
PONTRYAGIN’S PRINCIPLE FOR STATE-CONSTRAINED
BOUNDARY CONTROL PROBLEMS OF SEMILINEAR PARABOLIC

EQUATIONS∗

EDUARDO CASAS†

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 4, pp. 1297–1327, July 1997 010

Abstract. This paper deals with state-constrained optimal control problems governed by semi-
linear parabolic equations. We establish a minimum principle of Pontryagin’s type. To deal with the
state constraints, we introduce a penalty problem by using Ekeland’s principle. The key tool for the
proof is the use of a special kind of spike perturbations distributed in the domain where the controls
are defined. Conditions for normality of optimality conditions are given.
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1. Introduction. In the last years, some proofs of minimum principles of Pon-
tryagin’s type have appeared. For long time, the optimality conditions for control
problems governed by partial differential equations (PDEs) have been given in an
integral form, assuming the convexity of the control set and the differentiability with
respect to the control and state of all functions involved in the problem. This makes
a big difference with the control theory for problems governed by ordinary differential
equations (ODEs), where a Pontryagin principle is derived without the previous as-
sumptions. In my opinion, the reason for this difference is the difficulty of extending
the methods used for ODEs to infinite-dimensional systems. In particular, the classi-
cal spike perturbations of the controls localized around a point do not work properly
for PDEs because they lead to some equations with Dirac measures as data, which
produce noncontinuous solutions. This makes it difficult to treat the state constraints,
especially the pointwise state constraints.

A new type of spike perturbation was developed by a group of mathematicians
from Fudan University; see Li [25], Li and Yao [26], and Li and Yong [27]. They
used these perturbations to study control problems of evolution equations. The spike
perturbations were defined by using the representation of the state given by the corre-
sponding semigroup. This idea was also followed by Fattorini [17], [18]; Fattorini and
Frankowska [19]; and Fattorini and Murphy [20], [21]. Later Yong [33] and Casas and
Yong [14] built a similar kind of spike perturbations for elliptic equations by using
the representation of the solution with the aid of the Green function. Afterwards,
Casas suggested a new construction of the set where the perturbations were localized;
see Casas [11] and Bei Hu and Yong [22]. This construction was independent of the
equation. For a different viewpoint explaining the true nature of this new type of
spike perturbations, the reader is referred to Casas [12], where the boundary control
of a quasi-linear elliptic equation was considered.

Bonnans and Casas [5], [6] followed a different approach to derive Pontryagin’s
principle that did not use this type of spike perturbations. However, it was necessary
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1298 EDUARDO CASAS

to assume a stability condition of the optimal cost functional with respect to small
perturbation of the feasible state set.

In this paper, we consider a boundary control problem governed by a parabolic
semilinear equation. General state constraints are included in the formulation of the
problem. The idea developed in [12] is used here. To deal with the state constraints
we penalize them. The lack of convexity of the control set and the noncontinuity with
respect to the control of the functions involved in the control problem make it difficult
to formulate a penalty problem having a solution converging to the optimal control of
the original problem, however. Ekeland’s variational principle is the key to obtaining
the suitable penalization.

Pontryagin’s principle is often established in a nonqualified form, which implies
that the cost functional does not appear in the conditions for optimality. In the
absence of equality state constraints, we give a condition that leads to a qualified
optimality system. This condition was introduced by Bonnans [4] and Bonnans and
Casas [6]. It consists of assuming a certain kind of Lipschitz dependence of the optimal
cost functional with respect to small perturbations of the state constraint. It is
proved that this condition is satisfied “almost everywhere (a.e.).” We will distinguish
strong and weak Pontryagin principles, depending on whether the optimality system
is qualified or not. To prove the strong principle we make an exact penalization of
the state contraints.

One of the difficulties found in the optimality system is the adjoint state equation.
This equation can have measures as data in the domain, on the boundary, and as a final
condition. There are not many papers written about parabolic equations involving
measures. For these equations the reader is referred to Barbu and Precupanu [1],
Lasiecka [24], Tröltzsch [32], and Boccardo and Gallouët [3], the last one dealing with
quasi-linear equations. Here we use the transposition method to derive a general
result of existence and “uniqueness” of solution. Since we do not assume continuity of
the coefficients of the state equation, we need to be precise in which sense the solution
is unique; see Serrin [30] for a nonuniqueness result in W 1,p

0 (Ω) (p < 2) of an elliptic
problem well posed in H1(Ω).

The paper is organized as follows. In the next section, the control problem is
formulated. The state constraints are presented in an abstract framework. We show
through some examples how the usual state constraints are included in the abstract
formulation. The weak and strong Pontryagin principles are formulated in sections 3
and 4, respectively. In section 5, the state equation is studied and the spike pertur-
bations are defined. The linear parabolic equations involving measures are analyzed
in section 6. All the mentioned papers dealing with control of evolution equations,
except [22], followed the semigroup approach to analyze the state and adjoint state
equations. Here we will follow the variational approach, which allows us to obtain
some pointwise information of the solutions of the PDEs. This information is very
important for studying the control problems with pointwise state constraints. Finally,
the proofs of weak and strong principles are given in section 7.

2. Setting of the control problem. Let Ω ⊂ Rn, n ≥ 1, be an open and
bounded set, with Lipschitz boundary Γ. Given 0 < T < +∞, we set ΩT = Ω× (0, T )
and ΣT = Γ × (0, T ). Let (K, d) be a metric space and let us consider a function
f : ΣT × R × K −→ R of class C1 with respect to the second variable and satisfying
the following assumptions:

∂f

∂y
(x, t, y, u) ≤ 0 ∀(x, t, y, u) ∈ ΣT × R × K;(2.1)
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1299


∀M > 0 ∃CM > 0 such that ∀(x, t, u) ∈ ΣT × K and |y| ≤ M,

|f(x, t, 0, u)| +
∣∣∣∣∂f∂y (x, t, y, u)

∣∣∣∣ ≤ CM .
(2.2)

The state equation is as follows:
∂y

∂t
(x, t) +Ay(x, t) + a0(x, t, y(x, t)) = 0 in ΩT ,

∂νA
y(x, t) = f(x, t, y(x, t), u(x, t)) on ΣT ,

y(x, 0) = y0(x) in Ω,

(2.3)

where y0 ∈ C(Ω̄), A is the linear operator

Ay = −
n∑
j=1

∂xj

{
n∑
i=1

[aij(x, t)∂xi
y(x, t)] + bj(x, t)y(x, t)

}

+
n∑
j=1

dj(x, t)∂xjy(x, t) + c(x, t)y(x, t),

(2.4)

and

∂νA
y(x, t) =

n∑
j=1

{
n∑
i=1

[aij(x, t)∂xiy(x, t)] + bj(x, t)y(x, t)

}
νj(x),(2.5)

ν(x) being the outward unit normal vector to Γ at the point x; see Casas [9] or Casas
and Fernández [13] for an interpretation of this Neumann condition in a trace sense.
Function a0 : ΩT × R −→ R is a Carathéodory function of class C1 with respect to
the second variable and satisfies the following assumptions:{ ∃ψ0 ∈ Lp̂([0, T ], Lq̂(Ω)) and C1 > 0 such that

a0(x, t, y)y ≥ ψ0(x, t) − C1y
2 ∀(x, t, y) ∈ ΩT × R;

(2.6)


a0(·, ·, 0) ∈ Lp̂([0, T ], Lq̂(Ω)) and ∀M > 0 ∃CM > 0 such that∣∣∣∣∂a0

∂y
(x, t, y)

∣∣∣∣ ≤ CM ∀(x, t) ∈ ΩT , |y| ≤ M ;
(2.7)

where q̂, p̂ ∈ [1,+∞] and 1/p̂+ n/2q̂ < 1.
As usual, we assume the following hypotheses on A:

aij , bj , dj , c ∈ L∞(ΩT ) ∀i, j = 1, . . . , n;

n∑
i.j=1

aij(x, t)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn a.e. (x, t) ∈ ΩT , with Λ > 0.
(2.8)

Once given the state equation, we introduce the cost functional

J(u) =
∫

ΩT

L(x, t, yu(x, t))dxdt+
∫

ΣT

l(x, t, yu(x, t), u(x, t))dσ(x)dt,
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1300 EDUARDO CASAS

where yu is the solution of (2.3) associated with u; σ denotes the usual (n − 1)-
dimensional measure on Γ induced by the parametrization (remember that Γ is a
Lipschitz manifold); and L : ΩT × R −→ R and l : ΣT × R × K −→ R are of class C1

with respect to the second variable, L being measurable with respect to the first one,
satisfying 

∀M > 0 ∃ψdM ∈ L1(ΩT ) such that ∀(x, t) ∈ ΩT , |y| ≤ M,

|L(x, t, 0)| +
∣∣∣∣∂L∂y (x, t, y)

∣∣∣∣ ≤ ψdM (x, t)
(2.9)

and 
∀M > 0 ∃ψbM ∈ L1(ΣT ) such that ∀(x, t, u) ∈ ΣT × K, |y| ≤ M,

|l(x, t, 0, u)| +
∣∣∣∣ ∂l∂y (x, t, y, u)

∣∣∣∣ ≤ ψbM (x, t).
(2.10)

The space of controls U is formed by the measurable functions u : ΣT −→ K such
that the mapping

(x, t) ∈ ΣT −→ (f(x, t, y, u(x, t)), l(x, t, y, u(x, t))) ∈ R2

is measurable for every y ∈ R. In section 5 we will prove that there exists a unique
solution of (2.3) in the space Y = C(Ω̄T ) ∩ L2([0, T ], H1(Ω)) for every u ∈ U , so that
functional J : U −→ R is well defined.

