MODELIZACIÓN DE DISPOSITIVOS DE SIGe (HBTs) PARA UN AMPLIFICADOR MONOETAPA

M^a T. Lafuente, J. P. Pascual, M^a L. de La Fuente, E.Artal

Departamento de Ingeniería de Comunicaciones. Universidad de Cantabria.

ABSTRACT

An approach to heterojunction bipolar transistors (HBT's) characterization and modeling is presented whit a compact HBT nonlinear circuit model which accounts for the temperature dependence effects. The parameters are extracted from DC and S-parameters measurements. The power characteristics of the device are then predicted using the extracted model without any further optimizations. The model has been implemented in MDS –HP nonlinear simulator. Good fitting is obtained in DC and scattering curves up to 40 GHz. An amplifier designed with the HBT67 transistors is presented. Simulations show good agreement with measurements.

1. INTRODUCCIÓN

Presentamos el modelado del transistor, fabricado en SiGe por Daimler Chrysler HBT 67, en DC, pequeña señal y gran señal con un mismo modelo de circuito equivalente no lineal que tiene en cuenta los efectos del autocalentamiento en los HBTs. Los parámetros se han obtenido de medidas en DC, medidas de parámetros de Scattering y medidas de los tres primeros armónicos de potencia. Se han extraído las características de potencia entrada-salida utilizando el modelo optimizado. El modelo ha sido implementado en el simulador no lineal MDS – HP. Se ha encontrado un buen ajuste en DC y en las curvas de los parámetros de Scattering hasta 40 GHz.

Se caracterizó un amplificador diseñado con el tipo de dispositivo HBT67 anteriormente modelado. Presentamos los resultados con un buen ajuste entre medidas y simulaciones.

2. MODELO EQUIVALENTE

El circuito equivalente para el modelo de HBT (Figura 1.) es válido en régimen de continua, pequeña señal y gran señal.

Las dos no linealidades del modelo son la corriente base-emisor, Ibe y la corriente de colector Ic. La corriente Ibe es modelada con la ecuación del diodo de la forma:

$$I_{be} = I_s \cdot (e^{\alpha \cdot Vbe} - 1) \tag{1}$$

Donde Vbe es la tensión base-emisor.

Figura 1. Circuito equivalente para el modelo de HBT.

La corriente de colector, Ic, es modelada mediante la ecuación empírica (2), donde a la ecuación empírica de [1] hemos añadido dos términos ($a_1 \ y \ a_2$) que modelan el efecto de calentamiento en el HBT, que hace que la corriente de colector disminuya a medida que Ib y Vbe aumentan.

$$I_{c}(I_{b}, V_{ce}) = beta \cdot \left\{ \frac{Sinh(X_{6}) + Cosh(X_{6}) \cdot Tanh(X_{0} \cdot V_{cei})}{Cosh(X_{9}) + Sinh(X_{9}) \cdot Tanh(X_{0} \cdot V_{cei})} \right\} \cdot \left\{ Sinh\left(\frac{X_{2}}{I_{bn}^{X_{3}}} + X_{4} \cdot Tanh\left(X_{5} \cdot I_{bn}^{2}\right) \cdot V_{cei} \right) \right\}^{\left[X_{10}\left(\frac{T-T_{0}}{T_{0}}\right) - 1\right]} - a_{1} \cdot I_{b}^{3} \cdot V_{ce}^{2} - a_{2} \cdot I_{b}^{2} \cdot V_{ce} \right]$$

$$(2)$$

Donde:

$$X_{0} = X_{2} + \frac{X_{7}}{I_{bn} \cdot V_{cei}} + \frac{X_{8}}{\sqrt{I_{bn}}}$$

$$beta = X_1 + (b_1 \cdot I_b) + (b_2 \cdot I_b^2) + (b_3 \cdot I_b^{b_4})$$

*I*_{bn} es la corriente de base normalizada:

$$I_{bn} = \frac{I_b}{I_{b0}}$$

- Ibo es la corriente de base de referencia (la corriente de base de las características de DC más pequeña).
- I_b es la corriente de base
- V_{ce} es el voltaje colector-emisor.
- $X_1...X_{10}, b_0...b_4, a_1, a_2$ son los parámetros del modelo.
- T_0 es la temperatura de referencia en Kelvin.
- *T* es la temperatura de análisis en Kelvin.

