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Abstract: Whether or not reservoirs contain water throughout the dry season is critical to avoiding
late season crop failure in seasonally-arid agricultural landscapes. Locations, volumes, and temporal
dynamics, particularly of small (<1 Mm3) reservoirs are poorly documented globally, thus making
it difficult to identify geographic and intra-annual gaps in reservoir water availability. Yet, small
reservoirs are the most vulnerable to drying out and often service the poorest of farmers. Using
the transboundary Volta River Basin (~413,000 sq km) in West Africa as a case study, we present
a novel method to map reservoirs and quantify the uncertainty of Landsat derived reservoir area
estimates, which can be readily applied anywhere in the globe. We applied our method to compare
the accuracy of reservoir areas that are derived from the Global Surface Water Monthly Water History
(GSW) dataset to those that are derived when surface water is classified on Landsat 8 OLI imagery
using the Normalised Difference Water Index (NDWI), Modified NDWI with band 6 (MNDWI1),
and Modified NDWI with band 7 (MNDWI2). We quantified how the areal accuracies of reservoir
size estimates vary with the water classification method, reservoir properties, and environmental
context, and assessed the options and limitations of using uncertain reservoir area estimates to
monitor reservoir dynamics in an agricultural context. Results show that reservoir area estimates
that are derived from the GSW data are 19% less accurate for our study site than MNDWI1 derived
estimates, for a sample of 272 reservoir extents of 0.09 to 72 ha. The accuracy of Landsat-derived
estimates improves with reservoir size and perimeter-area ratio, while accuracy may decline as
surface vegetation increases. We show that GSW derived reservoir area estimates can provide an
upper limit for current reservoir capacity and seasonal dynamics of larger reservoirs. Data gaps
and uncertainties make GSW derived reservoir extents unsuitable for monitoring reservoirs that
are smaller than 5.1 ha (holding ~49,759 m3), which constitute 674 (56%) reservoirs in the Volta
basin, or monitoring seasonal fluctuations of most small reservoirs, limiting its utility for agricultural
planning. This study is one of the first to test the utility and limitations of the newly available GSW
dataset and provides guidance on the conditions under which this, and other Landsat-based surface
water maps, can be reliably used to monitor reservoir resources.
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1. Introduction

Freshwater scarcity is a major constraint to food production in agricultural regions of the world
with variable intra- and inter-annual rainfall patterns and poor water storage infrastructures [1].
In sub-Saharan Africa, seasonal rainfall fluctuations and shortages cause up to 53% crop failure in
smallholder farming systems [2]. Monitoring water resource availability in such areas is critical
to limit food shortages and the subsequent sometimes far-reaching social, political, and economic
implications [3].

Small and large reservoirs are a common development investment to avert or reduce water
shortages and boost production in seasonally dry, agriculture-dependent regions [4]. Reservoirs
capture and store runoff to provide farmers with a source of freshwater during dry spells and annual
dry seasons, increasing the viable extent, productivity, and resilience of cropping, fishery, and livestock
production systems [5]. “Small” reservoirs are engineered surface water bodies with a capacity of
less than one million m3 (Mm3) [6]. Small reservoirs are less expensive to construct than larger ones,
and are therefore perceived as low cost, high return development devices [4]. Decades of investments
to construct small reservoirs remain largely undocumented at the river basin level and above [7–10],
making their impact on human well-being or environmental outcomes impossible to accurately assess.
Information on reservoir locations, volumes, and seasonality (water presence-absence) can guide
policies to allocate and manage reservoir water sustainably and avert agricultural water and associated
food shortages. Access to this information would therefore support donors, governments, and NGOs
in efforts to better understand the value of reservoirs and target reservoir investments and maintenance
to achieve local to global sustainable development objectives.

