
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 163864, 6 pages
doi:10.1155/2008/163864

Research Article
Embedded XML DOM Parser: An Approach for XML Data
Processing on Networked Embedded Systems with Real-Time
Requirements

Esther Mı́nguez Collado,1 M. Angeles Cavia Soto,2 José A. Pérez Garcı́a,3

Iván M. Delamer,1 and Jose L. Martı́nez Lastra1

1 Institute of Production Engineering, Tampere University of Technology, 33101 Tampere, Finland
2 Departamento de Ingenieria Electrica y Energetica, Universidad de Cantabria, 39005 Santander, Spain
3 E.T.S. de Ingenieria Industrial, Univerisdad de Vigo, 36310 Vigo, Spain

Correspondence should be addressed to Jose L. Martı́nez Lastra, lastra@ieee.org

Received 5 February 2007; Revised 18 June 2007; Accepted 8 October 2007

Recommended by Valeriy Vyatkin

Trends in control and automation show an increase in data processing and communication in embedded automation controllers.
The eXtensible Markup Language (XML) is emerging as a dominant data syntax, fostering interoperability, yet little is still known
about how to provide predictable real-time performance in XML processing, as required in the domain of industrial automation.
This paper presents an XML processor that is designed with such real-time performance in mind. The publication attempts to
disclose insight gained in applying techniques such as object pooling and reuse, and other methods targeted at avoiding dynamic
memory allocation and its consequent memory fragmentation. Benchmarking tests are reported in order to illustrate the benefits
of the approach.

Copyright © 2008 Esther Mı́nguez Collado et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Current trends in the industrial automation domain are
pushing the adoption of information and communica-
tion technologies (ICT) at the device level, increasing the
amount of information processing local to where process
control occurs. Networked embedded systems (NES) are be-
ing equipped with increasing computation power and com-
munication resources that allow direct integration with en-
terprise and supervisory control systems. Among the tech-
nologies that are used to represent and communicate infor-
mation, the eXtensible Markup Language (XML) is emerg-
ing as a prevailing syntax in the embedded domain, answer-
ing to requirements of interoperability and integration with
desktop and server-type systems. A few example technolo-
gies that illustrate this trend are the OPC Unified Architec-
ture (OPC-UA) [1], the Computer Aided Manufacturing us-
ing XML (CAMX) framework [2], and the Devices Profile for
Web Services (DPWS) [3].

One of the challenges faced by the processing of XML
data in embedded automation controllers is the fulfillment of

real-time requirements. The majority of currently available
off-the-shelf XML processors do not provide features that ad-
dress deterministic behavior, and background research pre-
sented in Section 2 has found no available embedded XML
processor or research activities pointing in this direction. In
addition, the volume of data exchange and data processing
within industrial controllers is increasing, taking more re-
sources which were previously just granted to control tasks
without need for arbitration. The challenge is therefore to
provide a predictable behavior for XML processing activities
so that the performance of real-time control tasks is not af-
fected.

Among the major sources of problems introduced by
XML processing is the dynamic allocation of memory during
parsing operations. This process is not time-deterministic,
and may lead to memory fragmentation and eventual failure
to allocate sufficient memory for the operation. In environ-
ments such as Java, dynamic allocation leads to indeterminist
garbage collection.

This paper presents a design and experimentation of a pr-
ototype XML processor designed to avoid dynamic memory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/147465538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EURASIP Journal on Embedded Systems

allocation. The processor is denominated EXDOM (Embed-
ded XML DOM Parser), and was developed using the Java 2
Micro Edition (J2ME) platform. EXDOM is specifically de-
signed for data analysis on NES and it is focused in optimized
memory use. EXDOM offers in addition a new approach for
processing data in environments where the structure of ex-
changed XML messages is known in advance.

The rest of this publication is structured as follows.
Chapter 2 surveys related work and summarizes the state-
of-the-art on XML parsers, with special focus on the embed-
ded domain. Section 3 presents the set of methodologies and
algorithms used on the EXDOM design. Section 4 describes
benchmarking tests and results. The final section presents
conclusions and proposes future research lines.

