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ABSTRACT

A statistical model to analyze different time scales of the variability of extreme high sea levels is pre-
sented. This model uses a time-dependent generalized extreme value (GEV) distribution to fit monthly
maxima series and is applied to a large historical tidal gauge record (San Francisco, California). The model
allows the identification and estimation of the effects of several time scales—such as seasonality, interdec-
adal variability, and secular trends—in the location, scale, and shape parameters of the probability distri-
bution of extreme sea levels. The inclusion of seasonal effects explains a large amount of data variability,
thereby allowing a more efficient estimation of the processes involved. Significant correlation with the
Southern Oscillation index and the nodal cycle, as well as an increase of about 20% for the secular
variability of the scale parameter have been detected for the particular dataset analyzed. Results show that
the model is adequate for a complete analysis of seasonal-to-interannual sea level extremes providing
time-dependent quantiles and confidence intervals.

1. Introduction

The knowledge of the statistical distribution of ex-
treme sea levels is of practical importance for many
purposes, including coastal management, flooding of
urban areas and valuable ecosystems, and the design of
maritime works. The simplest method is the annual
maximum method (AMM), which models annual maxi-
mum data using the generalized extreme value distri-
bution. Because of the scarcity of data, some alterna-
tives have been proposed for different geophysical vari-
ables, such as the method of the r-largest maxima (e.g.,
Smith 1986; Tsimplis and Blackman 1997; Unnikrish-
nan et al. 2004; Soares and Scotto 2004) or the peak

over threshold approach (e.g., Smith 1989; Davison and
Smith 1990; Goda 2000).

The character of the sea level (composed, after av-
eraging out wind surface waves, of three additive com-
ponents: mean sea level, tidal level, and surge level)
and the evaluation of the tide as a deterministic process
has led to a number of indirect methods trying to make
use of this information [see details of the Revised Joint
Probability Method (RJPM) in Tawn and Vassie
(1989)]. One important characteristic of all the afore-
mentioned methods is that they often assume the sea
level to be a homogeneous random variable, which im-
plies stationarity of the observed process.

However, in the context of environmental processes,
such as the extreme sea level, a nonstationary behavior
is found at different time scales (seasonal, decadal, and
secular). Seasonality is evident in the three components
of sea level: monthly mean sea levels (Tsimplis and
Woodworth 1994), surge levels (see Pugh 2004, chapter
6), and the highest tide levels (Zetler and Flick 1985;

Corresponding author address: Fernando J. Méndez, Ocean and
Coastal Research Group, Dpto. Ciencias y Técnicas del Agua y
del Medio Ambiente, Universidad de Cantabria, Avda. de los
Castros s/n, 39005 Santander, Spain.
E-mail: mendezf@unican.es

894 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24

DOI: 10.1175/JTECH2009.1

© 2007 American Meteorological Society

JTECH2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/147466626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dixon and Tawn 1999). Summing up the three compo-
nents, the monthly maximum sea level is variable
throughout a year and, in addition, the month of occur-
rence of the highest water level can fluctuate (Smith
and Leffler 1980).

Decadal variability or interannual fluctuation is also
present in the extreme sea level behavior. This variabil-
ity is usually expressed in terms of regional climate in-
dices such as the Southern Oscillation index (SOI), the
Pacific decadal oscillation (PDO), or the North Atlan-
tic Oscillation (NAO). Recently, Woodworth and
Blackman (2004) analyzed a large number of tidal
gauges and found a close relation between extreme sea
levels and climate indices, supporting the existence of
decadal variability in extreme sea levels. Moreover,
there exists external forcing acting on the globe, due to
the sun and the moon affecting sea level. The 11-yr
sunspot cycle can affect extreme sea levels, as pointed
out by Smith (1986). Concerning the effect of the moon,
there are several cycles (e.g., the 18.61-yr nodal cycle
due to the regression of the lunar nodes) that affect the
amplitude of the semidiurnal lunar tide as well as the
mean sea level (Pugh 2004, chapters 4 and 7).

Concerning secular trends, mean sea level rise is one
of the main contributions to extreme sea levels (e.g.,
Woodworth et al. 1999; Flick et al. 2003; Pugh 2004,
chapter 7). This aspect is well known and has been
widely studied by the scientific community because of
the potential effects on coastal areas (Houghton et al.
2001). Lately, there is some evidence around the globe
that suggests that not only sea level rise but also long-
term changes in the intensity and frequency of the
storminess must be considered (e.g., Meehl et al. 2000;
Woodworth and Blackman 2004; Bijl et al. 1999; Bell et
al. 2000; Flick et al. 2003; Langenberg et al. 1999; Bro-
mirski et al. 2003; d’Onofrio et al. 1999; Woodworth
and Blackman 2002).

Therefore, it would be highly desirable to model the
nonstationary behavior of extreme sea levels at differ-
ent time scales. One possibility for dealing with nonsta-
tionarity is the removal of trends, obtaining a net data
series suitable for the classical extreme value analysis.
This approach is widely used in time series analysis and
has been used recently for predicting extreme high wa-
ter levels in San Francisco (SFO), California (Sobey
2005). Nevertheless, this data precondition is not nec-
essary because the time-dependent generalized ex-
treme value distribution can describe the variability as
a function of time or other covariates (see, e.g., Coles
2001, chapter 6; Smith 2001, chapter 8; Katz et al. 2002).
Not surprisingly, some time scales have already been
analyzed. For example, Smith (1986) and Tawn (1988)

use the r-largest annual maxima method to study secu-
lar variability (linear and quadratic trends) in Venice,
Italy; and Lowestoft and Great Yarmouth, United
Kingdom; respectively. The first author also models the
nodal and the sunspot cycle. The SOI is introduced as a
covariate by Coles (2001) to model annual maximum
sea levels at Fremantle, Australia, obtaining a signifi-
cant influence of this climate index. Seasonality is in-
troduced in the RJPM by Dixon and Tawn (1999) and
in the peak over threshold approach by several authors.
Smith (1989) studied the ground-level ozone, Smith
(2001) analyzed wind speeds, and Katz et al. (2002)
modeled precipitation maxima, obtaining an annual
cycle to describe the behavior of the rainfall throughout
the year. However, to the authors’ knowledge, no glob-
al state-of-the-art seasonal-to-interannual analysis is
currently available concerning extreme sea levels. In
this work, a global framework designed to cope with all
the time scales simultaneously is presented.