Finally we introduce the state constraints. Let Z be a separable Banach space
and Q ⊂ Z a closed convex subset with nonempty interior. Given two mappings of
class C1, G : Y −→ Z and F : C(Ω̄T ) −→ Rs, s ≥ 1, we formulate the optimal control
problem as follows:

(P) Minimize {J(u) : u ∈ U , G(yu) ∈ Q,F (yu) = 0}.
Let us show how the usual examples of state constraints can be handled with this

formulation.
Example 2.1. Given a continuous function g : Ω̄T ×R −→ R of class C1 in respect

to the second variable, the constraint g(x, t, yu(x, t)) ≤ δ for all (x, t) ∈ Ω̄T , with δ > 0
being a given number, can be written in the above framework by putting Z = C(Ω̄T ),
G : Y −→ C(Ω̄T ), defined by G(y) = g(·, y(·)), and

Q = {z ∈ C(Ω̄T ) : z(x, t) ≤ δ ∀(x, t) ∈ Ω̄T }.
Example 2.2. Let {(xj , tj)}sj=1 ⊂ Ω̄T ; then we can include the equality constraints

yu(xj , tj) = δj , 1 ≤ j ≤ s, in the above formulation. Indeed, it is enough to define the
functions Fj : C(Ω̄T ) −→ R given by Fj(y) = y(xj)−δj and to take F = (F1, . . . , Fs)T .
Then F is of class C1.

Example 2.3. Let g : Ω × [0, T ] × R −→ R be a function measurable with respect
to the first variable, continuous with respect to the second, of class C1 with respect to
the third, and such that ∂g/∂y is also continuous in the last two variables. Moreover,
it is assumed that for every M > 0 there exists a function ψM ∈ L1(Ω) such that

|g(x, t, 0)| +
∣∣∣∣∂g∂y (x, t, y)

∣∣∣∣ ≤ ψM (x) a.e. x ∈ Ω ∀t ∈ [0, T ] and |y| ≤ M.
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1301

Then the constraint ∫
Ω
g(x, t, yu(x, t))dx ≤ δ ∀t ∈ [0, T ]

is included in the above formulation by taking Z = C[0, T ],

Q = {z ∈ C[0, T ] : z(t) ≤ δ ∀t ∈ [0, T ]},

and G : Y −→ C[0, T ] given by

G(y) =
∫

Ω
g(x, ·, y(x, ·))dx.

Example 2.4. The constraint∫
ΩT

|yu(x, t)|dxdt ≤ δ

is considered by taking Z = L1(ΩT ), G : Y −→ L1(Ω), with G(y) = y, and Q the
closed ball in L1(Ω) of center at 0 and radius δ.

Example 2.5. For every 1 ≤ j ≤ k let gj : ΩT ×R −→ R be a measurable function
of class C1 with respect to the second variable such that for each M > 0 there exists
a function ηjM ∈ L1(ΩT ) satisfying

|gj(x, t, 0)| +
∣∣∣∣∂gj∂y (x, t, y)

∣∣∣∣ ≤ ηjM (x, t) a.e. (x, t) ∈ ΩT ∀|y| ≤ M.

Then the constraints ∫
Ω
gj(x, t, yu(x, t))dxdt ≤ δj , 1 ≤ j ≤ k,

are included in the formulation of (P) by choosing G = (G1, . . . , Gk)T , with

Gj(y) =
∫

Ω
gj(x, t, y(x, t))dxdt,

Z = Rk, and Q = (−∞, δ1] × · · · × (−∞, δk].
Example 2.6. The equality constraints∫

Ω
fj(x, t, yu(x, t))dx = δj , 1 ≤ j ≤ l,

can also be included in problem (P) in the obvious way by assuming the same hy-
potheses as in Example 2.5.

Example 2.7. Integral constraints on the gradient of the state can be considered
within our formulation of problem (P):

G(yu) =
∫ T

0

∫
Ω

|∇xyu(x, t)|2dxdt ≤ δ.

In this case we can take Z = R and Q = (−∞, δ].
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1302 EDUARDO CASAS

3. The weak Pontryagin principle. Before formulating the weak Pontryagin
principle, we introduce some notation. Given α ≥ 0, we define the Hamiltonian
Hα : ΣT × R × K × R −→ R as follows:

Hα(x, t, y, u, ϕ) = αl(x, t, y, u) + ϕf(x, t, y, u).

Now we can establish Pontryagin’s principle.
THEOREM 3.1. If ū ∈ U is a solution of (P), then there exist ᾱ ≥ 0, ȳ ∈ C(Ω̄T )∩

L2([0, T ], H1(Ω)), and ϕ̄ ∈ Lr([0, T ],W 1,p(Ω)) for all p, r ∈ [1, 2) with (2/r)+(n/p) >
n+ 1, µ̄ ∈ Z ′ and λ̄ ∈ Rs such that

ᾱ+ ‖µ̄‖Z′ + |λ̄| > 0;(3.1) 
∂ȳ

∂t
+Aȳ + a0(x, t, ȳ(x, t)) = 0 in ΩT ,

∂νA
ȳ(x, t) = f(x, t, ȳ(x, t), ū(x, t)) on ΣT ,

ȳ(0) = y0 in Ω;

(3.2)



−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ)

+[DG(ȳ)∗µ̄]|ΩT
+ [DF (ȳ)∗λ̄]|ΩT

in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū)

+[DG(ȳ)∗µ̄]|ΣT
+ [DF (ȳ)∗λ̄]|ΣT

on ΣT ,

ϕ̄(T ) = [DG(ȳ)∗µ̄]|Ω̄×{T} + [DF (ȳ)∗λ̄]|Ω̄×{T} in Ω̄;

(3.3)

〈µ̄, z −G(ȳ)〉 ≤ 0 ∀z ∈ Q;(3.4) ∫
ΣT

Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

= min
u∈U

∫
ΣT

Hᾱ(x, t, ȳ(x, t), u(x, t), ϕ̄(x, t))dσ(x)dt;

(3.5)

where A∗ denotes the formal adjoint operator of A. Moreover, if one of the following
assumptions is satisfied,

(A1) Functions f and l are continuous with respect to the third variable on (K, d)
and this space is separable;

(A2) There exists a set Σ0
T ⊂ ΣT , with mΣT

(Σ0
T ) = mΣT

(ΣT ), such that the
function

(x, t) ∈ ΣT −→ (f(x, t, y, u), l(x, t, y, u)) ∈ R2

is continuous in Σ0
T for every (y, u) ∈ R × K,

then the following pointwise relation holds:

Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))

= min
u∈K

Hᾱ(x, t, ȳ(x, t), u, ϕ̄(x, t)) a.e.[σ] x ∈ Γ and a.e. t ∈ [0, T ].
(3.6)
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1303

Remark 3.2. In the previous theorem, [DG(ȳ)]∗µ̄ and [DF (ȳ)]∗λ̄ are elements of

Y ′ = C(Ω̄T )′ + L2([0, T ], H1(Ω))′ = M(Ω̄T ) + L2([0, T ], H1(Ω)′),

where M(Ω̄T ) is the space of the real and regular Borel measures in Ω̄T . Let us
assume that [DG(ȳ)]∗µ̄ = φ̄ + ν̄, with φ̄ ∈ L2([0, T ], H1(Ω)′) and ν̄ ∈ M(Ω̄T ), then
we can write

[DG(ȳ)]∗µ̄|ΩT
= φ̄+ ν̄|ΩT

, [DG(ȳ)]∗µ̄|ΣT
= ν̄|ΣT

, and [DG(ȳ)]∗µ̄|Ω̄×{T} = ν̄|Ω̄×{T}.

Analogous considerations can be made for [DF (ȳ)]∗λ̄.
Let us apply the above principle to the examples given in section 2.
Example 3.3. In Example 2.1, Z = C(Ω̄T ); therefore, the Lagrange multiplier µ̄

whose existence is established in Theorem 3.1 is a measure in Ω̄T . In this case the
transversality condition (3.4) is written as follows:∫

Ω̄T

(z(x, t) − g(x, t, ȳ(x, t)))dµ̄(x, t) ≤ 0 ∀z ∈ C(Ω̄T ) with z(x, t) ≤ δ.

From this relation we can deduce that µ̄ is a positive measure concentrated in the
set of points (x, t) ∈ Ω̄T , where g(x, t, ȳ(x, t)) = δ. In particular, it could be a Dirac
measure or a combination of Dirac measures; see Casas [7].

The adjoint state equation (3.2) now becomes

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

∂g

∂y
(x, t, ȳ)µ̄|ΩT

in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) +

∂g

∂y
(x, t, ȳ)µ̄|ΣT

on ΣT ,

ϕ̄(T ) =
∂g

∂y
(x, T, ȳ(x, T ))µ̄|Ω̄×{T} in Ω̄.

Since ∂g/∂y is a continuous function in Ω̄T , then the product (∂g/∂y)µ̄ is well defined
and can be identified again with a measure.

Example 3.4. In Example 2.2

[DF (ȳ)]∗λ̄ =
l∑

j=1

λ̄jδ(xj ,tj).

If the points (xj , tj) are all of them included in ΩT , then the adjoint state equation is
−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, ȳ(x))ϕ̄ = ᾱ

∂L

∂y
(x, ȳ(x)) +

l∑
j=1

λ̄jδ(xj ,tj) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

If some points xj are in Γ, then the corresponding term λ̄jδ(xj ,tj) should appear on
the Neumann condition. Analogously, if tj = T for some index j, then λ̄δ(xj ,T ) should
be included in the final condition.
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1304 EDUARDO CASAS

Example 3.5. In Example 2.3, the Lagrange multiplier µ̄ is a positive Borel
measure in [0, T ] concentrated in the set of points t where the state constraint is
active and

DG(ȳ)∗µ̄ =
∂g

∂y
(x, t, ȳ(x, t))µ̄(t).

