deg of the motor rotation, or in other words, 20 precision points are
selected for a full rotation of the motor. The coordinates of the precision points are shown in
Table 4 and the desired motion is dotted in Figure 9.
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Figure 7: (a) Solution with the evolutionary algorithm and (b) with the hybrid algorithm.

Table 3: Design variables.

Design variables x0
(mm)

x0
(mm)

θ1
(rad)

θ20
(rad)

L1
(mm)

L2
(mm)

L3
(mm)

L4
(mm)

L5
(mm)

α
(rad)

EA solution −10.47 8.34 0.31 1.68 24.30 14.81 24.48 31.70 4.02 −0.68
Hybrid solution −8.01 4.91 0.28 5.50 28.16 16.94 23.05 32.68 7.13 −1.63

The scheme of the mechanism to be synthesized is shown in Figure 10 together with
the twelve design variables. Figure 9 compares the results for the evolutionary algorithm and
the hybrid optimization approach and Table 4 gives the values of the coordinates generated
in all cases. Finally, Table 5 shows the values of the design variables at convergence for the
evolutionary algorithm and the hybrid algorithm.

Despite of the difficulty of the problem, the graphical results in Figure 9 show that the
evolutionary algorithm provides good accuracy in general; however, in the central part of the
curve the accuracy is lower. The hybrid algorithm enhances the accuracy in this zone and
provides a very good solution.

The sample mean error obtained by the hybrid algorithm is 357.70 mm2 with a
standard deviation of 14.07 mm2. The mean CPU time to achieve the convergence is 623.17
seconds with a standard deviation of 46.40 seconds.

6. Concluding Remarks

In this paper a hybrid optimization approach has been presented with application to the
optimal dimensional synthesis of planar mechanisms. The objective function is selected
using a new error estimator defined by means of the precision points. This error estimator
enables the evaluation of the fitness of the function without influence of translation, rotation,
and scaling effects. The error estimation is done using a local optimization procedure
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Figure 8: (a) Injection moulding machine and (b) detail of the injection system.

Table 4: Desired path and the path generated at convergence with the proposed algorithm.

Desired yd (mm) EA solution yg (mm) Hybrid solution ys (mm)

1 900 892.33 908.6
2 800 757.53 776.8
3 600 588.30 587.4
4 400 417.67 402.7
5 200 274.19 255.0
6 190 178.37 165.4
7 180 137.35 143.2
8 170 140.40 161.5
9 160 161.43 161.6
10 150 173.98 146.8
11 140 166.79 133.0
12 130 143.37 123.9
13 120 113.29 117.4
14 110 88.23 110.3
15 100 83.79 104.2
16 150 125.08 118.4
17 200 250.88 219.1
18 500 491.63 496.4
19 800 777.75 785.5
20 900 937.63 908.4

providing a very efficient hybrid algorithm. The hybrid algorithm combines the advantages
of both stochastic and deterministic approaches to improve the robustness and accuracy.
Two examples have been presented in the paper to demonstrate the capacity of the method.
The examples show that the proposed method not only achieves the convergence but also
demonstrates how the accuracy is improved by the combination of the two procedures.
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Table 5: Design variables.

Design
variables

x0
(mm)

y0
(mm)

θ10
(rad)

θ4
(rad)

L1
(mm)

L2
(mm)

L3
(mm)

L4
(mm)

L5
(mm)

L6
(mm)

α
(rad)

x5
(mm)

EA solution 810.92 311.51 2.745 −1.23 517.03 992.82 991.66 1227.4 1161.7 722.41 −0.286 100
Hybrid
solution 537.39 393.31 2.785 −1.4 416.52 603.75 554.85 724.41 611.08 372.27 0.2437 100

To do this, the examples depict the solution for the case of the evolutionary algorithm
working alone, and then the solution improved by the hybrid algorithm. This shows
how the evolutionary algorithm provides an approximation to the solution and then the
local optimization improves the accuracy. In both examples the solution provides good
designs and the generated curves fit very well with the desired ones. In summary, the
hybrid algorithm is a valuable tool for the design of mechanisms when highly demanding
requirements are imposed. Thus, the conclusion we draw is that the appropriate combination
of stochastic and deterministic algorithms has an enormous potential in the more effective
solution of optimization problems in the design of mechanisms. This work will be further
developed for the solution of other mechanism design problems by adapting the algorithm.
Furthermore, another future task in this field aims to improve the efficiency of the hybrid
optimizer by using the most recent developments in metaheuristic approaches such as
Particle Swarm Optimization and Differential Evolution.
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