The model suggested in this paper is based on the
time-dependent generalized extreme value distribution.
The nonstationary behavior of extreme sea levels is pa-
rameterized using functions of time (linear, quadratic,
exponential, and cosine functions) or covariates (e.g.,
SOI) and degrees of freedom are introduced in the
model correspondingly. Independent monthly maxima
series are adopted, allowing the efficient modeling of
seasonality given that the 12-yearly data are quasi-
homogeneously time distributed. As pointed out by
Katz et al. (2002), another reason for choosing monthly
maxima is that they provide additional information
about the upper tail of the distribution. We adopt a
“direct method,” avoiding the decomposition between
the tidal and surge parts (as in the RJPM “indirect
method”) and the nonlinear interaction. Because tidal
levels tend to have a short-tailed distribution whereas
surge levels often tend to have longer-tailed distribu-
tions, we will always check that the monthly maxima
approach using time-dependent parameters allows for
an adequate statistical definition of the upper tail of the
extreme sea levels, by using several goodness-of-fit and
plot measures. The model is applied to a well-known
large hourly tidal gauge series (San Francisco) showing
the characteristics of the seasonal-to-interannual time
scales at this particular site. This approach is also useful
when historical information is not hourly recorded, pro-
vided that daily or monthly high-water data are known
(Bijl et al. 1999).

The paper is organized as follows. Section 2 provides
a brief description of the time-dependent generalized
extreme value distribution, the method of estimation of
parameters, and the criteria for model selection. Sec-
tion 3 describes the data from the San Francisco tidal
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gauge. Section 4 explains the different time scales in-
volved and suggests their possible parameterization.
The application of the model is shown in section 5.
Finally, some conclusions are given in section 6.

2. Methodology

a. The generalized extreme value distribution in
homogeneous populations

Extreme value theory is concerned with the quanti-
fication of the stochastic behavior of processes when
they approach very large (or very small) values. The
annual maximum method is a simple example of an
application of that theory. This method uses time series
of block maxima for successive years, {Zt � max(X1,
. . . , XN)}, which are called annual maxima series
(AMS), where t � 1, . . . , n, the Xis are the reading of
the underlying variables throughout the N sampling in-
tervals in the year, and n is the number of years. The
method assumes that annual maxima of successive
years are independent and identically distributed (IID)
random variables so that successive years are climato-
logically and statistically independent. Because only
one datum (the annual maximum) per year is used,
simplicity in the model is attained at the price of exac-
erbating scarcity of data and making the quantification
of seasonal trends impossible.

A classical theorem in extreme value theory (see
Coles 2001, chapter 3) states that, if they exist, the lim-
iting distributions of sequences of appropriately nor-
malized maxima of IID random variables must belong
to one of three possible families of probability distri-
bution functions, namely the Weibull, Gumbel, and
Fréchet families. The generalized extreme value
(GEV) distribution is a reformulation of these limiting
families; the corresponding cumulative distribution
function (CDF) is given by

G�z, �, �, �� � �exp���1 � ��z � �

� ���1��� � � 0

exp��exp���z � �

� ��� � � 0,

�1�

where 1 � �(z � �)/� 	 0, �
 � � � 
 is a location
parameter, � 	 0 is a scale parameter, and �
 � � � 

is a shape parameter. The Weibull, Gumbel, and
Fréchet families correspond to � � 0, � � 0, and � 	 0,
respectively. Although this classical theorem applies
only to sequences of IID random variables (X1, . . . ,
XN), it also holds when the hypotheses are relaxed

moderately, for example, when there exists a relatively
weak statistical dependence between these random
variables [e.g., the maxima of time series generated by
Gaussian stationary autoregressive moving average
(ARMA) models converge to the Gumbel CDF; see
Galambos 1978, chapter 3]. Consequently, the theorem
can be used in practice if every year can be conceived to
be composed of many small “sampling” intervals (e.g.,
hours), such that successive values of the process are
approximately identically distributed and show “rela-
tively weak” statistical dependence [e.g., if corr (Xi,
Xi�m) logm → 0 as m increases, where m is the time lag;
see Galambos 1978].

b. The time-dependent GEV distribution

To mitigate the problem of data scarcity and also to
be able to model seasonal trends, it is necessary to con-
sider more than one extreme datum per year. There are
three main approaches for choosing the data to be con-
sidered within each year: 1) monthly maxima series, 2)
exceedances over large thresholds, and 3) r-largest
maxima within the year. For example, Carter and Chal-
lenor (1981) and Katz et al. (2002) use the first method;
Smith (1989) and Davison and Smith (1990) use the
second method; whereas Smith (1986), Tawn (1988),
Tsimplis and Blackman (1997), Unnikrishnan et al.
(2004), and Soares and Scotto (2004) use the third
method.

When using monthly maxima series (MMS), the
same reasoning of section 2a can be used to justify that
the maximum Zt observed in month t follows a GEV
distribution with time-dependent parameters �
 �
�(t) � 
, �(t) 	 0, and �
 � �(t) � 
. Although the
number of components N in vector (X1, . . . , XN) de-
creases with respect to annual maxima (which deterio-
rates the asymptotic approximation), the random vari-
ables Xis can reasonably be expected to be more ho-
mogeneous within months than within years (which
may be expected to improve the asymptotic approxi-
mation and the robustness of the statistical model to
inhomogeneities in the series). The functions �(t), �(t),
and �(t) can contain sine waves representing seasonal
effects (see, e.g., Katz et al. 2002), linear and/or expo-
nential terms representing long-term trends, and co-
variates representing environmental processes (e.g., El
Niño), among others.