2. XML PROCESSORS

According to Maruyama et al. [4], the fundamental function-
ality of XML processors is called parsing. Parsing is the pro-
cess of analyzing input data (XML documents), and generat-
ing an internal and structured data representation which can
be accessed by application programs. An XML processor per-
forms both parsing and its inverse operation: generation, or
serialization, of XML documents. The functions of an XML
processor are illustrated in Figure 1 [4].

A first classification of XML processors can be made be-
tween “heavy” and “light” processors. “Heavy” processors are
called those which have been designed for advanced compu-
tation environments, and are not suitable for working in NES
because of their size and memory requirements. However,
relevant design concepts are often suitable for being applied
on “light” processors, which are designed for environments
with limited processing power and memory availability.

A basic classification of XML processor includes

(i) tree-based APIs,

(ii) event-based APIs.

2.1. Tree-based API

The document object model (DOM) [5, 6] is the predom-
inant tree-based API for accessing XML documents. The
XML document is represented in a tree structure where every
XML tag is a node. Data is stored on memory as a tree that
represents the complete XML document, allowing the possi-
bility to navigate the tree, modify it, and/or serialize back the
information. Thus, a drawback is the need of enough mem-
ory to store the entire document, which produces excessive
consumption of system resources when only a portion of the
document is to be processed [7].

In addition, tree-based APIs can use XPath (XML Path
Language) for finding information. XPath is a language de-
signed for addressing parts of an XML document [8]. Using
a query language, it is possible to point to a desired tree node,
and the API will walk through the tree until finding the data
requested, minimizing the required programming effort for
tree navigation.

2.2. Event-based API

The Simple API for XML (SAX) is another API for accessing
XML documents, and it is the predominant API for event-
based processing. This type of API reports parsing events di-
rectly to the application through callback methods. SAX is
renowned for being less resource intensive than DOM, how-
ever, it is not convenient when storage or modification of
data is needed [7, 9].

2.3. Available XML processors

A wide set of APIs like JDOM, JAXP, Xerces, or Xalan are
available [4, 10–12]. Most of them offer support for both
DOM and SAX. However, these kinds of processors are typ-
ically resource intensive and require megabytes of memory.
Thus, small J2ME parsers fit better for limited devices such
as NES, in which size and memory restrictions make unfea-
sible the use of “heavy” processors.

NanoXML, kXML, Xparse-J, ASXMLP, WoodStox, and
TinyXML among others are examples of “light” XML-
processors [13, 14]. Size varies between six to sixteen kilo-
bytes, which makes them appropriate for small devices.

2.4. Limitations analysis

Both, “heavy and light” processors, still have the problem of
memory fragmentation that results in garbage collections in
environments such as Java or C#, which produces runtime
overhead. No available parser could be found that has been
designed considering efficient memory use in terms of pre-
dictable real-time performance. For that reason, an alterna-
tive solution is needed.

In the design of an XML processor that overcomes this
limitation, focus is made on tree-based parsers, because de-
spite of the fact that it requires more resources, the struc-
tured data representation provides a simple interface and
offers possibility to modify information. For such kind of
model representation, the use of XPath proves a powerful
tool for easily processing a specific node, but current imple-
mentations introduce a further performance limitation. Typ-
ically, first a processor parses the XML document to build
the data structure, and then starting from the root, XPath
walks through the tree trying to find the data requested. With
this mechanism the tree is passed several times in the worst
case to reach each node. A solution using Xpath approach for
finding information with just one pass is therefore desirable.

3. EXDOM DESIGN

J2ME platform provides the necessary tools to build a
portable and light solution for handling XML data. The ob-
ject oriented paradigm has been used in the design and de-
velopment of EXDOM in order to provide modularity.