Then we have the following equation for ϕ̄:

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

∂g

∂y
(x, t, ȳ)µ̄|(0,T ) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) =
∂g

∂y
(x, T, ȳ(x, T ))µ̄({T}) in Ω.

So, in particular, we have that ϕ̄(T ) = 0 if the state constraint is not active in T .
This type of state constraints has been studied by many authors; see Barbu and
Precupanu [1], Lasiecka [24], and Tröltzsch [32]. All of them consider the semigroup
theory approach to deal with the state and adjoint state equations. They prove some
regularity of the adjoint state ϕ̄; see section 6.

Example 3.6. In Example 2.4, the Lagrange multiplier µ̄ is an element of Z ′ =
L∞(ΩT ); therefore, (3.2) reduces in this case to

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) + µ̄ in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

In this case, assuming more regularity for the functions ψdM and ψbM given in (2.8)–
(2.9), we can obtain additional regularity for ϕ̄. For instance, if we take function
ψbM ∈ Lp̂([0, T ], Lq̂(Ω)), then ϕ̄ ∈ Y . H2,1(Ω)-regularity is also obtained provided
that Γ is of class C2 and the coefficients aij of A are Lipschitz in the variable x.

Example 3.7. The Lagrange multipliers in Example 2.5 are positive real numbers
{µ̄j}kj=1. The positivity is a consequence of the transversality condition (3.3). The
adjoint state equation can be written as follows:

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

k∑
j=1

µ̄j
∂gj
∂y

(x, t, ȳ) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

By increasing the regularity of functions ηj , we can improve the regularity of ϕ̄ such
as it was described in Example 3.6.

For the equality constraints considered in Example 2.6 the adjoint state equation
is similar to the above one. The only difference is that the Lagrange multipliers can
be negative.
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1305

Example 3.8. In Example 2.7, the Lagrange multiplier µ̄ is a nonnegative real
number, ϕ̄ ∈ Y , and the adjoint state equation is

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) + 2µ̄∇∗∇xy(x, t) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω,

where ∇∗∇xy ∈ L2([0, T ], H1(Ω)′) is given by

〈∇∗∇xy, z〉 =
∫

ΩT

∇xy(x, t)∇xz(x, t)dxdt.

The restriction of ∇∗∇xy to L2([0, T ], H1
0 (Ω)) is equal to −∆xy.

4. The strong Pontryagin principle. In this section we will prove that, in
the absence of equality constraints, Theorem 3.1 holds with ᾱ = 1 for “almost all”
control problems. We will be precise about this term later. The key to achieving this
result is the introduction of a stability assumption of the optimal cost functional with
respect to small perturbations of the set of feasible controls. This stability allows
us to accomplish an exact penalization of the state constraints. First of all let us
formulate the following control problem:

(Pδ)

{
Minimize J(u),

u ∈ U , G(yu) ∈ Qδ

with the same notation and assumptions of section 2 and setting Qδ = Q+ B̄δ(0) for
every δ > 0.

DEFINITION 4.1. We say that (Pδ) is strongly stable if there exist ε > 0 and C > 0
such that

inf (Pδ) − inf (Pδ′) ≤ C(δ′ − δ) ∀δ′ ∈ [δ, δ + ε].(4.1)

This concept was first introduced in relation with optimal control problems by
Bonnans [4]; see also Bonnans and Casas [6]. A weaker stability concept was used
by Casas [8] to analyze the convergence of the numerical discretizations of optimal
control problems. The following proposition states that almost all problems (Pδ) are
strongly stable.

PROPOSITION 4.2. Let δ0 ≥ 0 be the smallest number such that (Pδ) has feasible
controls for every δ > δ0. Then (Pδ) is strongly stable for all δ > δ0 except at most a
zero Lebesgue measure set.

Proof. It is enough to consider the function h : (δ0,+∞) −→ R defined by

h(δ) = inf (Pδ)

and remark that it is a nonincreasing monotone function and, consequently, differen-
tiable at every point of (δ0,+∞) except at a zero measure set. Now it is obvious to
check that (Pδ) is strongly stable at every point where h is differentiable.

Now we state the strong Pontryagin principle.
THEOREM 4.3. If (Pδ) is strongly stable and ū is a solution of this problem, then

Theorem 3.1 remains to be true with ᾱ = 1.
The proof of this theorem is postponed until section 7.

D
ow

nl
oa

de
d 

05
/2

4/
13

 to
 1

93
.1

44
.1

85
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1306 EDUARDO CASAS

5. Analysis of the state equation. In this section we will see that (2.3) is
well posed in Y = C(Ω̄T ) ∩ L2([0, T ], H1(Ω)) for every control u ∈ U . Also we will
study the variations of the state with respect to some pointwise perturbations of the
control which are the crucial point in the proof of Pontryagin’s principle. In U we
consider Ekeland’s distance

dE(u, v) = mΣT
({(x, t) ∈ ΣT : u(x, t) 6= v(x, t)}) ,(5.1)

where mΣT
is the measure on ΣT obtained as the product of σ and the Lebesgue

measure in the interval (0, T ). It is easy to check that (U , dE) is a complete metric
space. Indeed the proof given by Ekeland [16] can be repeated in this framework.

THEOREM 5.1. Under assumptions (2.1)–(2.8), problem (2.3) has a unique solu-
tion in Y = C(Ω̄T )∩L2([0, T ], H1(Ω)) for every control u ∈ U . Moreover, there exists
a constant M > 0 such that

‖yu‖∞ + ‖yu‖L2([0,T ],H1(Ω)) ≤ M ∀u ∈ U .(5.2)

Finally, if {uk}∞
k=1 ⊂ U is a sequence converging to u in U , i.e. dE(uk, u) → 0, then

{yuk
}∞
k=1 converges to yu strongly in Y .

Proof. The uniqueness of the solution in Y can be proved by using the Gronwall
inequality in the standard way along with the monotonicity of the nonlinear terms.
Let us prove the existence.

If a0 and f are bounded functions, then the existence and uniqueness of a solution
in L∞([0, T ], L2(Ω))∩L2([0, T ], H1(Ω)) is a consequence of the monotonicity of f im-
posed in (2.1) and the condition on a0 given in (2.6); see Lions [29] or Ladyzhenskaya,
Solonnikov, and Ural’tseva [23] for a proof based in Galerkin’s approximation of the
problem. If f is not bounded, we can consider the usual truncation of the function

fm(x, t, y, u) =


f(x, t, y, u) if |y| ≤ m,

f(x, t,m, u) if y > m,

f(x, t,m, u) if y < −m.

Thus hypothesis (2.2) implies the boundedness of fm.
An analogous modification can be made on a0. Then we deduce the existence and

uniqueness of a solution ym ∈ L∞([0, T ], L2(Ω)) ∩L2([0, T ], H1(Ω)) for problem (2.3)
with a0 and f replaced by a0m and fm, respectively. Now thanks to the assumptions
(2.1)–(2.8), we can apply the procedure of Ladyzhenskaya, Solonnikov, and Ural’tseva
[23] to deduce the existence of a constant M > 0 independent of m and u ∈ U such
that (5.2) holds for yu replaced by ym. This implies that

am(x, t, ym(x, t)) = a(x, t, ym(x, t)) ∀m ≥ M

and

fm(x, t, ym(x, t), u(x, t)) = f(x, t, ym(x, t), u(x, t)) ∀m ≥ M.

Consequently, the uniqueness of a solution of (2.3) lets us obtain the identity ym = yu
and the inequality (5.2).

In order to prove the continuity of yu, we first suppose that y0 ∈ Cθ(Ω̄T ) for
some constant θ ∈ (0, 1]. Then, by applying the results of di Benedetto [2], we deduce
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1307

that yu ∈ Cβ,β/2(Ω̄T ) for some β ∈ (0, θ]. When y0 is not a Hölder function, we
can take a sequence {y0k}∞

k=1 ⊂ Cθ(Ω̄T ) converging uniformly to y0 in Ω̄T . Then
the corresponding solutions of (2.3), denoted by yk, are Hölder functions. Now, by
applying the methods of [23] is easy to deduce the convergence yk → yu in L∞(ΩT ),
which proves the continuity of yu.

Finally, the convergence yuk
→ yu in L2([0, T ], H1(Ω)) when dE(uk, u) → 0 is

easily derived. The uniform convergence is obtained again by using the arguments of
[23].