We will analyze the performance of the MMS
method throughout the paper. In the following, the pro-
cedures to estimate the parameters and the quantiles as
well as to calculate the confidence intervals are shown.
Criteria for model diagnostic and selection are also ad-
dressed.
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c. Parameter estimation

We use the method of maximum likelihood to esti-
mate the model parameters. The location, scale, and
shape parameters �(t), �(t), and �(t) are expressed in
terms of regression parameters and covariates (Coles
2001). The complete vector of p regression parameters
is denoted by �. The likelihood function of the param-

eters, given m observations {(t1, z1), . . . , (tm, zm)} of the
period ti at which the maximum zi is attained, is pro-
vided by

L�� |ti, zi� � 
i�1

m

g�zi; ��ti�, ��ti�, ��ti��, �2�

where

g�z; �, �, �� �
1
� �1 � ��z � �

� ����1�1���

exp���1 � ��z � �

� ���1��� �3�

is the density function of the GEV distribution, which is obtained by differentiating Eq. (1) with respect to z. The
log-likelihood function is

l�� |ti, zi� � ��
i�1

m � log��ti� � �1 � 1���ti�� log�1 � ��ti��zi � ��ti�

��ti�
��� �1 � ��ti��zi � ��ti�

��ti�
���1�� �ti��, �4�

provided that �(ti) 	 0 and 1 � �(ti)(zi � �(ti)/�(ti) 	 0,
for i � 1, . . . , m. For every value of �(ti) that equals
zero, it is necessary to use the appropriate limiting
form, replacing the GEV by the Gumbel [Eq. (1) for �
� 0] log-likelihood function,

l��|tj, zj� � �log��tj� �
zj � ��tj�

��tj�
� exp��

zj � ��tj�

��tj�
�.

�5�

Maximization of Eq. (4) and/or Eq. (5) yields the
maximum likelihood estimate of �, denoted by �̂. As
shown below, some of the proposed models have more
than 15 regression parameters, making it difficult to
maximize the log-likelihood function. Nevertheless, an
efficient global optimization procedure has been used
successfully in all the cases analyzed, namely, the
shuffled complex evolution (SCE) algorithm (Duan et
al. 1992), which is widely used in the calibration of
highly nonlinear problems. Because the SCE optimiza-
tion scheme uses random starting points, we have con-
firmed that the solutions �̂ we provide were the unique
optimal solutions by running the program several times
for every model.

Approximate standard errors for the estimators and
confidence intervals for the regression parameters are
obtained using standard likelihood theory (see, e.g.,
Coles 2001). For a large sample size n, the distribution
of �̂ is approximately multivariate normal with mean �
and covariance matrix given by the inverse of the ob-
served information matrix IO(�),

IO��� � �
�2l���

��i��j
, i, j � 1, . . . , p, �6�

evaluated at � � �̂. If an arbitrary term in the inverse of
IO(�) is sij, the square root of the diagonal entry—(i, i)th
element, sii—is approximately the standard error se(�̂i)
of the maximum likelihood estimator �̂i. Therefore,
confidence intervals for �i can be obtained in the form
[�̂i � z�se(�̂i), �̂i � z�se(�̂i)], where z� � 1.96 gives a
95% confidence interval.

d. Model selection

The selection of models can be implemented almost
automatically when the candidate models are nested
with a “maximal” model embracing all the remaining
models. In this case, every model can be obtained from
the maximal model by setting some of their parameters
to constants. If the number of models to be compared is
small, model selection can be performed using the
maximum likelihood ratio test. Thus, suppose model A
can be obtained from model B by setting pB � pA pa-
rameters to constants, where pA � pB are the number of
parameters in each model. Let l̂(pA) � l̂(pB) be the
maxima of their respective log-likelihood functions,
then model A may be rejected if 2[l̂(pB) � l̂(pA)] 	
�2(pB � pA, 1 � �).

If the number of nested candidate models is large, it
is more appropriate to assess the quality of each model
by using a penalized function �2l̂(p) � pC(n), where p
is the number of parameters and l̂(p) is the maximum of
the log-likelihood resulting from each model. The
Akaike information criterion (AIC), the Hannan and
Quinn criterion (HQC), and the Bayesian information
criterion (BIC; also called Schwarz criterion) corre-
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spond to the choices C(n) � 2, C(n) � log[log(n)], and
C(n) � log(n), respectively.

Each of these criteria assesses the quality of each
model by making a compromise between obtaining a
good fit, which is measured by how small the resulting
�2l̂(p) term is, and using a simple model, where simpler
models use less parameters than complex models.
Therefore, the smaller the criterion, the better the
model. Clearly, the HQC and BIC criteria penalize
complex models more that the AIC criterion when n is
large.

e. Model diagnostics

There are a number of procedures for model check-
ing when data are assumed to be identically distributed.
However, for a time-dependent random variable it is
necessary to standardize the data conditional on the
fitted parameter values. Considering that

Zt � GEV��̂�t�, �̂�t�, �̂�t��, �7�

one can define the standardized variables Zt as

Zt �
1

�̂�t�
log�1 � �̂�t��Zt � �̂�t�

�̂�t�
��, �8�

which (conditional on the parameter estimates) follows
the standard Gumbel distribution, with the probability
distribution function

Pr�Zt � z� � exp� � exp��z��. �9�

Then, probability and quantile plots for the sample
of computed values zt can be obtained using Eq. (8).
If z(1), . . . , z(m) are the corresponding sample order
statistics, the plotting points (e.g., empirical ver-
sus model) for the probability plot are {i/(m � 1),
exp[�exp(�z(i))]} while the plotting points for the
quantile plot are {�log(�log[i/(m � 1)]), z(i)} for i � 1,
. . . , m. If the estimated model is adequate, both the
probability and quantile plots should consist of points
close to the unit diagonal. It is important to note that
both plots must be checked simultaneously as they con-
tain the same information but on different scales.

f. Determination of quantiles

The extreme quantiles zq for a stationary GEV dis-
tribution are obtained by inverting Eq. (1) so that

zq��� � zq��, �, ��

� �� �
�

�
�1 � � � log�1 � q����� � � 0

� � � log� � log�1 � q�� � � 0
.

�10�

The quantile estimate ẑq � zq(�̂, �̂, �̂) is the return level
associated with the return period 1/q. Confidence inter-
vals can be obtained, assuming approximate normality
for the maximum likelihood estimators, by the delta
method (Rice 1994). The standard error of zq can be
estimated from the formula

se�ẑq� � ��
i�1

p

�
j�1

p
�zq���

��i

�zq���

��j
sij�1�2

, �11�

where the partial derivatives are evaluated at �̂.
For nonstationary or time-dependent GEV param-

eters, the calculation of “effective” design values can be
carried out using Eq. (10), so that the quantity varies
depending on the time of the year (Katz et al. 2002).