Realizamos la optimización de los 16 parámetros del modelo (Ecuación (2)) para obtener un ajuste del modelo con las medidas dc_IV realizadas a HBTs de la foundry alemana Daimler-Chrysler.

Los elementos Rb, Rc, y Re dependen del punto de polarización. Los elementos que no dependen del punto de polarización son los parásitos: Lb, Lc, Le, Cpcb, Cbe, Cpb, Cpe. del modelo que se muestran en la Figura.1.

Este modelo se ha implementado y optimizado con éxito en el simulador no lineal HP-MDS.

3. ANÁLISIS DC.

Caracterizamos de HBTs SiGe de la foundry Daimler-Chrysler con el modelo no lineal propuesto. Estos dispositivos tienen las siguientes características: HBT con emisor de 6 dedos de 1.5ì m de longitud con 7ì m de anchura cada uno. (Figura 2.).

Figura 2. Microfotografía HBTs producidos por Daimler-Chrysler.

Los voltajes externos Vbe y Vce, se relacionan con Vbei y Vcei (internos) mediante las resistencias Rb, Rc y Re con las ecuaciones siguientes:

$$V_{bei} = V_{be} - I_b \cdot (R_b + R_e) - I_c \cdot R_e$$
(3)

$$V_{cei} = V_{ce} - I_c \cdot (R_c + R_e) - I_b \cdot R_e$$
(4)

Se han obtenido los valores de los parámetros del modelo para el ajuste de la corriente de colector y la tensión base-emisor del diodo, haciendo un barrido de la corriente de base entre 0 y 1mA y de la tensión colector-emisor entre 0 y 4 V. (Tabla .1.).

Parámetros	Valores para HBT67
R _b	1.48Ù
R _c	2.5Ù
R _e	4Ù
X_1	0.000672
X ₂	1.14297
X_3	0.2898
X_4	-0.0017
X_5	-1.0273
X_6	3.4021
X ₇	5.5495
X_8	3.5423
X_9	-1.4122
X_{10}	-5.1569
I _{b0}	3.1E-4
b ₁	-0.2982
b ₂	152.3848
b ₃	-0.0225
b ₄	0.6272
a_1	0.0022
a ₂	60.1
á	17.07
Is	5.2758E-7

Tabla .1. Valores de los parámetros intrínsecos del modelo.

Hemos utilizado la medida de las características Ib-Vbe para extraer los parámetros del diodo base-emisor: Is y á. Los parámetros de la corriente de colector no lineal $X_1...b_4$ han sido extraídos utilizando las características Ic-Vce medidas. Los términos a₁, a₂ fueron añadidos a la fórmula empírica inicial para caracterizar el efecto de calentamiento en el transistor, donde la Ic disminuya a medida que aumentan Ib y Vce de la forma que se indica en la ecuación (2).

En la Figura 3. podemos observar un ajuste del modelo con los datos de medida en las característica dc-IV para el HBT67.

Figura 3. Características de dc-IV medidas y simuladas para el HBT67.

4. ANÁLISIS Y MODELADO PEQUEÑA-SEÑAL.

Se han hecho medidas de los parámetros S del HBT67 para varios puntos de polarización. Mostramos los resultados para el punto de polarización con mayor ganancia: Ib=0.8mA Vce=2V hasta una frecuencia de 40GHz (Figura 4.). Las medidas han sido realizadas utilizando el analizador vectorial de redes HP8510C(45MHz-40GHz).

Figura 4.1. Parámetros S medidos para el transistor T67 en el punto de polarización: Ib=0.8mA Vce=2V.

Figura 4.2. Parámetros S21(dB) y S12(dB) medidos para el transistor T67 en el punto de polarización: Ib=0.8mA Vce=2V.

Hemos utilizado el circuito equivalente de la Figura 1, con los mismos parámetros para la corriente de colector y corriente de base obtenidos para modelar las medidas DC. Optimizamos ahora los elementos extrínsecos del modelo para que ajusten las medidas de parámetros S en diferentes puntos de polarización. (Tabla 2.).

Parámetros	Valores para HBT67
Lb	0.014nH
Lc	0.251nH
Le	0.005nH
Cbc	0.0001pF
Cpbc	0.032pF
Cbe	3.3pF

Tabla .2. Valores de los parámetros extrínsecos para el modelo.

Añadimos Cce para mejor ajuste de S22. Cce=0.000156pF.

Mostramos ahora el ajuste entre los valores de los parámetros S para el HBT67 medidos y los modelados para el punto de polarización: Ib=1mA Vce=2V. (Figura 5.).