The rest of the section is devoted to the proof of the following theorem
THEOREM 5.2. Let u, v ∈ U . Given ρ ∈ (0, 1), there exist mΣT

-measurable sets
Eρ ⊂ ΣT , with mΣT

(Eρ) = ρmΣT
(ΣT ), such that if we define

uρ(x, t) =

{
u(x, t) if (x, t) ∈ ΣT \ Eρ,
v(x, t) if (x, t) ∈ Eρ,

and if we denote by yρ and y the states corresponding to uρ and u, respectively, then
the following equalities hold:

yρ = y + ρz + rρ, lim
ρ→0

1
ρ
‖rρ‖Y = 0,(5.3)

and

J(uρ) = J(u) + ρz0 + r0ρ, lim
ρ→0

1
ρ
r0ρ = 0,(5.4)

where z ∈ Y satisfies

∂z

∂t
+Az +

∂a0

∂y
(x, t, y(x, t))z = 0 in ΩT ,

∂νA
z =

∂f

∂y
(x, t, y(x, t), u(x, t))z

+f(x, t, y(x, t), v(x, t)) − f(x, t, y(x, t), u(x, t)) on ΣT ,

z(x, 0) = 0 in Ω

(5.5)

and

z0 =
∫

ΩT

∂L

∂y
(x, t, y(x, t))z(x, t)dxdt+

∫
ΣT

∂l

∂y
(x, t, y(x, t), u(x, t))z(x, t)dσ(x)dt

+
∫

ΣT

[l(x, t, y(x, t), v(x, t)) − l(x, t, y(x, t), u(x, t))]dσ(x)dt.(5.6)

The first step is the proof of the following result
PROPOSITION 5.3. For every 0 < ρ < 1 there exists a sequence of mΣT

-measurable
sets {Ek}∞

k=1 satisfying
(1) Ek = EkΓ × Jk, with Ek ⊂ Γ and Jk ⊂ (0, T ), σ(EkΓ) =

√
ρσ(Γ), and |Jk| =√

ρT .
(2) (1/

√
ρ)χEk

Γ
→ 1 ∗weakly in L∞(Γ); (1/

√
ρ)χJk → 1 ∗weakly in L∞(0, T ); and

(1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ).
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1308 EDUARDO CASAS

Proof. We divide the proof into several steps.
Step 1. The sets EkΓ.
Let us construct the sets EkΓ. Since Ω is bounded and Γ is a Lipschitz manifold,

we can obtain a finite collection of σ-measurable sets {Γr}dr=1 and functions {ar}dr=1
satisfying

(i)
⋃d
r=1 Γr = Γ,

o

Γi
⋂ o

Γj= ∅ if i 6= j and σ(Γ) =
∑d
r=1 σ(

o

Γr).
(ii) The functions ar : (−ΛΓ,+ΛΓ)n−1 −→ R are Lipschitz, and for some coordi-

nate system (x′
r, xr,n) = (xr,1, . . . , xr,n) in Rn we have that

o

Γr= {(x′
r, ar(x

′
r)) : x′

r ∈ (−ΛΓ,+ΛΓ)n−1}
and for every set E = {(x′

r, ar(x
′
r)) : x′

r ∈ F}, with F ⊂ (−ΛΓ,+ΛΓ)n−1 Lebesgue
measurable, the following identity holds:

σ(E) =
∫
F

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

For every k ∈ N we decompose the interval [−ΛΓ,+ΛΓ] into k closed subintervals
of length 2ΛΓ/k and disjoint interiors. Now we make all possible Cartesian products of
these subintervals and obtain a family of cubes {Qk,i}kn−1

i=1 of equal Lebesgue measure,
covering [−ΛΓ,+ΛΓ]n−1 and with disjoint interiors. For every r = 1, . . . , d and every

cube we take a measurable set F rk,j ⊂
o

Qk,j such that

∫
F r

k,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Let us see that such an F rk,j exists. For every t ∈ [0, 1] we define Qk,j(t) as the
cube with the same center as Qk,j and the length of each side being equal to t times
the length of the sides of Qk,j . So Qk,j(1) = Qk,j and Qk,j(0) is reduced to one point:
the center of Qk,j . Let us consider the function g : [0, 1] −→ R defined by

g(t) =
∫
Qk,j(t)

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Then it is obvious that g is continuous and

0 = g(0) <
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r < g(1).

Therefore there exists 0 < t0 < 1 such that

g(t0) =
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Thus we can choose F rk,j = Qk,j(t0).
Now we set

F rk =
kn−1⋃
i=1

F rk,i, Erk = {(x′
r, ar(x

′
r)) : x′

r ∈ F rk } ⊂o

Γr, EkΓ =
d⋃
r=1

Erk.
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1309

Then

σ(EkΓ) =
d∑
r=1

σ(Erk) =
d∑
r=1

∫
F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
√
ρ

d∑
r=1

∫
[−ΛΓ,+ΛΓ]n−1

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
√
ρ

d∑
r=1

σ(
o

Γr) =
√
ρσ(Γ).

We are going to prove that

1√
ρ

lim
k→∞

σ(A ∩ EkΓ) = σ(A) ∀A ⊂ Γ σ measurable.(5.7)

Once this is proved, the convergence (1/
√
ρ)χEk

Γ
→ 1 ∗weakly in L∞(Γ) follows from

the density of the simple functions in L1(Γ).

First, let us assume that A ⊂o

Γr is an open set. Let us take the open set B ⊂
(−ΛΓ,+ΛΓ)n−1 such that A = {(x′

r, ar(x
′
r)) : x′

r ∈ B}. Then, from Lemma 5.4 proved
below, we deduce

σ(A) =
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

σ(A ∩ Erk) =
1√
ρ

lim
k→∞

σ(A ∩ EkΓ).

If A ⊂ Γ is an open set, then

σ(A) =
d∑
r=1

σ(A∩ 0
Γr) =

d∑
r=1

1√
ρ

lim
k→∞

σ(A∩ 0
Γr ∩EkΓ) =

1√
ρ

lim
k→∞

σ(A ∩ EkΓ).

Thus (5.7) holds for every open subset of Γ. Let us take a closed set K ⊂ Γ,

σ(K) = σ(Γ) − σ(Γ \K) = σ(Γ) − 1√
ρ

lim
k→∞

σ([Γ \K] ∩ EkΓ)

= σ(Γ) − 1√
ρ

lim
k→∞

{
σ(EkΓ) − σ(K ∩ EkΓ)

}
=

1√
ρ

lim
k→∞

σ(K ∩ EkΓ).

Finally, let A ⊂ Γ be a σ-measurable set. Given ε > 0 arbitrary, we can take
K ⊂ Γ closed and V ⊂ Γ open such that K ⊂ A ⊂ V and

σ(A) − ε ≤ σ(K) ≤ σ(V ) ≤ σ(A) + ε.

D
ow

nl
oa

de
d 

05
/2

4/
13

 to
 1

93
.1

44
.1

85
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1310 EDUARDO CASAS

Then

σ(A) − ε ≤ σ(K) ≤ 1√
ρ

lim
k→∞

σ(K ∩ EkΓ) ≤ 1√
ρ

lim inf
k→∞

σ(A ∩ EkΓ)

≤ 1√
ρ

lim sup
k→∞

σ(A ∩ EkΓ) ≤ 1√
ρ

lim
k→∞

σ(V ∩ EkΓ) = σ(V ) ≤ σ(A) + ε,

which concludes the proof of (5.7).
Step 2. The sets Jk.
To construct the sets Jk, we decompose the interval [0, T ] into k closed intervals

Ikj of length T/k and disjoint interiors. For each j = 1, . . . , k we take a subinterval

Jkj ⊂
0
Ikj of length

√
ρT/k and the same center as Ikj . Finally, we define Jk as the union

of the intervals {Jkj }kj=1. Then |Jk| =
√
ρT and the convergence (1/

√
ρ)χJk → 1

∗weakly in L∞(0, T ) can be proved following the same ideas as in the previous step.
Step 3. The sets Ek.
Taking Ek = EkΓ ×Jk, it remains to prove the convergence (1/ρ)χEk

→ 1 ∗weakly
in L∞(ΣT ). Given f ∈ L1(Γ) and h ∈ L1(0, T ), we get from Steps 1 and 2 that

lim
k→∞

∫
ΣT

1
ρ
χEk

(x, t)f(x)h(t)dmΣT
(x, t)

=
(

lim
k→∞

∫
Γ

1√
ρ
χEk

Γ
(x)f(x)dσ(x)

)(
lim
k→∞

∫ T

0

1√
ρ
χJk(t)h(t)dt

)

=
∫

ΣT

f(x)h(t)dmΣT
(x, t).

Since the functions f(x)h(t), with f ∈ L1(Γ) and h ∈ L1(0, T ), expand a subspace
dense in L1(ΣT ), we conclude the proof.

LEMMA 5.4. With the notations of the above proof, the following identity holds
for all open sets B ⊂ (−ΛΓ,+ΛΓ)n−1:

∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
1√
ρ

lim
k→∞

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r(5.8)

for every r = 1, . . . , d.
Proof. Let us take a sequence {Ck}∞

k=1 of closed cubes with sides parallel to the

axes and
o

Ck ∩ o

Ci= ∅ if i 6= k, so that B =
⋃∞
k=1 Ck; see Stein [31, pp. 167–170].

Fixed r, for each cube Cl, it is obvious that

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r = lim
k→∞

∑
Qk,j⊂Cl

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∑
Qk,j⊂Cl

∫
F r

k,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1311

Now, given ε > 0 there exists kε ∈ N such that∣∣∣∣∣∣
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r −
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

∣∣∣∣∣∣ < ε.

From here it follows

∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r − ε

≤
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

= lim
k→∞

1√
ρ

kε∑
l=1

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

≤ lim inf
k→∞

1√
ρ

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r ≤

lim sup
k→∞

1√
ρ

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

≤ lim sup
k→∞

1√
ρ

kε∑
l=1

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
ε√
ρ

=
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
ε√
ρ

≤
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
(

1 +
1√
ρ

)
ε.

Since ε > 0 is arbitrary, the previous relations conclude the proof.
Finally, we are ready to prove Theorem 5.2.
Proof of Theorem 5.2. Let ρ ∈ (0, 1) be fixed. Applying Proposition 5.3, we

deduce the existence of measurable sets {Ek}∞
k=1 such that mΣT

(Ek) = ρmΣT
(ΣT )

and (1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ). For every k ∈ N, we set

uk(x, t) =

{
u(x, t) if (x, t) ∈ ΣT \ Ek,
v(x, t) if (x, t) ∈ Ek,
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1312 EDUARDO CASAS

and we denote by yk and y the states corresponding to uk and u, respectively. Now,
subtracting the equations satisfied by yk and y, and putting zk = (yk−y)/ρ we obtain

∂zk
∂t

+Azk + ck(x, t)zk = 0 in ΩT ,

∂νA
zk = bk(x, t)zk + h(x, t)

1
ρ
χEk

on ΣT ,

z(x, 0) = 0 in Ω,

(5.9)

where

ck(x, t) =
∫ 1

0

∂a0

∂y
(x, t, y(x, t) + τ [yk(x, t) − y(x, t)])dτ,

bk(x, t) =
∫ 1

0

∂f

∂y
(x, t, y(x, t) + τ [yk(x, t) − y(x, t)], uk(x, t))dτ,

and

h(x, t) = f(x, t, y(x, t), v(x, t)) − f(x, t, y(x, t), u(x, t)).