3. The data

Hourly sea level data from the San Francisco tidal
gauge is used in the analysis. SFO data (station
9414290) were obtained from the National Oceanic and
Atmospheric Administration (NOAA) National Ocean
Service (NOS) Centre for Operational Products and
Services (CoOps), with observations beginning in 1901
and ending in 2003 (103-yr data series). As pointed out
by Bromirski et al. (2003), San Francisco has the long-
est continuous tidal record in North America and it is
suitable for the investigation of seasonal as well as in-
terdecadal variability.

Annual maxima (circles), monthly maxima (dots),
and monthly mean water levels (solid line) for the SFO
station are illustrated in Fig. 1. Three monthly gaps
appear in the time series (June 1946 and January and
February 1978). As seen, the time series reveals an im-
portant positive trend as well as possible changes in the
variance of the data, although some information is
likely hidden due to visual-scale effects. To perform a
more detailed examination of all these features, de-
scriptive statistics and exploratory analysis are carried
out in the following section.

4. Regression model

We shall consider different agents to explain the vari-
ability and nonstationarity in the distribution of
maxima, such as the annual variability (seasonality), the
mean sea level rise, a likely long-term trend for the
extreme values, long-term climate variability effects ex-
plained by global meteorological indices or interannual
astronomical modulations as the 18.61-yr nodal cycle.
All these factors can be parameterized providing an
easy interpretation of the variability of the data.

It is assumed that the time-dependent location, scale,
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and shape parameters [�(t), �(t), and �(t)] of the GEV
distribution can be split up in a number of processes
with different time scales (we shall use subindex SLR
for sea level rise, S for seasonality, LT for secular
trends, N for astronomical forcing, and CLI for decadal
climate variability). The following aggregations of fac-
tors are proposed:

��t� � �SLR�t� � �S�t� exp��LT�t�� � �N�t� � �CLI�t�,

�12�

��t� � �S�t� exp��LT�t�� � �N�t� � �CLI�t�, �13�

��t� � �S�t� exp��LT�t��. �14�

This model introduces some nonlinearity to allow for
a long-term variability in the seasonality (e.g., higher
increase in winter than in summer). This is mathemati-
cally expressed by the coupling between seasonality
and the long-term components exp[�LT(t)], exp[�LT(t)],
and exp[�LT(t)]. The exponential terms have the prop-
erty that, for small long-term variations (say a → 0), the
exponential exp(at) is approximately equivalent to (1 �
at), so that 100a can be considered as a yearly percent-
age of variability, when t is given in years. Sea level rise
is only introduced in the location parameter [Eq. (12)]
as it produces only a continuous vertical displacement
of the random variable. For the shape parameter [Eq.
(14)], only seasonal and secular changes are considered.

Table 1 displays possible regression models for every
time-dependent GEV parameter. The corresponding
regression parameters are shown in parentheses. The
explanation of the parameterization for every compo-
nent is given below. Note that the regression param-
eters corresponding to the time-dependent parameters
�(t), �(t), and �(t) are named �i, �i, and �i, respectively.

a. Seasonality

Monthly maxima are plotted against the day within
the year (1–366) for the 103 yr in Fig. 2. The result
reveals a clear seasonality along the year that suggests
the need to fit a seasonal model to the data. Annual and
semiannual cycles are detected with different ampli-
tudes for the maxima throughout the year.

The variability of extreme sea levels within a year can
also be addressed by analyzing the different agents in-
volved: mean sea level (MSL), tide level, and surge
level (defined as the detrended residual after the har-
monic analysis to the 103-yr hourly sea level time se-
ries). MSL seasonal oscillations have been widely stud-
ied (see, e.g., Tsimplis and Woodworth 1994). This vari-
ability is due to local meteorological, oceanographic,
and hydrological forcings. For the particular case of
SFO, the upper panel in Fig. 3 shows a plot of estimated
means plus/minus the standard deviation for MSL for
the whole record. Significant vertical variations in MSL
throughout a year are found (6 cm). One of the main
contributions to the extreme sea level for SFO is the
astronomical tide. The upper-central panel in Fig. 3
shows a complete year of hourly tide series. As seen,
the highest spring tides are located in December–
January and June. Again, a modulation is detected in
the highest monthly tide (given by the highest spring
tides), as pointed out in the lower-central panel of Fig.
3. Finally, the surge corresponding to the monthly
maximum sea level is plotted in the lower panel, show-
ing the highest elevations in winter.

After this preliminary analysis, it seems reasonable
to allow for seasonality in the model because most of
the processes involved have two maxima and two
minima during a year. To support further this prelimi-

FIG. 1. Monthly mean (solid line), monthly (dots), and annual (circles) maxima series for the SFO tide gauge. (SFO: data from
NOAA/NOS CoOps 9414290. Elevations to station datum. MLLW is �1.822 m.)
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nary evidence, we examine graphically the variability
within a year of the location, scale, and shape param-
eters of the GEV distribution of annual maxima for a
given month. The maximum likelihood estimates
(MLEs), �̂, �̂, and �̂, of these parameters versus month
(from January to December) are shown in Fig. 4. The
location parameter shows two peaks, possibly due to
the highest spring tides in December–January and
June. The scale parameter is modulated throughout a
year with a maximum value in the winter season. Fi-
nally, the shape parameter is also modulated through-
out a year with minimum values in summer. Figure 4
also shows regression fits to the first two harmonics.
The good quality of the fits may suggest that the num-
ber of parameters needed in the model can be reduced.
Thus, we propose using just 5 location parameters (a
constant value and two harmonic terms) instead of the
12 monthly location parameters [used, e.g., by Smith
(1989) in an application to ground-level ozone].