According to Cheng [15], a set of optimization practices
such as class merging, elimination of variables, or method In-
lining reduce either the code size or Heap usage. Reduction
of code size decreases the total amount of bytes that the pro-
gram occupies on memory, while reduction of heap usage



Esther Mı́nguez Collado et al. 3

Accessing with
DOM and SAX APIs

XML document

Parsing

Generation

<?xml version=“1.0”?>
<doc>
<chapter>

<title>XML and Java</title>
<p>This book is . . .</p>
. . .

</chapter>
</doc>

X
M

L
pr

oc
es

so
r

DOM tree

SAX events

Application

Figure 1: Overview of an XML processor.

implies more availability for (dynamic) memory allocation
for other tasks. In order to adopt the advantage of class merg-
ing and method Inlining benefits, the lexical and syntactic
analysis processes of XML parsers have been merged in the
design of EXDOM.

When scanning the input document, a deterministic state
machine defines the state in which the parser is. Then, valid
inputs produce changes on current parser state. If there is a
scenario in which current parser state does not support the
current input token, an error is reported. This finite automa-
ton ensures that all the elements, attributes, and other XML
tokens are correctly nested in the document. Thus, XML
well-formedness is verified. However, validation is not pro-
vided, that is, no semantic analysis against a Schema is per-
formed. Validation is time-consuming and mostly not neces-
sary for NES applications working in a well-defined environ-
ment: messages can be validated during design and applica-
tion commissioning in order to guarantee proper structure
in order to avoid repeated and time-consuming validation at
run time.

The design approach is based on memory reuse instead
of dynamic allocation and deallocation of objects. Thus,
a one-instance policy is applied. Objects are allocated in
constructor methods and treated as private variables that
will be reused during the program lifecycle. Appropriate re-
initialization is needed every time the parser is launched.
Therefore, this approach suggests the use of a fixed amount
of memory being used while data is processed. Under this
theory, garbage collections may be avoided.

3.1. Design constraints

The reuse of objects introduces additional programming
effort when compared to programming with dynamic de-
/allocation of objects. One of the main problems in a Java en-
vironment is that Strings, Vectors, Stacks, and other classes,
as well as the majority of standard libraries, use dynamic
memory allocation at runtime. Thus, reimplementation of
basic data structures is needed. One of the characteristics
of Strings is that they are immutable while by contrast, it is
possible to change the content of arrays [16]. That is to say,
Strings cannot change their content once created, but their
reference can be assigned to a new value and the old one will

be left as garbage to be collected by garbage collector. How-
ever, arrays, once created can change their content without
allocating new memory. Thus, a String equivalent is imple-
mented using an array of bytes, and is called ByteString on
EXDOM.

A Stack of ByteStrings is also needed for use in parser
content and navigation functionalities. It provides basic
functionalities like push(), pop(), isEmpty(). The stack must
allocate memory and be initialized also from the very begin-
ning in constructors. As a result, the stack is also able to pro-
vide other functionalities, like the possibility to change the
content of a particular position on the stack.

3.2. Memory pools

A key point on reuse of memory is the use of object pools. An
object pool contains a set of preallocated objects which are
used and reused at runtime without need for dynamic allo-
cation. The approach avoids the use of the operator new and
therefore no new memory is allocated, but instead objects
are reused after they are returned to the pool. Preallocation
of a number of XML tree nodes in a memory pool, which is
passed as a parameter to the parser, allows each application to
determine the maximum amount of nodes needed. On real-
time systems working on a well-defined context with pre-
specified messages, a memory pool behaves more efficiently
than the dynamic allocation counterpart.

3.3. Iterative tree navigation

A common solution when walking a tree is to use recursion.
Although elegant, the recursive mechanism can be substi-
tuted for a more efficient iterative solution. As a consequence,
the EXDOM approach is based on a reference pointer mov-
ing through the tree. Despite increasing the code sophistica-
tion, it avoids recursion drawbacks by saving processor time,
and memory and stack space.