By subtracting (5.9) and (5.5) and writing ζk = zk − z, we deduce

∂ζk
∂t

+Aζk + ck(x, t)ζk =
[
∂a0

∂y
(x, t, y(x, t)) − ck(x, t)

]
z in ΩT ,

∂νA
ζk = bk(x, t)ζk +

[
bk(x, t) − ∂f

∂y
(x, t, y(x, t), u(x, t))

]
z

+h(x, t)
(

1
ρ
χEk

− 1
)

on ΣT ,

ζk(x, 0) = 0 in Ω.

(5.10)

Now we decompose ζk = ζ1
k + ζ2

k , with

∂ζ1
k

∂t
+Aζ1

k + ck(x, t)ζ1
k =

[
∂a0

∂y
(x, t, y(x, t)) − ck(x, t)

]
z in ΩT ,

∂νA
ζ1
k = bk(x, t)ζ1

k +
[
bk(x, t) − ∂f

∂y
(x, t, y(x, t), u(x, t))

]
z on ΣT ,

ζ1
k(x, 0) = 0 in Ω

(5.11)

and 

∂ζ2
k

∂t
+Aζ2

k + ck(x, t)ζ2
k = 0 in ΩT ,

∂νA
ζ2
k = bk(x, t)ζ2

k + h(x, t)
(

1
ρ
χEk

− 1
)

on ΣT ,

ζ2
k(x, 0) = 0 in Ω.

(5.12)
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1313

Taking into account (5.2) and (2.1)–(2.8), multiplying equation (5.12) by the
function exp (−ωt)ζ2

k , with ω > 0 large enough, and integrating by parts, we deduce

C
(
‖ζ2
k‖2
L2(ΩT ) + ‖ζ2

k‖2
L2([0,T ],H1(Ω))

)

≤ exp (−ωT )
2

‖ζ2
k(T )‖2

L2(Ω) +
ω

2

∫ T

0
exp (−ωt)

∫
Ω

|ζ2
k(x, t)|2dxdt

+
∫ T

0
exp (−ωt)〈Aζ2

k , ζ
2
k〉dt+

∫ T

0
exp (−ωt)

∫
Ω
ck(x, t)|ζ2

k(x, t)|2dxdt

=
∫ T

0

∫
Γ

exp (−ωt)bk(x, t)|ζ2
k(x, t)|2dσ(x)dt

+
∫ T

0

∫
Γ

exp (−ωt)h(x, t)
(

1
ρ
χEk

(x, t) − 1
)
ζ2
k(x, t)dσ(x)dt

≤
∫ T

0

∫
Γ

exp (−ωt)h(x, t)
(

1
ρ
χEk

(x, t) − 1
)
ζ2
k(x, t)dσ(x)dt.(5.13)

From here it follows that

‖ζ2
k‖2
L2(ΩT ) ≤ C ′

∥∥∥∥h(1
ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′
‖ζ2
k‖Cβ,β/2(Ω̄T )(5.14)

for some β ∈ (0, 1]. The Hölder regularity of ζ2
k follows from the assumptions (2.1)–

(2.8) and the results of di Benedetto [2].
On the other hand, for θ ∈ (0, β), the inclusions

Cβ,β/2(Ω̄T ) ⊂ Cθ,θ/2(Ω̄T ) ⊂ L2(ΩT )

are compact. Then we can apply the Lions lemma [28] to obtain

‖ζ2
k‖Cθ,θ/2(Ω̄T ) ≤ ε‖ζ2

k‖Cβ,β/2(Ω̄T ) + Cε‖ζ2
k‖L2(ΩT ).(5.15)

Since y, yk, and h are uniformly bounded, the Hölder estimate of ζ2
k can be chosen

depending only on ρ:

‖ζ2
k‖Cβ,β/2(Ω̄T ) ≤ Cρ ∀k ∈ N.(5.16)

Taking ε = ρ/(2[1 + Cρ]) in (5.15) and using (5.14) and (5.16), it follows

‖ζ2
k‖Cθ,θ/2(Ω̄T ) ≤ ρ

2
+ Cε

{
C ′
∥∥∥∥h(1

ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′
Cρ

}1/2

=
ρ

2
+ C ′

ρ

∥∥∥∥h(1
ρ
χEk

− 1
)∥∥∥∥1/2

Cβ,β/2(Ω̄T )′
.(5.17)
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1314 EDUARDO CASAS

Then, for ρ fixed, the convergence (1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ), the bound-

edness of h, and the compactness of the inclusion L∞(ΣT ) ⊂ Cβ,β/2(Ω̄T )′ implies
strong convergence (1/ρ)hχEk

→ h in Cβ,β/2(Ω̄T )′. Therefore we can take kρ ∈ N
large enough in such a way that∣∣∣∣∫

ΣT

h0(x, t)
(

1
ρ
χEk

− 1
)
dσ(x)dt

∣∣∣∣+ ∥∥∥∥h(x, t)(1
ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′

<
ρ2

4(1 + C ′
ρ)2

∀k ≥ kρ,(5.18)

where

h0(x, t) = l(x, t, y(x, t), v(x, t)) − l(x, t, y(x, t), u(x, t)).

Let us set Eρ = Ekρ
, uρ = ukρ

, and the analogous changes for yρ, ζρ, ζiρ, i = 1, 2.
It is obvious that dE(uρ, u) → 0 when ρ → 0. Hence Theorem 5.1 implies that yρ → y
in Y . This convergence along with the estimates of di Benedetto [2] allow us to deduce
from (5.11) the strong convergence ζ1

ρ → 0 in Y when ρ → 0. Combining this with
(5.13), (5.17), and (5.18), it is easy to derive the strong convergence ζρ → 0 in Y ,
which proves (5.3).

To conclude the proof it is enough to note that

J(uρ) − J(u)
ρ

− z0

=
∫

ΩT

{
L(x, t, yρ(x, t)) − L(x, t, y(x, t))

ρ
− ∂L

∂y
(x, t, y(x, t))z(x, t)

}
dxdt

∫
ΣT

{
l(x, t, yρ(x, t), uρ(x, t)) − l(x, t, y(x, t), uρ(x, t))

ρ

− ∂l

∂y
(x, t, y(x, t), u(x, t))z(x, t)

}
dσ(x)dt

+
∫

ΣT

h0(x, t)
(

1
ρ
χEρ

(x, t) − 1
)
dσ(x)dt

and to take into account the convergences previously established and (5.18).

6. Linear parabolic equations involving measure data. Let µ be a regular
Borel measure in Ω̄T . We can write µ = µΩT

+ µΣT
+ µT + µ0, where µΩT

= µ|ΩT
,

µΣT
= µ|ΣT

, µT = µ|Ω̄×{T}, and µ0 = µ|Ω̄×{0}. The aim of this section is the study
of the following problem: 

−∂ϕ

∂t
+A∗ϕ = µΩT

in ΩT ,

∂νA∗ϕ = µΣT
on ΣT ,

ϕ(T ) = µT in Ω̄.

(6.1)D
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1315

The reader is referred to Boccardo and Gallouët [3] for the study of a quasi-linear
parabolic equation with a measure in ΩT as a datum. Here we improve the results of
[3] by exploiting the linearity of the equation.

Let us denote

Y0 = {y ∈ Y : y(x, 0) = 0 ∀x ∈ Ω}.

DEFINITION 6.1. Given p, r ∈ [1, 2), with (2/r) + (n/p) > n+ 1, we will say that
a function ϕ ∈ Lr([0, T ],W 1,p(Ω)) is a solution of (6.1) if for every y ∈ Y0 ∩ C1(Ω̄T )

∫
ΩT

∂y∂t ϕ+
n∑
j=1

[
n∑
i=1

aij∂xiy∂xjϕ+ bjy∂xjϕ+ dj∂xjyϕ

]
+ cyϕ

 dxdt

=
∫

Ω̄T

ydµ(x, t) =
∫

ΩT

ydµΩT
(x, t) +

∫
ΣT

ydµΣT
(x, t) +

∫
Ω̄
y(x, T )dµT (x).(6.2)

Let us note that (6.2) implies that −(∂ϕ/∂t) + A∗ϕ = µΩT
in the distribution

sense in ΩT . Let us take ~w = (w1, . . . , wn+1), with

wi =
n∑
j=1

aij∂xj
ϕ+ diϕ, 1 ≤ i ≤ n, and wn+1 = ϕ.

Then ~w ∈ Lq(ΩT )n+1, q = min{r, p} < (n+ 1)/n, and

div(x,t) ~w =
∂ϕ

∂t
+

n∑
i=1

∂xi

 n∑
j=1

aij∂xjϕ+ diϕ

 =
∂ϕ

∂t
−A∗ϕ+

n∑
i=1

bi∂xiϕ+ cϕ

= −µΩT
+

n∑
i=1

bi∂xiϕ+ cϕ ∈ M(ΩT ).(6.3)

Thus we have ~w ∈ V q(ΩT ),

V q(ΩT ) = {~w ∈ Lq(ΩT )n+1 : div(x,t) ~w ∈ M(ΩT )}.

This space, endowed with the graph norm, is a Banach space. We have the following
result.