In general, a plausible model for the time parameters

can be defined in terms of harmonic functions (the first
one for the annual cycle, the second one for the
6-month cycle, and so on). Mathematically, this model
can be expressed as (see Table 1)

�S�t� � 	0 � �
i�1

P�

�	2i�1 cos�2i
t� � 	2i sin�2i
t��,

�15�

�S�t� � �0 � �
i�1

P�

��2i�1 cos�2i
t� � �2i sin�2i
t��,

�16�

provided that �S(t) 	 0, and

�S�t� � �0 � �
i�1

P�

��2i�1 cos�2i
t� � �2i sin�2i
t��,

�17�

where �0, �0, and �0 are mean values; �i, �i, and �i(i 	
0) are the amplitudes of the harmonics; P�, P�, and P�

are the number of sinusoidal harmonics in a year; and t
is given in years. In the literature it is very common to
find seasonality introduced in the location parameter,
but not on the scale and shape parameters. However, it
must be noted that not only the location parameter but
also the scale and the shape parameters may require
harmonic terms. This approach was addressed by Coles
and Walshaw (1994) for the modeling of directional
extreme wind speeds. The authors analyzed the direc-
tional variability of the GEV parameters, obtaining for
a particular case three harmonics for the location pa-
rameter and two harmonics for the scale and shape
parameters, all of them statistically significant.

b. Relative sea level rise

Long-term changes in regional eustatic sea levels (sea
level rise) and in vertical land movements together re-FIG. 2. Monthly maxima sea level against a day within a year.

TABLE 1. Parameterization of the physical processes.

Physical process

Parameter

Location Scale Shape

Seasonality �S(t) � �0 � �P�
i�1[�2i�1 cos(2i�t)

� �2i sin(2i�t)] (�0, �1, �2, �3,
�4, �5, �6, . . .)

�S(t) � �0 � �P�
i�1[�2i�1 cos(2i�t)

� �2i sin(2i�t)] (�0, �1, �2, �3,
�4, �5, �6, . . .)

�S(t) � �0 � �P�
i�1[�2i�1 cos(2i�t)

� �2i sin(2i�t)](�0, �1, �2, �3,
�4, �5, �6, . . .)

Relative sea level rise �SLR(t) � �SLRt (�SLR) — —
Astronomical forcing �N(t) � �N1

cos(2�t/TN) � �N2

sin(2�t/TN) (�N1
,�N2

)
�N(t) � �N1

cos(2�t/TN) � �N2

sin(2�t/TN) (�N1
,�N2

)
—

Climate variability �CLI(t) � �SOI SOI(t) (�SOI) �CLI(t) � �SOI SOI(t) (�SOI) —
Secular trends �LT(t) � �LTt � �LT2

t2 (�LT,
�LT2

)
�LT(t) � �LTt (�LT) �LT(t) � �LTt (�LT)

900 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24



sult in the relative sea level rise of MSL. Tidal records
at SFO station show a relative rise in MSL of 21.7 cm
century�1 since 1900 (Flick et al. 2003). In our model,
relative sea level rise is assumed to be known and is
introduced linearly in the location parameter as �SLR(t)
� �SLRt (�SLR � 0.002 17 m yr�1). Therefore, in the
proposed model, the true value of �SLR is known. This
can be done, since the record is well documented and
the uncertainty in the estimation of the secular trend is
very small. Besides, after visual inspection of the
monthly MSL in Fig. 1, a linear trend is considered to
be acceptable. Other possibilities for the definition of
�SLR(t) (e.g., quadratic, truncated, cubic splines, etc.)
could also be analyzed. However, for the sake of sim-

plicity and trying not to mask the interdecadal variabil-
ity we adopt the linear trend.

c. Long-term astronomical forcing variability

There are several long-term astronomical forcings
such as the 18.61-yr nodal cycle due to the regression of
the lunar nodes, the 8.85-yr cycle of the moon’s perigee,
or the 4.4-yr period between passages of the longitude
of perigee past the equinoxes (Cartwright 1974). Their
effects result in a slight modulation of mean sea level
and a nonnegligible modulation of the semidiurnal
component M2. In the literature, these cycles have been
detected in the series analyzed in the present work. For
instance, Zetler and Flick (1985) detected for SFO a
modulation of 12-cm amplitude for the prediction of
the maximum annual high tide in the period 1983–2000.
This modulation is ascribed mainly to the 4.4- and
18.61-yr cycles. Flick et al. (2003) analyzed the yearly

FIG. 3. Estimated means plus/minus standard deviations for
(top) monthly mean sea level, (second from top) 1-yr tide series
(1952), (third from top) the highest monthly astronomical tide
over a 19-yr period, and (bottom) the surge corresponding to the
monthly maxima (MM) sea level. Units of MSL, tide, and surge
are in meters.

FIG. 4. Scatterplots of annual stationary GEV parameter esti-
mates (for a given month) throughout a year. Regression fit to one
(gray line) and two harmonics (black line) is also plotted. Units
for location and scale parameters are in meters.
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variability of several tidal datum statistics in numerous
U.S. long-term tidal stations obtaining an important
modulation in the 18.61-yr cycle. Recently, the 18.61-yr
nodal cycle was included by Sobey (2005) as a factor in
the definition of extreme high water levels for SFO.
The modulation of the annual standard deviation of
hourly sea level for SFO is stressed in Fig. 5, suggesting
that this factor can affect the magnitude and the dis-
persion of extreme sea levels.

After this brief analysis of the long-term astronomi-
cal factors, we assume that extreme sea levels can be
affected in the location and in the scale parameters.
Therefore, a tentative relationship for the location and
scale parameters can be established as (see Table 1)

�N�t� � 	N1
cos�2
t�TN� � 	N2

sin�2
t�TN�, �18�

�N�t� � �N1
cos�2
t�TN� � �N2

sin�2
t�TN�, �19�

where TN � 18.61 yr, and �N1
, �N2

and �N1
, �N2

are the
components of the harmonic terms for the location and
scale parameters, respectively. Other astronomical fac-
tors such as the 4.4-yr cycle can also be considered
similarly.

d. Climate variability

A critical aspect of understanding the variability in
extreme sea levels is the knowledge of the cause and
effect of interannual and decadal fluctuations in ex-
treme high water level records. These fluctuations are
usually modeled by regional climate indices, based on
air pressure data or sea surface temperatures. In this
work, we use indices based on air pressure data, such as
the SOI.

The variability in the Pacific El Niño–Southern Os-
cillation (ENSO) is usually characterized by the so-
called SOI, which is based on the standard deviation of

the normalized pressure difference between Darwin
(Australia) and Tahiti (French Polynesia), varying usu-
ally between �4 and �4, with negative values during El
Niño events and positive values during La Niña events.
ENSO oscillation is known to affect ocean–atmosphere
climate variability not only in the Pacific, but around
remote areas of the earth (Kiladis and Diaz 1989;
McPhaden 2004; Bell et al. 2000). Recently, a relation-
ship between the occurrence of extreme sea levels and
indices of regional climate has been found along the
globe for numerous tidal gauges (Woodworth and
Blackman 2004).

