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ABSTRACT 

A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance 
spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is 
composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal 
Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper 
(SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line 
characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be 
discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. 
Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism-
Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial 
Neural Networks (ANN).  

Keywords: Principal Component Analysis (PCA), Spectral Angle Mapper (SAM), absorption spectroscopy, 
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1. INTRODUCTION

Spectroscopy measures the radiant intensity and energy of the interaction between light and any material to determine its 
molecular and dynamic structure. In absorption spectroscopy the compound that interacts with light behaves as a passive 
element. It absorbs some of the emitted photons depending on their wavelength, “spectral signature”. Light which is not 
absorbed can be transmitted through the sample of the compound or diffusely reflected in it. The spectrum of this 
reflected light, also known as diffuse reflectance, is measured. Afterwards, this spectrum is processed and the 
identification, classification or discrimination of the material or its chemical components is performed.  

Imaging spectroscopy takes advance and is based on this technique, where the spectrum of diffuse reflectance in all the 
points across a spatial line is measured at the same time by means of an imaging spectrometer. Potential industrial 
applications of this hyperspectral technique are increasing [1-3] with clear examples for raw material discrimination and 
classification at the input chains of manufacturing processes.  

For the efficient application of imaging spectroscopy to the on-line monitoring of industrial processes real time analysis 
conditions must be satisfied. In the particular case of raw material characterization, unwanted spurious materials have to 
be rejected as they are transported intermingled with the wanted raw material on the conveyor belt in the production 
plant. This paper presents the performance of the Spectral Angle Mapper (SAM) as the spectral interpretation algorithm 
and compares it with Artificial Neural Networks employed in a previous work [4]. SAM has been selected because its 
linearity makes it simple and temporarily efficient. Principal Component Analysis is used prior to the classification to 
attain a representative spectral fingerprint, compressing the large amount of data generated in the processed due to the 
employment of an imaging spectroscopy technique.  

2. SPECTRAL SOFTWARE PROCESSING 

As aforementioned the implemented spectral interpretation process has two stages: PCA [5] is first used to perform 
dimensionality reduction and redundancy elimination. Secondly, SAM [6] has been adopted for the determination of 
both presence and position of the unwanted spurious materials. A block-diagram of the proposed spectral analysis is 
depicted in Figure 1. 
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Fig. 1. Spectral analysis processing scheme. 

2.1. Principal Component Analysis 

Data compression carries out the reduction of both spectral and spatial axes of the captured hyperspectral image. The 
spatial axis is simply averaged. This can be done because the system of mechanical extraction of unwanted material has 
low spatial resolution. This processing also helps in the reduction of noise in the measurement. 

The treatment of the spectral axis is more sophisticated. It is based on PCA and it is accomplished by the projection of 
the captured spectra of each spatial point over a different vectorial basis. The new basis vectors are those directions of 
the initial data containing the most relevant information. After mean subtraction, the covariance matrix of the data is 
computed and their eigenvalues and eigenvectors are obtained. In the designed algorithm, those eigenvalues smaller than 
a thousandth of the maximum eigenvalue are ignored. In this way, the captured spectra (from 400 to 1000 nm), which 
initially lies in a 640-dimensional space, is reduced to 18 wavelengths, providing, therefore, a 99% data compression 
rate. This reduction allows a great enhancement in the computational performance, which minimizes the classification 
time, without causing an appreciable increase in the classification error.  

2.2. Spectral Angle Mapper 

Spectral Angle Mapper is a simple algorithm based on the measurement of the spectral similarity between two spectra.  
This spectral similarity, , is obtained considering each spectrum as a vector in a n-dimensional space [6]: 

2
1

1

2
2

2
1

1

2
1

1
21

1cos
n

i

n

i

n

i

ss

ss

 (1) 

where n is the number of spectral bands, and 1s  and 2s are the two spectra. Small angles between the two spectra 
indicate high similarity and high angles indicate low similarity. As PCA has been firstly applied, the dimensional space 
of the spectral axis contains now only 18 bands. 