THEOREM 6.2 (see Casas [10]). Given q ∈ (1, (n + 1)/n), there exists a unique
continuous linear mapping γνT

: V q(ΩT ) −→ W−1/q,q(∂ΩT ) satisfying

γνT
(~w) = ~w · ~νT ∀~w ∈ C1(Ω̄T )(6.4)

and ∫
ΩT

~w · ∇(x,t)φdxdt+ 〈div(x,t) ~w, φ〉M(ΩT ),Cb(ΩT )

= 〈γνT
(~w), γ(φ)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT ) ∀φ ∈ W 1,q′

(ΩT ),(6.5)
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1316 EDUARDO CASAS

where Cb(ΩT ) is the space of bounded and continuous functions in ΩT and ~νT (x, t) is
the outward unit normal vector to ∂ΩT at the point (x, t).

By applying this theorem to the function ~w defined above and using (6.2) and
(6.3), we have for all y ∈ Y0 ∩ C1(Ω̄T )

〈γνT
(~w), γ(y)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT )

=
∫

ΩT

~w · ∇(x,t)ydxdt+ 〈div(x,t) ~w, y〉M(ΩT ),Cb(ΩT )

=
∫

ΩT

∂y∂t ϕ+
n∑
i=1

 n∑
j=1

aij∂xi
y∂xj

ϕ+ biy∂xi
ϕ+ di∂xi

yϕ

+ cyϕ

 dxdt

−
∫

ΩT

ydµΩT
=
∫ T

0

∫
Γ
ydµΣT

(x, t) +
∫

Ω
y(x, T )dµT (x).

From the identity

〈γνT
(~w), γ(y)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT ) =

∫ T

0

∫
Γ
ydµΣT

(x, t) +
∫

Ω
y(x, T )dµT (x)

and taking into account that

~νT (x, t) =
(
~ν(x)

0

)
∀(x, t) ∈ ΣT and ~νT (x, T ) =

(
~0
1

)
∀x ∈ Ω,

we can identify

∂νA∗ϕ = γνT
(~ω)|ΣT

= µΣT
and ϕ(x, T ) = γνT

(~ω)|Ω̄×{T} = µT .

Now we have the following result of existence and uniqueness of solution for
problem (6.1).

THEOREM 6.3. There exists a unique function ϕ ∈ Lr([0, T ],W 1,p(Ω)) ∀r, p ∈
[1, 2) with (2/r) + (n/p) > n+ 1 such that it is a solution of (6.1) and∫

ΩT

(
∂y

∂t
+Ay

)
ϕdxdt+

∫
ΣT

∂νA
yϕdσ(x)dt =

∫
Ω̄T

ydµ(x, t) ∀y ∈ Y ∞
0 ,(6.6)

with

Y ∞
0 =

{
y ∈ Y0 :

∂y

∂t
+Ay ∈ L∞(ΩT ) and ∂νA

y ∈ L∞(ΣT )
}
.

Moreover, there exists a constant Cr,p > 0 independent of µ such that

‖ϕ‖Lr([0,T ],W 1,p(Ω)) ≤ Cr,p‖µ‖M(Ω̄T ).(6.7)

Proof. Let {fk}k ⊂ C(Ω̄T ), {gk}k ⊂ C(Γ × [0, T ]) and {hk}k ⊂ C(Ω̄) such
that fk → µΩT

, gk → µΣT
, and hk → µT

∗weakly in M(ΩT ), M(ΣT ), and M(Ω̄),
respectively. Moreover, we can assume that

‖fk‖L1(ΩT ) ≤ ‖µΩT
‖M(ΩT ), ‖gk‖L1(ΣT ) ≤ ‖µΣT

‖M(ΣT ), and ‖hk‖L1(Ω) ≤ ‖µT ‖M(Ω̄).
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1317

Let us take ϕk ∈ Y such that
−∂ϕk
∂t

+A∗ϕk = fk in ΩT ,

∂νA∗ϕk = gk on ΣT ,

ϕk(T ) = hk in Ω.

(6.8)

Now for every ψ = (ψ0, ψ1, . . . , ψn) ∈ D(ΩT )n+1, we denote by yψ the solution in
Y of 

∂y

∂t
+Ay = ψ0 −

n∑
j=1

∂xjψj in ΩT ,

∂νA
y = 0 on ΣT ,

y(0) = 0 in Ω.

(6.9)

Then ∫
ΩT

ψ0ϕk +
n∑
j=1

ψj∂xjϕk

 dxdt =
∫

ΩT

(
∂yψ
∂t

+Ayψ

)
ϕkdxdt

=
∫

ΩT

(
−∂ϕk
∂t

+A∗ϕk

)
yψdxdt+

∫
ΣT

∂νA∗ϕkyψdσ(x)dt+
∫

Ω
ϕk(T )yψ(T )dx.(6.10)

Using (6.8) and the properties of fk, gk, and hk, we deduce from (6.8)

∫
ΩT

ψ0ϕk +
n∑
j=1

ψj∂xjϕk

 dxdt

≤ ‖µ‖M(Ω̄T )‖yψ‖C(Ω̄T ) ≤ Cr,p‖µ‖M(Ω̄T )

n∑
j=0

‖ψj‖Lr′ ([0,T ],Lp′ (Ω)),(6.11)

the last inequality being a consequence of the estimates for the solution of (6.9);
see di Benedetto [2] and Ladyzhenskaya, Solonnikov, and Ural’tseva [23]. From the
density of the space {ψ0 −∑n

j=1 ∂xjψj : ψ ∈ D(ΩT )n+1} in Lr
′
([0, T ],W 1,p(Ω)′) and

estimate (6.11) follows the boundedness of {ϕk}k in the space Lr([0, T ],W 1,p(Ω)).
Moreover, by taking a subsequence if necessary, we can assume that ϕk → ϕ weakly
in Lr([0, T ],W 1,p(Ω)) and (6.7) is satisfied.

Let us prove that ϕ does not depend on r and p. Indeed, passing to the limit in
(6.10) and remembering that yψ(0) = 0, we get

∫
ΩT

ψ0ϕ+
n∑
j=1

ψj∂xjϕ

 dxdt =
∫

Ω̄T

yψdµ ∀ψ ∈ D(ΩT )n+1.(6.12)

It is obvious that there is at most one function ϕ in L1([0, T ],W 1,1(Ω)) satisfying
(6.12), which proves that ϕ is independent of r and p.
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1318 EDUARDO CASAS

Given y ∈ Y0 ∩C1(Ω̄T ), multiplying (6.8) by y and integrating by parts, it follows
that∫

ΩT

∂y∂t ϕk +
n∑
j=1

[
n∑
i=1

aij∂xiy∂xjϕk + bjy∂xjϕk + dj∂xjyϕk

]
+ cyϕk

 dxdt

=
∫

ΩT

fkydxdt+
∫

ΣT

gkydσ(x)dt+
∫

Ω
hky(T )dx.

Now passing to the limit we deduce (6.2) and consequently ϕ is a solution of (6.1).
Let us prove (6.6). Given y ∈ Y ∞

0 , multiplying (6.8) by y and integrating by
parts, we deduce ∫

ΩT

fkydxdt+
∫

ΣT

gkydσ(x)dt+
∫

Ω
hky(T )dx

=
∫

ΩT

(
∂y

∂t
+Ay

)
ϕkdxdt+

∫
ΣT

∂νA
yϕkdσ(x)dt.

Now (6.6) is obtained by passing to the limit.
Finally, the uniqueness of ϕ follows from (6.6). Indeed, the regularity results for

the Neumann problem associated with the operator (∂/∂t) +A (see [2] or [23]) prove
the surjectivity of the mapping

y ∈ Y ∞
0 −→

(
∂y

∂t
+Ay, ∂νA

y

)
∈ L∞(ΩT ) × L∞(ΣT ).

This along with (6.6) implies that the zero function of Lr([0, T ],W 1,p(Ω)) is the only
one satisfying∫

ΩT

(
∂y

∂t
+Ay

)
ϕdxdt+

∫
ΣT

∂νA
yϕdσ(x)dt = 0 ∀y ∈ Y ∞

0 .

This shows the uniqueness of ϕ.
An interesting case arises when µ = gω, with g ∈ C([0, T ], L2(Ω)) and ω ∈ M [0, T ]∫

Ω̄T

zdµ =
∫ T

0

(∫
Ω
z(x, t)g(x, t)dx

)
dω(t) ∀z ∈ C([0, T ], L2(Ω));

see Example 3.5. In this particular case we have the following result.
THEOREM 6.4. With the above notation, there exists a unique function ϕ in the

space L2([0, T ], H1(Ω)) ∩ L∞([0, T ], L2(Ω)) solution of the problem
−∂ϕ

∂t
+A∗ϕ = gω in ΩT ,

∂νA∗ϕ = 0 on ΣT ,

ϕ(T ) = g(T )ω({T}) in Ω.

(6.13)

Proof. Uniqueness can be obtained in the standard way. For the proof of the
existence we take a sequence {ωk}k ⊂ C[0, T ] converging ∗weakly to ω in M [0, T ] and
satisfying

‖ωk‖L1(ΩT ) ≤ ‖ω‖M [0,T ].
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1319

Let us take ϕk ∈ Y such that
−∂ϕk
∂t

+A∗ϕk = gωk in ΩT ,

∂νA∗ϕk = 0 on ΣT ,

ϕk(T ) = g(T )ω({T}) in Ω.

(6.14)

Given f ∈ D(ΩT ), let us denote by yf the solution in Y of the problem
∂y

∂t
+Ay = f in ΩT ,

∂νA
y = 0 on ΣT ,

y(0) = 0 in Ω.