Therefore, it would be highly desirable to explain the
interannual variability of MSL and sea level extremes
for SFO station by means of indices such as the SOI.
Flick (1998) analyzed the effects on the sea level of
historic El Niño events on the Californian coast, and
showed that both the mean sea level and the extreme
sea level are highly correlated with SOI. In the model
(see Table 1) we introduce the location, �CLI(t) � �SOI

SOI(t), and the scale parameter, �CLI(t) � �SOI SOI(t),
as global climate covariates, which can be thought of as
location and dispersion measures of the distribution of
maxima, respectively. SOI(t) is the time-varying func-
tion of the monthly Southern Oscillation index, �SOI is
the linear coefficient for the location parameter, and
�SOI stands for the linear coefficient for the scale pa-
rameter. As pointed out by Flick (1998), the monthly
mean sea level increased during the 1982/83 winter by
about 12 cm. This 12 cm is the difference between the
1982/83 and the 1960–78 winter monthly sea levels. This
effect is modeled by the location parameter �CLI(t).
Moreover, during an El Niño event, the storm surge is
assumed to increase the variability of the extreme sea
levels. Consequently, the scale parameter, �CLI(t), at-
tempts to model this climate variability. Note that other

FIG. 5. Annual standard deviation of hourly sea level for SFO.
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possible regional climate indices could also be consid-
ered, such as the Pacific–North America (PNA) pattern
(Wallace and Gutzler 1981) or the PDO index (Mantua
et al. 1997).

e. Secular trends

Secular trends on extreme sea level are associated to
changes in surge and tidal components. There is some
evidence regarding long-term changes in the intensity
and frequency of the surge (meteorologically forced
storminess) in different parts around the globe (e.g.,
Bromirski et al. 2003; Langenberg et al. 1999). With
respect to the secular changes in the tide, a number of
studies have also been carried out trying to determine
whether the tide is changing on a long time scale
(Keelig and Whorf 2000), but the time scale (a 1800-yr
tidal cycle) is out of the scope of this work. Thus, major
changes in the tide are expected to be found due to the
tide propagation, which is affected by the geometry.
Therefore, natural processes (relative sea level rise and
long-term morphology changes) and the anthropogenic
permanent impacts (e.g., the construction of dykes;
land reclamation in wetland areas) are the main factors
that govern long-term variations in the tide (Pugh 2004).

An analysis of the secular trends in the mean tidal
range in several tidal gauges of the British Isles, France,
Netherlands, and Belgium revealed trends between

�1.8 and 1.3 mm yr�1 depending on location (Wood-
worth et al. 1991). For instance, the authors found a
negative trend for Brest, France, but a positive one for
Newlyn, United Kingdom, confirming that this effect is
fully locally dependent.

A number of authors have analyzed the joint effect of
tide and surge. For instance, Flick et al. (2003) analyzed
the long-term variation of the annual mean higher high
water (MHHW; the datum MHHW is defined as the
average of only the higher of the daily high waters), and
they found statistically significant trends in numerous
tidal records in United States. For example, at San
Francisco, the authors obtained an increase of 52 mm
century�1 of the MHHW relative to the MSL from 1900
to 1998.

After this analysis, small secular variations are ex-
pected. Therefore, we parameterize the location, scale,
and shape parameters as �LT(t) � �LTt, �LT(t) � �LTt,
and �LT(t) � �LTt. A parabolic parameterization has
also been tested for the location parameter, �LT(t) �
�LTt � �LT2

t2 (see Table 1).

f. Example of aggregation of the factors

As an example and following the aggregation ex-
plained at the beginning of section 4, a possible model
to be analyzed can be expressed as

��t� � 	SLRt � �	0 � 	1 cos�2
t� � 	2 sin�2
t� � 	3 cos�4
t� � 	4 sin�4
t��e	LTt � 	N1
cos�2
t�TN�

� 	N2
sin�2
t�TN� � 	SOI SOI�t�

��t� � ��0 � �1 cos�2
t� � �2 sin�2
t��e�LTt

��t� � ��0 � �1 cos�2
t� � �2 sin�2
t��. �20�

For this particular model �SLR is assumed to be known and the vector parameter to be estimated is

� � �	0, 	1, 	2, 	3, 	4, 	N1
, 	N2

, 	LT, 	SOI, �0, �1, �2, �LT, �0, �1, �2�, �21�

where �0, �1, �2, �3, and �4 model the seasonal behav-
ior of the location parameter; �N1

and �N2
are the am-

plitudes of the nodal cycle; �LT is the long-term trend of
the location parameter; �SOI explains the influence of
the climate index in the location parameter; �0, �1, and
�2 model the seasonality of the scale parameter; �LT

represents the long-term trend of the variability of the
extreme sea level; and �0, �1, and �2 model the season-
ality in the shape parameter. This model corresponds to
the so-called SFO-MM12 model to be analyzed in sec-
tion 5.

For a given model and a given monthly maxima time
series, the maximization of the log-likelihood function

[Eq. (4)] can be done as indicated in section 2. This
yields the estimates �̂, their standard errors, se(�̂), and
the maximum likelihood, l̂(p). Model performance can
be assessed by means of some information criteria, de-
pending on l̂(p), the number of parameters p, and the
number of data n (as explained in section 2d).

5. Application of the model

a. Selection of independent monthly maxima series

One important aspect of the proposed model is the
use of monthly maxima series, which must fulfill inde-
pendency between consecutive months. This aspect is
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usually approached defining a storm length or time
span (�), so that consecutive monthly maxima must be
separated at least by a given duration �. A preliminary
analysis has detected, from the original extraction of
the monthly maxima series {Zt1

, . . . , Ztm
}, the percent-

age of data that are independent for different time
spans (see Fig. 6).