3.4. Node structure

EXDOM is a DOM-like parser since it does not conform
entirely to the DOM specifications. One of the main dif-
ferences is the structure of the nodes. DOM specifications



4 EURASIP Journal on Embedded Systems

Node Of Pool

next: int
position: int

Node Of Tree

element: ByteString
parent: Node Of Tree
children: Collection

Node

type: int
text: ByteString
attributes: ByteStringStack
valuesOfAttributes: ByteStringStack
namespaces: ByteStringStack
namespaces uris: ByteStringStack

Figure 2: EXDOM Node structure

stipulate twelve node types [17]. However, in order to in-
crement parsing performance, EXDOM provides two differ-
ent node types: Document and Element. Attributes, text, en-
tity references, and CDATA sections are contained within a
single node, instead of being treated as multiple nodes. Also
Namespaces defined under a particular element are stored on
their correspondent node.

The design of EXDOM nodes has been done using the
object-oriented inheritance concept, also known as the “is-a”
concept. Every derived class (or inherited class) is a clone of
its base class (or parent class), but the inherited class adds
more functionality and can modify the clone [18]. The main
advantage in this design decision is that inheritance permits
to adapt the parser for application of specific requirements
with minimum reimplementation.

Therefore, and according to Figure 2, a “Node” is-a
“Node Of Tree” which is-a “Node Of Pool.” The class “Node
Of Pool” implements the concept of object pool explained
before. It is implemented as a linked list for optimizing fast
access to the first available node. This optimization takes in
account that deletion of nodes is not needed when parsing.

The class “Node Of Tree” implements a generic node in
a tree which has a link to its parent and to a collection of
children. It also includes basic data as the name of the node
stored in the element variable. Its purpose is to contain the
name of the tag element on XML.

The class “Node” extends “Node Of Tree” and imple-
ments our concept of node:

(i) type that can be either “Document” if it is the root
node of the tree, or “Element” if it is every other node,

(ii) text that stores text associated to the node.

Node Of Tree

element: ByteString
parent: Node Of Tree
children: Collection

NodeXPath

textOfNode: ByteString
isTextValid: Boolean
attributes: ByteStringStack
valuesOfAttributes: ByteStringStack

Figure 3: XPath node structure.

Two symmetric stacks store attributes associated to the
node and their attribute value, respectively:

(i) attributes,
(ii) valuesOfAttributes.

Finally, two other symmetric stacks store the list of
namespace prefixes declared on the node and their unique
resource identifier (URI) value, respectively:

(i) namespaces,
(ii) namespaces uris.

3.5. XPath solution

The second possibility that EXDOM offers for parsing is a
novel approach: the guidance of the parsing process. That is
to say, to offer the possibility to add expected/known paths
before parsing and retrieve directly the expected data at the
same time of parsing, instead of parsing and then searching
for the data. The scope of this approach is applicable in well-
defined contexts in which a user already knows in advance
the path for finding an attribute value or a text under a node.

A first step is to create a parallel tree with all paths pro-
vided. This tree is intended to mirror the tree that will be
constructed during parsing, but with special marks in those
nodes where values will be retrieved. Then, as the EXDOM
tree is being created, the marked nodes are filled when a
match between the trees is detected. If data was not found
after parsing, marks will remain empty.

This solution offers a significant optimization since there
is no need to walk from the root through the tree for each
path after the document is parsed. A reference marking the
last position in the XPath tree in which it is still possible to
find a marked attribute or text under it avoids starting from
the root each time.

The second tree incurs in a low memory cost, since nodes
do not store values of attributes, but references to the ones
on the main tree. The same applies for text. This can be ex-
plained by the XPath nodes design shown in Figure 3.

Again inheritance has been used. Structure of XPath node
includes

(i) IsTextValid: mark for text in the node;



Esther Mı́nguez Collado et al. 5

(A) When Ei is opened
· · ·

Insert Ei on T
· · ·
If (∃ child of R = Ei), then

R←− child of R = Ei

If (∃mi on R), then
read values of attributes and set references to them

Else
read values of attributes
· · ·

(B) When Ei is closed
· · ·

Ei ←− Ei-1

· · ·
If (Ei /=R)

R←− parent of R
· · ·

Algorithm 1

(ii) textOfNode: a reference to the text on the main tree, or
null if IsTextValid is false;

(iii) attributes: a set of attributes expected to find marks for
attributes;

(iv) valuesOfAttributes: references to attribute values or
null if they were not found.