(6.15)

Then∫
ΩT

fϕkdxdt =
∫

ΩT

(
∂y

∂t
+Ay

)
ϕkdxdt =

∫
ΩT

gωkydxdt+
∫

Ω
ω({T})g(T )y(T )dx

≤ ‖g‖C([0,T ],L2(Ω))‖ω‖M [0,T ]‖y‖C([0,T ],L2(Ω)).(6.16)

From (6.15) it follows by using the classical arguments that

‖y‖C([0,T ],L2(Ω)) ≤ C1‖f‖L1([0,T ],L2(Ω)) and ‖y‖C([0,T ],L2(Ω)) ≤ C2‖f‖L2([0,T ],H1(Ω)′).

From the first inequality and (6.16) we deduce the boundedness of the sequence {ϕk}k
in the space L∞([0, T ], L2(Ω)). The second inequality leads to the boundedness of the
same sequence in L2([0, T ], H1(Ω)). The rest of the proof is easy.

As mentioned in section 3, problems of type (6.13) have been studied by Barbu
and Precupanu [1], Lasiecka [24], and Tröltzsch [32].

In the case of a measure µ = gω, with g ∈ L1[0, T ] and ω ∈ M(Ω̄), we de-
duce from Theorem 6.3 and the inclusion W 1,p(Ω) ⊂ M(Ω̄) ⊂ W 1,p′

(Ω)′the exis-
tence of a solution ϕ ∈ L1([0, T ],W 1,p(Ω)) for all p ∈ [1, n/(n − 1)) and such that
∂ϕ/∂t ∈ L1([0, T ],W 1,p′

(Ω)′). Hence we deduce that ϕ ∈ C([0, T ],W 1,p′
(Ω)′) after a

modification on a set of zero measure.

7. Proof of Pontryagin principle. In this section we prove Theorems 3.1 and
4.3. A crucial point in the proofs is the use of Ekeland’s variational principle that we
state now.

LEMMA 7.1 (see Ekeland [16]). Let (E, d) be a complete metric space and F :
E −→ R ∪ {+∞} a lower semicontinuous function, and let eε ∈ E satisfy

F (eε) ≤ inf
e∈E

F (e) + ε.

Then there exists an element ēε ∈ E such that

F (ēε) ≤ F (eε), d(ēε, eε) ≤ √
ε,

and

F (ēε) ≤ F (e) +
√
εd(e, ēε) ∀e ∈ E.
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1320 EDUARDO CASAS

Proof of Theorem 3.1. Since Z is separable, we can take in Z a norm ‖ · ‖Z such
that Z ′ endowed with the dual norm ‖ · ‖Z′ is strictly convex. Then the function

dQ : (Z, ‖ · ‖Z) −→ R,

dQ(z) = inf
y∈Q

‖y − z‖Z

is convex, Lipschitz and Gâteaux differentiable at every point z 6∈ Q, with ∂dQ(z) =
{∇dQ(z)}, where the Clarke’s generalized gradient and the subdifferential in the sense
of the convex analysis coincide for this function. Therefore, given ξ ∈ ∂dQ(y), we have
that

〈ξ, z − y〉 + dQ(y) ≤ dQ(z) ∀z ∈ Z.(7.1)

Moreover, ‖∇dQ(z)‖Z′ = 1 for every z 6∈ Q; see Clarke [15] and Casas and Yong [14].
Let us take Jε : U −→ R defined by

Jε(u) =
{
[(J(u) − J(ū) + ε)+]2 + dQ(G(yu))2 + |F (yu)|2

}1/2
.

It is obvious that Jε(u) > 0 for every u ∈ U and Jε(ū) = ε. On the other hand, thanks
to Theorem 5.1 we have that Jε is continuous in (U , dE), with dE defined by (5.1).
Therefore we can apply Ekeland’s variational principle and deduce the existence of
uε ∈ U such that

dE(uε, ū) ≤ √
ε and 0 < Jε(uε) ≤ Jε(u) +

√
εdE(uε, u) ∀u ∈ U .(7.2)

Given v ∈ U arbitrary, let us take Eρ and uερ as in Theorem 5.2,

uερ(x) =

{
uε(x) if x ∈ ΣT \ Eρ,
v(x) if x ∈ Eρ.

Then with the help of (5.3) and (5.4) we get

−√
εmΣT

(Σ) ≤ Jε(uερ) − Jε(uε)
ρ

=
[(J(uερ) − J(ū) + ε)+]2 − [(J(uε) − J(ū) + ε)+]2

ρ[Jε(uερ) + Jε(uε)]

+
dQ(G(yερ))

2 − dQ(G(yε))2 + |F (yερ)|2 − |F (yε)|2
ρ[Jε(uερ) + Jε(uε)]

ρ→0−→ {
(J(uε) − J(ū) + ε)+z0,ε + 〈ξε, DG(yε)zε〉 + 〈F (yε), DF (yε)zε〉} /Jε(uε)

= αεz
0,ε + 〈[DG(yε)]∗µε, zε〉 + 〈[DF (yε)]∗λε, zε〉,(7.3)

where yε and yερ are the states associated with uε and uερ, respectively, and zε ∈ Y
satisfies 

∂zε

∂t
+Azε +

∂a0

∂y
(x, t, yε(x))zε = 0 in ΩT ,

∂νA
zε =

∂f

∂y
(x, t, yε(x, t), uε(x, t))zε

+f(x, t, yε(x, t), v(x, t)) − f(x, t, yε(x, t), uε(x, t)) on ΣT ,

zε(x, 0) = 0 in Ω,

(7.4)
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1321

z0,ε =
∫

ΩT

∂L

∂y
(x, t, yε(x, t))zε(x, t)dxdt+

∫
ΣT

∂l

∂y
(x, t, yε(x, t), uε(x, t))zε(x, t)dσ(x)dt

+
∫

ΣT

[l(x, t, yε(x, t), v(x, t)) − l(x, t, yε(x, t), u(x, t))]dσ(x)dt,(7.5)

αε =
(J(uε) − J(ū) + ε)+

Jε(uε)
, µε =

ξε

Jε(uε)
, λε =

F (yε)
Jε(uε)

,(7.6)

ξε =
{
dQ(G(yε))∇dQG(yε)) if G(yε) 6∈ Q,

0 otherwise.(7.7)

By using Theorem 6.3, we can take a function ϕε ∈ Lr([0, T ],W 1,p(Ω)) ∀r, p ∈
[1, 2) with (2/r) + (n/p) > n+ 1 such that

−∂ϕε

∂t
+A∗ϕε +

∂a0

∂y
(x, t, yε)ϕε = αε

∂L

∂y
(x, t, yε)

+[DG(yε)∗µε]|ΩT
+ [DF (yε)∗λε]|ΩT

in ΩT ,

∂νA∗ϕ
ε =

∂f

∂y
(x, t, yε, uε)ϕε + αε

∂l

∂y
(x, t, yε, uε)

+[DG(yε)∗µε]|ΣT
+ [DF (yε)∗λε]|ΣT

on ΣT ,

ϕε(T ) = [DG(yε)∗µε]|Ω×{T} + [DF (yε)∗λε]|Ω×{T} in Ω.

(7.8)

Thanks to the assumptions (2.2) and (2.7), we have that zε ∈ Y ∞
0 . Then we can

apply (6.6) with y = zε and deduce from (7.3)–(7.5) and the definition of Hα given
in section 3 the inequality∫

ΣT

Hαε(x, t, y
ε(x, t), uε(x, t), ϕε(x, t))dσ(x)dt

≤
∫

ΣT

Hαε
(x, t, yε(x, t), v(x, t), ϕε(x, t))dσ(x)dt+

√
εmΣT

(ΣT ) ∀v ∈ U .(7.9)

Now we pass to the limit when ε → 0. To do this, let us remark that

α2
ε + ‖µε‖2

Z′ + |λε|2 = 1.(7.10)

Then we take subsequences, denoted in the same way, satisfying{
αε → ᾱ in R, λε → λ̄ in Rn,
µε → µ̄ in the ∗weak topology of Z ′.(7.11)

On the other hand, the convergence yε → ȳ in Y follows from Theorem 5.1. The
boundedness of {ϕε} in Lr([0, T ],W 1,p(Ω)) follows from (6.7) and (7.10). Then, using
(7.11), it is easy to pass to the limit in (7.8) and (7.9) and to deduce (3.3) and (3.5).
Now remembering the definition of µε and ξε and (7.1), we deduce

〈µε, z −G(yε)〉 ≤ 0 ∀z ∈ Q.(7.12)

Passing to the limit in this expression we obtain (3.4). Let us prove (3.1). To do this,
let us suppose that ᾱ = |λ̄| = 0; then from (7.10) it follows ‖µε‖Z′ → 1 as ε → 0. Let

us take z0 ∈
o

Q and ρ > 0 such that B̄ρ(z0) ⊂
o

Q. Then (7.12) implies that

〈µε, z + z0 −G(yε)〉 ≤ 0 ∀z ∈ B̄ρ(0).
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1322 EDUARDO CASAS

Hence

ρ‖µε‖Z′ = sup
z∈B̄ρ(0)

〈µε, z〉 ≤ 〈µε, G(yε) − z0〉.

Passing to the limit

0 < ρ ≤ lim
ε→0

〈µε, G(yε) − z0〉 = 〈µ̄, G(ȳ) − z0〉,

which proves that µ̄ 6= 0.
It remains to prove (3.6); see Bonnans and Casas [5] or Casas [11] for the study of

analogous situations. To do this we consider the coordinate system {(Γr, ar)}dr=1 of Γ
introduced in the proof of Proposition 5.3. Given a point x0 ∈o

Γr for some 1 ≤ r ≤ d
we denote for each ε > 0 small enough

Γε(x0) = {x = (x′
r, ar(x

′
r)) : x′

r ∈ Bε(x′
0r) ⊂ (0, 1)n−1},

where Bε(x′
0r) is the ball in Rn−1 centered at x′

0r and having radius ε. Now given
0 < t0 < T , we set

ΣεT (x0, t0) = Γε(x0) × (t0 − ε, t0 + ε).