Figura 5.1. Parámetro S21(dB) del HBT67 medido y modelado para el punto de polarización: Ib=1mA Vce=2V.

Figura 5.2 Parámetros S22(dB) y S11(dB) del HBT67 medidos y los modelados para el punto de polarización: Ib=1mA Vce=2V.

5. CARACTERISTICAS DE POTENCIA Y ANÁLISIS DE BALANCE ARMÓNICO.

Se han tomado medidas de la potencia de salida del HBT67 respecto de la potencia de entrada a una frecuencia fundamental de 15GHz y sus armónicos de orden 2 y 3 para varios puntos de polarización. Hemos obtenido las características de gran señal para el circuito no lineal equivalente implementado en HP-MDS, sin ninguna modificación de los parámetros obtenidos anteriormente.

En la Figura 6. mostramos la comparación entre las medidas y la simulación para los tres primeros armónicos de la potencia de salida en función de la potencia a la entrada, para el punto de polarización: Ib=1mA Vce=2V.

Figura 6.1. Medidas(-) y simulación(x) de la Potencia de Salida respecto de la potencia de entrada al HBT y sus armónicos para el punto de polarización: Ib=1mA Vce=2V.

Figura 6.2. Medidas(-) y simulación(x) de la Potencia de Salida a la frecuencia fundamental para el punto: Ib=1mA Vce=2V.

Figura 6.3. *Medidas(-) y Simulación(x) del Segundo Armónico de potencia para el punto de polarización:* Ib=1mA Vce=2V.

Figura 6.4. Medidas(-) y Simulación(x) del Tercer Armónico de potencia para el punto de polarización: Ib=1mA Vce=2V.

6. APLICACIONES: AMPLIFICADOR A 20GHZ.

Caracterizamos un amplificador monoetapa a 20GHz diseñado utilizando la tecnología de HBTs de SiGe y producido por Daimler-Chrysler. (Figura 7.)

Figura 7. Microfotografia del amplificador producido por Daimler-Chrysler.

Mostramos los parámetros S medidos en el amplificador para el punto de polarización: Ib=0.8mA Vce=,3V (Figura 8.), que es donde obtenemos mayor ganancia.

Se encontró una ganancia en el amplificador de 6.67dB a 20GHz y un ancho de bande 3dB de 12GHz. (Figura 3.).

Figura 8. parámetros S medidos para el amplificador a 20GHz en el punto de polarización: Ib=0.8mA Vce=,3V.

En la Figura 9 mostramos los parámetros S del amplificador medidos y simulados para otro punto de polarización: Ib=1mA Vce=2V.

Figura 9. Parámetros S del Amplificador medidos y simulados para el punto de polarización: Ib=1mA Vce=2V.

5. CONCLUSIONES

Este trabajo muestra el modelado del HBT67 SiGe de la foundry Daimler-Chrysler en DC, pequeña señal y gran señal con un único modelo de circuito no lineal. Se caracterizó un amplificador a 20GHz diseñado con este HBT obteniendo un buen ajuste entre las medidas y la simulación.

6. **REFERENCIAS**

- J.P.Pascual, T.Fernández, J.M. Zamanillo, M^a Luisa De La Fuente, E.Artal, Daniel Hill "Modelo no lineal banda ancha para transistores HBT de SiGe", URSI XV Simp. Nac, Zaragoza, Septiembre 2000.
- [2] R.Hajji, A.B.Kouki, S. El-Rabaie, F.M.Ghannouchi, "Systematic, DC/smallSignal/Large-Signal Analsis Of Heterojunction Bipolar Transistors Using A New Consistent Nonlinear Model", IEEE transactions on MTT, Vol.44, Feb 1996, pp.233-241.
- [3] F.Arcioni, J.P.Pascual, T.Fernández, J.M. Zamanillo, A.Mediavilla, E.Artal, V.Fillimon, J.F.Luy. "SiGe HBT Large-Signal Modeling and its Application to the Design of Millimeter Wave Amplifiers", IEEE MTT's Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Michigan, 1998.
- [4] Clemens N. Rheinfelder, Frank J. Beiâwanger, and Wolfgang Heinrich. "Nonlinear Modeling of SiGe HBT's up to 50 GHz", IEEE transactions on MTT, December 1997.
- [5] MDS Component Catalog, Volume 4 –Microwave Library Components (Lumped, Ideal, and Nonlinear), pp. 1/16-17/24.