
Inscribing a symmetric body in an ellipse�

Francisco Santos �

Dept� de Matem�aticas� Estad��stica y Computaci�on�

Universidad de Cantabria�

e mail� santos�matsun��unican�es

July �� ����

Abstract

We prove that any bounded� centrally symmetric object K in the plane can

be inscribed in an ellipse E touching its boundary �K at at least four points�

An application to Minkowski geometry is given�
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� Introduction

There is a wide range of problems related to inscribing di�erent kinds of �usually
convex� bodies into one another� For example� it is well�known that one can
always inscribe or circumscribe a square around a convex body in the plane�
Also� S� Kakutani �	
 has shown that one can always circumsbribe a cube around
a bounded closed convex set in any �nite dimension� On the negative side�
Eggleton ��
 has constructed convex bodies in the plane in which an n�gon�
n � 
 cannot be inscribed and convex bodies in R� in which a cube cannot be
inscribed� or a regular octahedron circumscribed� We �nally mention the result
by F� Behrend ��
 �for dimension �� and Zaguskin ���
 �for arbitrary dimension��
that there is an ellipsoid with minimal �resp� maximal� volume circumscribed
�resp� inscribed� on any convex body�

This note is devoted to prove the following result� illustrated in Figure ��

Theorem � Let K be a bounded� centrally symmetric body in the Euclidean

plane R
�� not contained in a straight line� Then� there exists an ellipse E

containing K and such that the boundaries �K and �E intersect in at least two

pairs of opposite points�
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For convenience� in Theorem � and in the rest of the paper the word ellipse

�also the word circle� will be used meaning not only the curve but also its interior
region� We will say boundary of an ellipse�circle �or use the symbol �� when
referring to the curve�

Theorem � is not intuitively surprising at all� An easy �but not valid� heur�
istics for �nding the circumscribed ellipse E goes as follows� let O be the center
of symmetry of K and let C be the smallest circle containing K with center at
O� The boundaries of C and K intersect in a pair of opposite points p and q��
Then one normally can shrink C in the direction perpendicular to the segment
�x� x�
 until a second pair of opposite points of intersection appears�

The mistake in the argument above is that even the slightest shrinking of
the enclosing circle may force a small part of the circle coming into the interior
of K� This will happen whenever the circle and the body K have the same
curvature radius at p and q� For example� let K be de�ned by the equation
�x� � �y� � �y��x� � �y� � �y� � � and C the unit circle� as in Figure ��
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Figure ��

Section � contains the proof of Theorem �� Section � shows an application of
the result in the context of Minkowskian geometry� The natural generalization
of Theorem � to higher dimension would be that an ellipsoid could be circum�
scribed around any convex body in Rn through �n points� We do not know a
proof of this�

� Proof of the theorem

Lemma � Let K be a compact� centrally symmetric� convex body in the plane

R
�� not contained in any straight line� Then� there exists an ellipse E such that

�K and �E intersect in at least three pairs of opposite points�

�



Proof� Let P � P �� Q and Q� be any two pairs of opposite points in �K� not in
a straight line� Then� either there exists a third pair of opposite points R� R�

in �K such that PQRP �Q�R� is a strictly convex� centrally symmetric hexagon�
or K coincides with the cuadrilateral PQP �Q� �recall that K is assumed to be
convex�� In the �rst case there exists an ellipse passing through the six points�
In the second case� if we slightly reduce any ellipse passing through P � Q� P �

and Q� we will obtain an ellipse passing through four pairs of opposite points of
the boundary of the cuadrilateral� �

Lemma � Let K be a compact� centrally symmetric� convex body in the plane

R
�� not contained in any straight line� Then� there exists a circle C and a linear

transformation l of the plane such that the image M of K through l is contained

in C and the boundaries �M and �C intersect in at least two pairs of opposite

points�

Proof� Let us apply Lemma � to K and then make a linear transformation l� in
the plane sending the ellipse E obtained there into a circle C�� Let M � � l��K��
Let f � ��� ��
 � R� be the map describing �M � in polar coordinates� as a
function of the angle� Then� f is periodical of period � �because M � is centrally
symmetric� and takes the same value in three di�erent points � � x � y � z � �

�the points where �M � intersects the circle C��� In these conditions� f has at
least two local maxima in a period� In fact� either at least two of the open
intervals �x� y�� �y� z� and �z� x � �� contain a local maximum of f � or one of
them �say �x� y�� contains a local maximum and the third point �i�e� z� is
another local maximum� or the three points x� y and z are local maxima�

Let � and � be two local maxima of f in the period ��� �� and suppose
without loss of generality that � is actually a global maximum� Consider the
collection of linear transformations lr �� � r � �� that �x the direction of � and
that contract its perpendicullar direction by a ratio r� Call fr the transformed
of f by lr � i�e� fr � f � lr � Then� for r close to � � is clearly a global maximum
of fr � Call r� the supremum of the values of r for which this happens� Our
claim is that in these conditions � is a global maximum for fr� � but it is not the
only one�

To prove the claim� the fact that � is a global maximumof fr � for r arbitrarily
close to r� implies that it is also a global maximum of fr� � On the other hand�
for any r � r� the absolute maximumof fr is not attained on �� nor in a certain
interval �� � 	� � � 	
 around � �because � is a local maximum of every fr��
Consider a sequence r� � r� � 
 
 
 with limit r�� and for every ri let �i be an
absolute maximum of lri � Then the sequence �i has at least one limit point �
in the compact ��� � � 	
 � �� � 	� �
 and this limit point must be an absolute
maximum of fr� �

The claim �nishes the proof of the lemma as follows� Let l � lr� � l
�� M �

l�K� � lr� �M
�� and C be the circle of radius fr� ���� This circle contains M and

the boundaries �M and �C intersect in the two pairs of opposite points in the
directions of � and �� �

�



Proof� �of Theorem �� If K is convex let us apply lemma � to it� and obtain a
circle C and a linear transformation l sending K to a convex M in such a way
thatM � C and �C��M consists on at least two pairs of opposite points� The
inverse image E � l���C� is an ellipse in the conditions of Theorem ��

If K is not convex� apply the previous remark to its convex hull conv�K��
We will prove that any point in �conv�K� � �E is also in �K � �E� and that
will �nish the proof� Let P be one of the intersection points in �conv�K� � �E�

As we have �conv�K� � conv�K� � conv��K�� P is contained in a segment
�Q�R
 with Q�R � �K � E� Then� as P � �E� the only possibility is P � Q or
P � R� Thus� P � �K� �

� An application to Minkowski geometry�

A bounded convex body K in Rn� centrally symmetric respect to the origin O
de�nes a Minkowski distance funtction �to be called the K�distance� as follows�
The K�distance between a point P and a point Q equals the unique scaling
factor � for which Q lies in the boundary of P � �Q� These distance functions
include all the Lp metrics and� actually� all the metrics compatible with a norm
of the vector space Rn�

Chew and Drysdale ��
 used the name convex distance functions for the
Minkowski distances and showed a divide�and�conquer algorithm for computing
Voronoi diagrams with respect to them� Such Voronoi diagrams have further
been studied in �

� ��
 and ��
 �the later in ��space��

K is the unit ball of the K�distance� and its boundary �K the unit circle�
All the other K�circles are scaled translations of �K� If the convex K is strictly
convex and smooth� then the K�circles satisfy the following good properties�

�i� there is a unique K�circle passing through any given three non�collinear
points� and there is no K�circle passing through three collinear points�

�ii� if A� B� C and D are the four vertices of a convex cuadrilateral in
consecutive order� and no K�circle passes through the four points� then either
A and B lie outside and C and D lie inside the K�circles passing through the
other three points� or viceversa�

In ��
 Theorem � is used �without proof� to show that the topological types
of Delaunay triangulations which can appear with a metric whose ball is not
elliptical di�er from those obtained for elliptical balls �the latter are the same
as those of the Euclidean distance�� In the same context� we are going to apply
Theorem � to show that a certain theorem of Euclidean geometry translates
to �Minkowskian� geometry if and only if the unit ball K is an ellipse� The
construction in the proof of the following theorem is based in ��
� Asplund
and Gr�umbaum ��
 have also given a characterization of ellipses in terms of a
property of triangles of the Minkowskian geometry�






Theorem � Let K be a bounded� smooth� strictly convex and symmetric body

in the plane� Then� K is an ellipse if and only if the following statement is

satis�ed for the metric associated with K�

Let p�� 
 
 
 � p� be eight distinct points in the plane� If the quadruples

of points �p�� p�� p�� p�
� p�� p	� p
� p�
� �p�� p�� p�� p	
� �p�� p	� p�� p�

and �p�� p�� p
� p�
 are all collinear orK�cocircular� then �p�� p�� p
� p�

is also collinear or K�cocircular�

Proof� The statement is a well�known and easy to proof theorem of Euclidean
geometry� and will still be valid for convex distance functions with elliptical
balls� by an a�ne transformation argument� We will consider a non�elliptical�
strictly convex� smooth and symmetric body K and construct a counterexample
to the statement�

Let us apply Theorem � to K and� without loss of generality� suppose that
the ellipse E obtained is actually an Euclidean circle �we can make a linear
transformation to K� if needed�� Let A� B� C and D be two pairs of opposite
points in �K � �E� Let A�� B�� C� and D� be other four points in �E� with the
segments �A�A�
� �B�B�
� �C�C�
 and �D�D�
 being of equal �small� length �see
Figure � �a� �� Since K does not coincide with E� we can assume that at least
A� and C� lie outside K�
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Figure ��

Let S consist on the eight points in Figure � �b�� obtained as

p� � A� p� � D�� p� � C�� p	 � D�

p� � p	 � �D� � A��� p� � p	 � �A �A���

p
 � p� � �A� �B�� � p� � �D � C�� p� � p� � �B �B�� � p� � �C� �C�


By construction� the quadruples �p�� p�� p�� p�
 and �p�� p	� p
� p�
 are collin�
ear� In the other hand� the points p�� p�� p� and p
 lie �respectively� inside the
K�circles passing through �p�� p�� p	
� �p	� p�� p�
� �p�� p
� p�
 and �p�� p�� p�
�

�



We can one�by�one move the points p�� p� and p� along the lines p�p�p�p�
and p�p	p
p� to a position where the quadruples �p�� p�� p
� p�
� �p�� p	� p�� p�

and �p�� p�� p�� p	
 are K�cocircular �the movements will be towards the exterior
of the �gure�� After these movements p
 will still be outside the K�circle passing
through p�� p� and p�� �
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