The following lemma is used in this proof.
LEMMA 7.2. Given f ∈ L1(ΣT ), there exists a mΣT

-measurable set S ⊂ ⋃dr=1

o

Γr
×(0, T ), with mΣT

(S) = mΣT
(ΣT ), such that for every (x0, t0) ∈ S we have

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|f(x, t) − f(x0, t0)|dmΣT

(x, t) = 0.(7.13)

Proof. Let us denote for all (x′
r, t) ∈ (0, 1)n−1 × (0, T )

ωr(x′
r) =

√√√√1 +
n−1∑
i=1

∣∣∣∣∂ar∂xi
(x′
r)
∣∣∣∣2 and fr(x′

r, t) = ωj(x′
r)f(x′

r, ar(x
′
r), t).

Since ωr and fr are Lebesgue integrable functions in (0, 1)n−1 and (0, 1)n−1 × (0, T ),
respectively, we know that the set of Lebesgue points of these functions Ur and Vr,
respectively, have measure equal to 1 and T, respectively. Let us define

Sr = {(x, t) ∈ Vr = (x′
r, ar(x

′
r), t) : x′

r ∈ Ur} and S =
d⋂
r=1

Sr.

Then mΣT
(S) = mΣT

(ΣT ) and Sr ⊂o

Γr ×(0, T ), 1 ≤ r ≤ d.
Let us take (x0, t0) = (x′

0r, a(x
′
0r), t0) ∈ Sr. Then x′

0j and (x0, t0) are Lebesgue
points of ωr and fr; consequently,

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|f(x, t) − f(x0, t0)|dmΣT

(x, t)

= lim
ε→0

(
1

2ε|Bε(x′
0r)|

∫ t0+ε

t0−ε

∫
Bε(x′

0r)
|fr(x′

r, t) − fr(x′
0r, t)|dx′

rdt

)
,
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1323

lim
ε→0

(
1

|Bε(x′
0r)|

∫
Bε(x′

0r)
ωr(x′

r)dx
′
r

)−1

= fr(x′
0r, t0)/ωr(x

′
0r) = f(x0, t0),

where |Bε(x′
0r)| denotes the (n− 1)-measure of Bε(x′

0r).
The set points of S will be called the Lebesgue points of f . This set depends

on the system of coordinates {(Γr, ar)}dr=1, but this dependence only affects a set of
σ-measure equal to zero.

We return to the proof of (3.6). Assume first that (A1) holds. Let us take a
numerable dense subset {vr}∞

j=1 of K. Let F and {Fr}∞
j=1 be measurable subsets of

Ω, with mΣT
(F ) = mΣT

(ΣT ) = mΣT
(Fr) for every j, such that the Lebesgue

point sets of functions (x, t) ∈ ΣT −→ Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t)) and (x, t)
∈ Ω −→ Hᾱ(x, t, ȳ(x, t), vj , ϕ̄(x, t)) are F and Fj , respectively. Let us set F0 =
F ∩ [∩∞

j=1Fj ]. Then we have mΣT
(F0) = mΣT

(ΣT ). Now given (x0, t0) ∈ F0 arbitrary,
for every ε > 0 small enough and j ≥ 1 we define the admissible controls

uεj(x, t) =

{
ū(x, t) if (x, t) 6∈ ΣεT (x0, t0),

vj otherwise.

Then from (3.5) we deduce

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

≤ 1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), vj , ϕ̄(x, t))dσ(x)dt, 1 ≤ j.

Passing to the limit where ε → 0, with the help of Lemma 7.2 we get

Hᾱ(x0, t0, ȳ(x0, t0), ū(x0, t0), ϕ̄(x0, t0)) ≤ Hᾱ(x0, t0, ȳ(x0, t0), vj , ϕ̄(x0, t0))

for every (x0, t0) ∈ F0 and j ≥ 1. Taking into account that function

v −→ Hᾱ(x0, t0, ȳ(x0, t0), v, ϕ̄(x0, t0))

is continuous and that {vj}∞
j=1 is dense in K, (3.6) follows from the above inequality.

Now let us suppose that assumption (A2) holds. Let Fϕ̄ be a measurable subset
of ΣT such that for every (x0, t0) ∈ Fϕ̄

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|ϕ̄(x, t) − ϕ̄(x0, t0)|dσ(x)dt = 0.(7.14)

Let F0 = Fϕ̄ ∩ Σ0
T ∩ F , where F is taken as above. Thus we have that mΣT

(F0) =
mΣT

(ΣT ), and taking spike perturbations as before we deduce

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

≤ 1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), v, ϕ̄(x, t))dσ(x)dt
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1324 EDUARDO CASAS

for every (x0, t0) ∈ F0 and v ∈ K. Since (x0, t0) ∈ F , we can pass to the limit on the
left-hand side of the inequality. Let us study the right-hand side:

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), v, ϕ̄(x, t))dσ(x)dt

=
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
ᾱl(x, t, ȳ(x, t), v)dσ(x)dt

+
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
f(x, t, ȳ(x, t), v)dσ(x)dtϕ̄(x0, t0)

+
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
[ϕ̄(x, t) − ϕ̄(x0, t0)]f(x, t, ȳ(x, t), v)dσ(x)dt.

The first two terms converge to Hᾱ(x0, t0, ȳ(x0, t0), v, ϕ̄(x0, t0)) because of the con-
tinuity of the integrands in (x0, t0) ∈ Σ0

T . Let us prove that the last term goes to
zero. ∣∣∣∣∣ 1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
[ϕ̄(x, t) − ϕ̄(x0, t0)]f(x, t, ȳ(x, t), v)dσ(x)dt

∣∣∣∣∣
≤ C

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|ϕ̄(x, t) − ϕ̄(x0, t0)|dσ(x)dt −→ 0,

thanks to (7.14) and the fact that (x, t) → f(x, t, ȳ(x, t), v) is bounded in ΣT because
of the assumption (2.2) and the boundedness of ȳ.

Now we will prove Theorem 4.3. The key to achieving this result is to carry out
an exact penalization of the state constraint. To do this, we will use the distance
function dQδ

associated with the set Qδ and defined in the same way as in the proof
of Theorem 4.3.

PROPOSITION 7.3. If (Pδ) is strongly stable and ū is a solution of this problem,
then there exists q0 > 0 such that ū is also a solution of

inf
u∈U

Jq(u) = J(u) + qdQδ
(G(yu))(7.15)

for every q ≥ q0.
Proof. Let us suppose that it is false. Then there exists a sequence {qk}∞

k=1 of
real numbers, with qk → +∞ and elements {uk}∞

k=1 ⊂ U such that

J(uk) + qkdQδ
(G(yk)) < J(ū) ∀k ≥ 1,

where yk is the state corresponding to uk. From here we obtain that

dQδ
(G(yk)) <

J(ū) − J(uk)
qk

−→ 0 when k → +∞

and G(yk) 6∈ Qδ. Let δk > δ be the smallest number such that G(yk) ∈ Qδk
. Since

δk → δ, we can use (4.1) to deduce

C(δk − δ) ≥ inf (Pδ) − inf (Pδk
) ≥ J(ū) − J(uk)

> qkdQδ
(G(yk)) = qk(δk − δ) ∀k ≥ kε,

which is not possible.
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PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1325

Since Jq is not Gâteaux differentiable on Qδ, we are going to modify slightly this
functional to attain the differentiability necessary for the proof.

PROPOSITION 7.4. Let us take q ≥ q0 and for every ε > 0 let us consider the
problem

(Pδ,ε) inf
u∈U

Jq,ε(u) = J(u) + q
{
dQδ

(G(yu))2 + ε2
}1/2

.

Then inf(Pδ,ε)→ inf(Pδ) when ε → 0.
Proof. It is an immediate consequence of the inequality

Jq(u) ≤ Jq,ε(u) ≤ Jq(u) + qε ∀u ∈ U .

Finally we are ready to prove the strong Pontryagin principle.
Proof of Theorem 4.3. Propositions 7.3 and 7.4 imply that ū is a σ2

ε –solution of
(Pδ,ε), with σε → 0 when ε → 0; i.e.

Jq,ε(ū) ≤ inf (Pδ,ε) + σ2
ε .

Then we can apply again Ekeland’s principle and deduce the existence of an element
uε ∈ U such that

d(uε, ū) ≤ σε, Jq,ε(uε) ≤ Jq,ε(ū),

and

Jq,ε(uε) ≤ Jq,ε(u) + σεdE(uε, u) ∀u ∈ U .

Now we argue as in the proof of Theorem 3.1 and replace (7.3) by

−σεmΣT
(ΣT ) ≤ lim

ρ→0

Jq,ε(uερ) − Jq,ε(uε)
ρ

= z0,ε + 〈µε, DG(yε)zε〉,

where µε ∈ Z ′ is given by

µε =


qdQδ

(G(yε))

{dQδ
(G(yε))2 + ε2}1/2 ∇dQδ

(G(yε)) if G(yε) 6∈ Qδ,

0 otherwise.

Therefore we have ‖µε‖Z′ ≤ q for every ε > 0. Now we can take a subsequence that
converges weakly∗ to an element µ̄ ∈ Z ′. The rest is as in the proof of Theorem 3.1,
taking αε = 1.
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pp. 97–114.

[12] E. CASAS, Boundary control problems of quasilinear elliptic equations: A Pontryagin’s princi-
ple, Appl. Math. Optim., 33 (1996), pp. 265–291.
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