An algorithm to obtain independent monthly
maxima series for a given time span �, {Zt1

, . . . , Ztm
}, has

been implemented. We run the series from i � 1, . . . , m
� 1 and, for every pair {Zti

, Zti�1
} of consecutive

monthly maxima in months (i, i�1), the duration �ti �
ti�1 � ti is calculated. If �ti 	 �, then Zti

� Zti
. If not, the

minimum of the consecutive values is disregarded. If,
for instance, the maximum max{Zti

, Zti�1
} corresponds

to month i � 1, then Zti�1
� Zti�1

and, from the original
hourly series in month i, another monthly maximum Zti
must be selected in month i, conditioned to ti � ti�1 �
�. The same procedure is applied if the maximum cor-
responds to month i. In this case, Zti

� Zti
and the new

Zti�1
must fulfill ti�1  ti � �. In some particular cases,

the new time series {Zt1
, . . . , Ztm

} could still have some

time interval �ti � �, but this can be overcome in an
iterative manner.

There is no general agreement to define the time
span, although a number of authors have used dura-
tions between 1 and 3 days for the application of the
r-largest annual method (e.g., Tawn 1988; Dixon and
Tawn 1994; Tsimplis and Blackman 1997). In this work,
we have chosen � � 48 h. For this time span the
monthly maxima values that must be corrected follow-
ing the algorithm are about 1%. It is clear that depen-
dency between consecutive months is not a major con-
cern, since just 1% of the original data must be changed
so that the results are only very mildly affected by this
hypothesis. This conclusion is very useful when long-
term historical time series are analyzed, in which only
the maximum daily observation or just the monthly
maximum value is available (Bijl et al. 1999).

b. Analysis of the results

A series of 1233 independent monthly maxima
{Zt1

, . . . , Ztm
} in the period 1901–2003 (three monthly

FIG. 6. Percentage of independent monthly extreme data as a function of the time span for San Francisco sea level time series.
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gaps) is the sample available in San Francisco. It is
assumed that time t refers to the initial year 1901.

Numerous possible models have been tested in order
to get the best model that minimizes the BIC criterion.
As has been previously stated, this criterion follows the
principle of parsimony, establishing a compromise be-
tween obtaining a good fit (measured by the maximized
log-likelihood function) and penalizing most heavily
the number of parameters used. Table 2 shows a sum-
mary of the results for SFO for different nested models
considered, showing the set of parameters, the MLEs,
the standard error (SE) for every parameter in paren-
theses, the maximum attained by the log-likelihood
function for every model (l), the number of parameters
(p), and the BIC and AIC model selection criteria. The
reference model with constant GEV parameters is
SFO-MM0. As for annual maxima, SFO-MM1 includes
sea level rise as a known value [�SLR(t) � �SLRt]. The
best in terms of minimizing the BIC is model SFO-
MM12 [given in Eq. (20)]. The number of parameters
of this model is p � 16, all of them significant at the 0.05
level. The order of inclusion of parameters in Table 2 is
the following: astronomical forcing, seasonality in the
location, scale and shape parameters, long-term trend
in the location and shape parameters, and SOI influ-
ence (the exception is model SFO-MM3, where �SOI is
previously included for comparison purposes). Al-
though more intermediate models have been consid-
ered by changing the order in which the parameters
enter the model, the final model remains unchanged.
The intermediate models allow us to assess the impor-
tance of the inclusion of the different processes in-
volved.

Figure 7 shows the fit of the models selected by
means of the probability and quantile plots. The upper
panels show the results for model SFO-MM1, whereas
the lower panels show plots for model SFO-MM12.
One can see that the residuals in model SFO-MM12 are
closer to the straight line, improving the fit with respect
to SFO-MM1.

Subsequently, the processes included in model SFO-
MM12 are analyzed.

1) SEA LEVEL RISE

The sea level rise (�SLR � 0.002 17 m yr�1), is intro-
duced as a fixed value since the San Francisco tidal
gauge is highly well documented.

2) SEASONALITY

Two harmonics for the location parameter (�o, �1, �2,
�3, �4) and one harmonic for both the scale (�o, �1, �2)
and shape (�o, �1, �2) parameters are obtained. The

preliminary analysis made in section 4 revealed this im-
portant aspect that is essential when more than one
datum per year is considered in an extreme value
model. The improvement in the model is conclusive
when seasonality is modeled. For instance, the inclusion
of the two harmonics in the location parameter (from
model SFO-MM2 to SFO-MM4) gives an enhancement
in the maximized log-likelihood function of more than
310 units. When considering one harmonic in the scale
and shape parameter (from model SFO-MM4 to SFO-
MM5 and from SFO-MM5 to SFO-MM7), the improve-
ment is of 69 and 4 units, respectively, which are sig-
nificant at least at the 0.02 level. The second harmonic
in the scale and shape parameters are significant at the
0.11 and 0.17 levels, respectively. Note how, although
the results from Fig. 4 for the monthly marginal GEV
distribution fits suggested that the second harmonic was
adequate for the scale and shape parameters, the com-
plete combination of model SFO-MM12 for the 1233
monthly data is more restrictive. The results obtained
for the shape parameter (an annual cycle with nonposi-
tive values) indicate that the tail of the distribution be-
longs to the Weibull for maxima family and is variable
along the year. This is very important for the estimation
of large return period quantiles.

3) LONG-TERM ASTRONOMICAL FORCING

The nodal cycle in the location parameter is intro-
duced in the model. The amplitude, (�̂N1

2 � �̂N2

2)1/2 �
0.025 m, is similar to that obtained by Sobey (2005),
fitting the SFO monthly extreme data to a linear trend
plus an 18.61-yr sinusoidal component (a5 � 0.0224 m).
The contribution of the nodal cycle in the scale param-
eter (�N1

,�N2
) is not significant.

4) DECADAL VARIABILITY

There is evidence that the effect of SOI is influential
on the model in the location parameter. The estimated
value of �SOI in model SFO-MM12 is �0.0237, with a
standard error of 0.003, so that every unit decrease in
SOI results in an estimated increase of around 2.4 cm in
monthly maximum sea level. Therefore, the 1983 El
Niño (SOI � �3) explained about 7.2 cm. This result is
in consonance with the increase detected by Flick
(1998) of about 12 cm in the monthly mean sea level in
the 1982/83 winter with respect to the 1960–78 period.
Another model considering the scale parameter (�SOI)
has been tested but it is only significant at the 0.44 level.