As mentioned before, while parsing, a reference on XPath
tree is moving in order to create references to expected data.
Naming the XPath tree XT, marked positions mi, the node to
which XPath reference is pointing R, the main tree T, and an
elementtag Ei, then Algorithm 1 holds.

3.6. Other current restrictions

EXDOM does not comply with the document type declara-
tion as well as its related features. It recognizes references to
XML Schemas but not to DTDs.

4. EXPERIMENTAL TEST AND RESULTS

EXDOM has been benchmarked against Xerces and Xparse-J
1.1 [19, 20].

XParse-J 1.1 is a small DOM-like parser developed in
J2ME technology, being a very light parser with only 6 KB
[19]. It provides similar functionality than EXDOM and also
offers possibility to find information using XPath notation,
therefore it appears as the most similar alternative. Xerces is
a DOM parser, widely used in desktop and server environ-
ments, and is chosen to illustrate the difference in memory
use scale.

Tests have been made for parsing XML files which gener-
ate symmetric trees with node counts of 27, 53, 105, 209, 417,
and so on. Comparative results between parsers are made in a
PC Intel Celeron 2.97 GHz and 760 MB of RAM running the
operating system Microsoft Windows XP Professional ver-
sion 2002 with Service Pack 2.

10000

1000

100

10

1

Lo
g.

ti
m

e
(m

s)

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Messages ×1000

Xparse-J 1.1
EXDOM
Xerces

Processing time

Figure 4: Execution time results.

100000

10000

1000

100

10P
ro

ce
ss

in
g

ti
m

e
(L

og
.m

ed
ia

n
)

27 53 105 209 417

Nodes

Xparse-J 1.1
EXDOM
Xerces

Figure 5: Execution time versus file size results.

4.1. Processing time

In order to minimize the impact of measurements in ob-
tained values, statistics are performed for 1000 parsing op-
eration of messages with a size of 2 KB each. The results are
illustrated in Figure 4.

The observations indicate that EXDOM shows a signifi-
cantly better performance on execution time for small XML
documents, which are typically found in NES environments.

4.2. Execution time versus file size

Figure 5 illustrates that the results obtained alter measuring
of the execution time of 1000 parsing operations for messages
of different size. The message size is quantified according to
the number of XML elements.

In this case, the results show that Xparse is growing ex-
ponentially with the increase of nodes and therefore file
size, Xerces, and EXDOM show better performance. Even
though EXDOM performs significantly better than Xerces
for small files (less than 50 nodes), it can be seen that the
performance becomes similar for larger XML documents



6 EURASIP Journal on Embedded Systems

600

500

400

300

200

100

0

B
yt

es
×1

00
0

1 31 61 91 121

Message

Xparse-J 1.1
EXDOM
Xerces

Figure 6: Observations on the variation of free memory in the JVM.

Table 1: Statistics from Figure 6.

EXDOM Xerces Xparse-J

Maximum 16 876 50 3992 18 6872

Minimum 0 14 192 4068

Range 16 876 48 9800 18 2804

Average 111.76 35787.7 33134.8

Median 0 20 200 20 764

Standard deviation 1373.35 88 450 35 297

Variance 1.88e6 7.82e9 1.24e9

(100 to 500 nodes). Analyzing the trend and due to the ex-
ponential complexity of EXDOM, it can be expected that
Xerces performs better than EXDOM when the document
size is large (more than 1000 nodes), indicating that Xerces
is optimized for manipulation of large data quantities. How-
ever, EXDOM is still an order of magnitude faster for small
messages (less than 27 nodes), which are typical of real-time
factory automation applications such as CAMX [2].