For the proper implementation of the classification method based on SAM, two stages should be followed: 

1. First, in the training stage, reference spectrum of the wanted and the unwanted material should be collected. For the 
wanted material (tobacco leaves) a reference spectrum has been calculated by averaging 30 homogeneous (the same kind 
of material in all the points of the line of vision) images (2880 spectra). The unwanted material reference spectrum has 
been determined by averaging 24 images (2304 spectra) of the typical spurious materials in this application (foil, leather, 
plastics, etc.). 

2. In the test stage, a new unknown image is classified. The spectral similarities wt (between the spectrum of each 

spatial point, ts , of the test image and the wanted reference spectrum) and uwt  ( between the test spectrum and the 

unwanted reference spectrum) are calculated. If uwtwt  the test spectrum, ts , is closer to the wanted 
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reference spectrum and, therefore, that position contains tobacco. On the other hand, wtuwt  indicates that ts
corresponds to unwanted material. A schematic of the classification procedure is depicted in Figure 2, using a 
dimensionality of n=3 for visualization purposes.  
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Fig. 2. Schematic description of the spectral interpretation algorithm. 

3. EXPERIMENTAL ISSUES 

A block diagram of the experimental setup is shown in Figure 3. The acquisition system includes: an illumination system 
consisting of two halogen floodlights with a power rating of 500W, front objective lens Zoom Navitar 7000, a 
commercial PGP (Prism-Grating-Prism) imaging spectrograph [1] known as Imspector and the monochrome digital 
camera Pixelink PL-A741. A computer equipped with IEEE1394 interface for image data acquisition employed to 
perform data compression and the discrimination of the wanted from the unwanted raw material. 
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Fig. 3. Block diagram of the entire experimental system. 

Test samples for validation purposes are presented in Figure 4. In Figure 4 (a) tobacco leaf blends are mixed with foil. 
From x  11 mm to x  18 mm the output of the system shows the clear detection of foil as unwanted material (Figure 4 
(b)). Figure 4 (c) contains a piece of leather on a bunch of tobacco leaves. Figure 4 (d) shows the SAM outputs, where an 
unwanted material section from x  11 mm to x  16 mm is labeled. A “false alarm”, a wanted spectrum that is classified 
as unwanted, occurs in the interface between the piece of leather and the final tobacco leaves; this has been highlighted 
with a circle in the graph. Obviously, this fact increases the classification error but, from the industrial point of view, it is 
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admissible compared to the confusion of an unwanted spectrum with tobacco.  Finally, a sample consisting of tobacco 
leave blends and a brown leaf of a vegetable different from tobacco is presented in Figure 4 (e), and their associated 
classification system outputs in Figure 4 (f). The brown leaf is correctly classified from x  2 mm to x  12 mm, showing 
that the proposed technique is not based on a colorimetric analysis.  
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Fig. 4. Test samples and their associated SAM results. 

A total of 32 hyperspectral images (3072 spectra) were used as test data achieving a classification accuracy of 90.54%. 
Although with the technique based on ANN [4] a 99.12% classification accuracy was achieved, the main power of the 
SAM algorithm is that each image is classified in a mean time of ~ 4 ms implying an extremely high (~ 99%) reduction 
in the execution time compared to the previous technique [4]. All these comparisons have been carried out in a Pentium 
(R) 4 processor of 2GHz with 1.00 GB de DDR-RAM of 2.01 GHz. 

4. CONCLUSIONS 

A specifically designed data processing method for hyperspectral images consisting of Principal Component Analysis 
and Spectral Angle Mapper has been successfully checked in a raw-material on-line characterization system. The use of 
PCA as a pre-processing stage improves the computational performance of the SAM. Several test samples have been 
reported, demonstrating that, the SAM efficiently discriminates different defects. The key point of this algorithm is its 
efficient discrimination due to the simplicity and linearity of the SAM algorithm.  
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