5) SECULAR TRENDS

The long-term location (�LT) and scale (�LT) param-
eters are included in the best model. The estimated
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value of the location parameter is �̂LT � 9 � 10�5 yr�1,
with a standard error of 2 � 10�5. Thus, a yearly aver-
age value of the increase of the mode of the distribution
can be calculated by �̂0�̂LT � 0.000 33 m yr�1, which
means an increase in the last 103 yr of 3.4 cm. Similar
results were obtained by Flick et al. (2003) analyzing
the change of the yearly average MHHW relative to the
MSL. The authors obtained for SFO an increase of
0.000 42 m yr�1. Although the type of analysis and the
variable of interest is not the same, it must be noted
that the order of magnitude of this result for model
SFO-MM12 is in good agreement with respect to Flick
et al.’s (2003) work. Moreover, the most impressive re-
sult is obtained in the scale parameter. The estimated
value is �̂LT � 0.002 yr�1, with a 95% confidence in-

terval of (0.0005, 0.0035). This means an increase of
almost 23% [exp(0.002 � 103) � 1.229] in 103 yr in the
estimation of the scale parameter, that is, in the stormi-
ness or variability of the monthly extreme sea levels.
Other models including a parabolic trend in the loca-
tion parameter (p value of 0.32) or a linear long-term
variation in the shape parameter have been tested but
were not significant.

6) CONTRIBUTION OF THE DIFFERENT TIME

SCALES

The contribution of every factor in the location and
scale parameters in model SFO-MM12 is represented in
Fig. 8. The scale parameters (�, �S, and �LT) are verti-
cally distorted to easily visualize its component (note

FIG. 7. Quantile and probability plots for models (top) SFO-MM1 and (bottom) SFO-MM12.
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the different scales of the location and scale param-
eters). Secular trends in the location and scale param-
eters are multiplied by estimated parameters �̂0 and �̂0,
respectively. One can see that the model is able to take
into account the different time scales (sea level rise,
seasonality, climate variability, nodal cycle, and secular
trend). Besides, it is important to point out that the
order of magnitude of every factor is not at all negli-
gible.

7) DETERMINATION OF QUANTILES

The evolution of the location parameter as well as
the instantaneous 50-yr return period quantile (bold
lines) for years 1900, 1950, and 2000 are shown in Fig.
9. Black lines correspond to 1900 (lower) and 2000 (up-
per). Results from 1950 are represented by gray lines.
The vertical difference is due to the long-term compo-
nents (sea level rise, secular trend, nodal cycle, and
climate variability). It is remarkable how the location

parameter is able to reproduce the two maxima (in De-
cember–January and in June) during the year. Besides,
note that the behavior of the 50-yr quantile is similar
but enhances its magnitude in December and January
(due to the seasonal variability of the shape and scale
parameters). A 95% upper confidence interval for the
50-yr return period in the year 2000, based on the delta
method, is also plotted in the dotted–dashed line fol-
lowing Eqs. (10) and (11). More specifically, these con-
fidence limits have been computed using the formula
ẑq(�) � 1.96se[ẑq(�)]. We consider the possibility that
symmetrical confidence intervals like these may give a
misleading representation of the uncertainty involved
(Coles 2001). In this case, it is likely that log[ẑq(�)] will
be better approximated by the normal distribution than
ẑq(�). We investigate the robustness of our approach by
assuming for the moment that the normal approxima-
tion applies to log[ẑq(�)], in which case the delta
method would justify using the formula ẑq(�) exp{�
1.96se[ẑq(�)]/ẑq(�)}. For the values of se[ẑq(�)]/ẑq(�)

FIG. 8. Contribution of the physical processes in model SFO-MM12 in the location and scale parameters.
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corresponding to the data used in Fig. 9, the difference
between these two formulas is negligible, showing our
approach to be robust. Alternatively, one could use the
profile likelihood method (Coles 2001), which would
require a much heavier computational effort.

6. Conclusions

A statistical model to analyze different time scales of
the variability of extreme high sea levels is presented.
The model is based on the time-dependent generalized
extreme value distribution for independent monthly
maxima series. Nonstationarity is introduced in the
model in terms of different time scales—such as sea-
sonality, interdecadal climate variability and astro-
nomical modulations, sea level rise, and secular
trends—that are parameterized as functions of time
(linear, quadratic, exponential, and cosine functions) or
covariates (e.g., SOI). These processes are included in
the location, scale, and shape parameters of the prob-
ability distribution of extreme sea levels.

The model is applied to a well-known large tidal
hourly time series (San Francisco) showing the charac-
teristics of the seasonal-to-interannual time scales at
this particular site. Conclusions for this particular site
are as follows: 1) the inclusion of seasonal effects in the
location (two harmonics), scale (one), and shape (one)
parameters notably improves the understanding of data
variability increasing the significance of the parameters
considered (e.g., see Table 2); 2) significant correlation
with the SOI contribution to the location parameter is
detected (each SOI unit explains 2.4 cm); 3) the nodal
cycle (in the location parameter) contributes to a better
explanation of data variability (3-cm amplitude); 4) a
slight positive secular trend in the location parameter is
obtained (4 cm in the twentieth century); and 5) an
increase of about 20% for the secular variability of the
scale parameter has been detected. That means that
monthly sea level extremes in SFO are increasing not
only in the mean values but also in the variability
(storminess).

FIG. 9. Location parameter and 50-yr return period quantiles (bold lines) within a year for years 1900 (lower line), 1950 (gray), and
2000 (upper line). The 95% upper confidence interval for the 50-yr return period for the year 2000 is plotted by the gray dashed line.
Observed values of monthly maxima sea level are indicated by crosses. Results are for model SFO-MM12.
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Results exhibit that the model is valid for a complete
analysis of seasonal-to-interannual sea level extremes,
providing time-dependent quantiles and confidence in-
tervals. The modeling of the different time scales helps
give a better understanding of recent secular trends for
the extreme climate events, which are one of the main
concerns nowadays (Easterling et al. 2000). Finally, we
believe that the proposed model provides very useful
insights to building models for other geophysical ex-
treme variables such as extreme rainfalls, temperature,
wind speeds, or wave climate, taking into account the
peculiarities (location and physical processes) of each
particular case.
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