4.3. Memory usage

Figure 6 illustrates the variation in amount of free memory
in the Java Virtual Machine (JVM). A sudden increment on
free memory implies the action of the garbage collector.

While EXDOM maintains a constant amount of memory
used, avoiding garbage collections, the other parsers cause
variations in memory availability. Such variations cause in-
determinism in process timing.

Table 1 shows various statistics obtained from Figure 6
which clarifies differences among parsers.

4.4. Analysis

The better performance of EXDOM for processing time can
be attributed only partially to an optimized implementation
of the parsing mechanism. The timing metric includes not
only the parsing time but the time needed for memory al-
location and for garbage collection, which significantly in-
creases the averages over 1000 messages. Thus, careful use of
memory improves both response time and determinism.

5. CONCLUSIONS AND FUTURE WORK

EXDOM has been introduced as a solution to XML process-
ing in environments that provide limited memory and com-
puting power, and have the added challenge of requiring pre-
dictable real-time response. Among the design highlights of
the approach are the pooling and reuse of objects, node value
retrieval with a single tree navigation operation, and pro-
gramming optimization with method Inlining.

Among future research directions are the application of
similar or new methods in order to improve the performance
and predictability of XML document serialization. In addi-
tion, further research is needed in order to determine the
appropriate methods to achieve full XML compliance whilst
maintaining the performance characteristics obtained thus
far.

REFERENCES

[1] OPC Foundation, “OPC UA Part 1—Concepts 1.00 Specifica-
tion,” July 28, 2006.

[2] A. Dugenske, A. Fraser, T. Nguyen, and R. Voitus, “The na-
tional electronics manufacturing initiative (NEMI) plug and
play factory project,” International Journal of Computer Inte-
grated Manufacturing, vol. 13, no. 3, pp. 225–244, 2000.

[3] F. Jammes and H. Smit, “Service-oriented paradigms in indus-
trial automation,” IEEE Transactions on Industrial Informatics,
vol. 1, no. 1, pp. 62–70, 2005.

[4] H. Maruyama, K. Tamura, and N. Uramoto, XML and Java:
Developing Web Applications, Addison Wesley, Upper Saddle
River, NJ, USA, 2002.

[5] “Document Object Model (DOM) specifications,” http://www
.w3.org/DOM/.

[6] “Document Object model Core,” 2004, http://www.w3.org/
TR/DOM-Level-3-Core/core.html.

[7] XML tutorial, “Introduction to XML and XML With Java,”
http://totheriver.com/learn/xml/xmltutorial.html.

[8] “XML path language (XPath),” http://www.w3.org/TR/xpath.
[9] Simple API for XML (SAX), http://www.saxproject.org/.

[10] Java Web Services, “Java API for XML Processing (JAXP),”
http://java.sun.com/webservices/jaxp/.

[11] “The Apache XML Project,” http://xml.apache.org/.
[12] “JDOM,” http://www.jdom.org/.
[13] J. Knudsen, “Parsing XML in J2ME,” 2002, http://developers

.com/techtopics/mobility/midp/articles/parsingxml/.
[14] “Java ME Open Source Software,” http://ngphone.com/j2me/

opensource/xml.htm.
[15] S. Cheng, “Squeezing the last byte and Last Ounce of Per-

formance on your MIDLETS,” http://developers.sun.com/
learning/javaoneonline/2006/mobility/TS-3418.pdf.

[16] Open University course M254, “Java everywhere,” The Open
University, 2005.

[17] XML DOM Node Types. http://www.w3schools.com/dom/
dom nodetype.asp.

[18] B. Eckel, Thinking in Java, Prentice-Hall, Santa Barbara, Calif,
USA, 3rd edition, 2003.

[19] M. Claben, “Xparse-J 1.0 User documentation,” http://www
.webreference.com/xml/tools/xparse-j.html.

[20] The Apache XML project, “Xerces2 Java Parser 2.9.0 Release,”
http://xerces.apache.org/xerces2-j/.