Information on small reservoirs is challenging to compile and to keep updated at the national,
regional, or global level [11]. Ground-based assessments of small reservoir locations, capacities, and
seasonal volumes are time-consuming to conduct because of the spatial dispersion of these reservoirs
and decentralized decision making regarding reservoir investments and maintenance [12]. Many
previous studies have characterized inland surface water resources using free satellite imagery, such
as from Landsat [13–17] and the Moderate Resolution Imaging Spectroradiometer (MODIS) [18–22].
Where the spatial and temporal resolution are sufficiently high, remotely sensed imagery provides
a practical approach to small water body mapping and monitoring [23,24]. The highest resolution,
freely available imagery that is collected on an intra-annual timestep over long time scales comes
from the Landsat satellite series [25]. Instruments on Landsat satellites provide near-complete global
coverage of multispectral imagery at 30 m resolution and 16-day time steps, from 1982 to present.
Specifically, Landsat 4 Thematic Mapper provides imagery from 1982 to 1993; Landsat 5 Thematic
Mapper from 1984 to 2012; Landsat 7 Enhanced Thematic Mapper from 1999 to present; and, Landsat 8
Operational Land Imager (OLI) from February 2013 to present, providing 35 years of almost continuous
data [26]. Accurately mapping waterbodies from Landsat imagery is a non-trivial task, since water can
be misclassified as urban areas, shadows, and other objects with similar spectral signatures, or these
non-water objects can be falsely classified as water [27]. Sediment or vegetation in water—particularly
common in West Africa [16]—alters the spectral signature of water, while cloud and dust particles in
the atmosphere obscure or distort information about where land is water-covered [28].

Researchers have successfully mapped water body locations and extents from Landsat imagery
for several decades through the use of spectral indices [23,24,29]. Spectral indices are created by
calculating the difference, ratio, or normalised difference of two multispectral image bands and
identifying the threshold that enhances the reflectance of wavelengths for objects of interest, such as
water [28]. The most effective index or threshold identified to map water is rarely the same between
studies [29]. More recently, Pekel J.-F. et al. [16] used multi-spectral analysis to classify water and
non-water over all of the images in the Landsat database from 1984 to 2015, resulting in pixel-level
measures of water occurrence at monthly time steps over the entire globe. Their Global Surface Water
Monthly Water History (GSW) dataset represents an attempt to establish a globally applicable method
for water detection from Landsat imagery. Uncertainties in GSW and other surface water maps are
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generally reported in terms of pixel-level classification accuracy [30] rather than the impact on practical
applications. However, the level of uncertainty that is acceptable will depend on the end-use, and
knowledge of this uncertainty may help to ensure its effective use in policy [31]. For example, water
managers that unknowingly use incorrect information on where a small reservoir exists or when
reservoirs run dry may make decisions on water allocation that have serious consequences for the
agricultural sector and farmers who rely on reservoirs for their livelihoods. Intra-annual surface water
maps derived from Landsat satellite imagery, and particularly the globally available GSW dataset, may
be useful for monitoring spatial and seasonal dynamics of small reservoirs in agricultural landscapes
opening up opportunities for improved global reservoir data, but their accuracy for this end-use is
currently untested.

The primary objective of this paper was to compare a range of methods for rapid and low-cost
monitoring of reservoirs, and to establish levels of accuracy in reservoir characterization using these
methods, as reservoir properties and environmental conditions vary. For this purpose, we developed a
new method for mapping reservoir extents rapidly across large spatio-temporal extents using free,
globally available datasets and tools. We compare the effect of accuracy, which is the level of uncertainty
in reservoir surface area and equivalent volume estimates, on information about temporal and spatial
reservoir water availability to highlight where improved accuracies may be important for agricultural
applications. Using the Volta Basin in West Africa as a case study, we focus on three specific questions:
(i) What is the accuracy of reservoir areal extents digitized manually from high resolution Google Earth
imagery compared to those derived computationally from GSW or from commonly used spectral water
indices applied to Landsat 8 OLI imagery? (ii) How does the accuracy of Landsat-based reservoir area
estimates vary with environmental factors? (iii) What information on reservoir size and seasonality
can be reliably determined from the GSW and what cannot? Our study represents the first attempt
to test the limits of the GSW dataset for monitoring reservoirs of varied size and across a range of
environmental conditions in a West African context. Establishing reliable end-uses for the GSW is
particularly important given that this dataset is global, publically available, and easy to use. The global
applicability of our approach makes it useful to a wide range of stakeholders interested in surface
water resources or low-cost environmental monitoring.

We structure the remainder of the paper as follows. Section 2.1 presents the study site. Sections 2.2
and 2.3 describe the input remote sensing datasets and processing techniques that were used to
identify reservoirs and prepare surface water maps. Section 2.4 explains how reservoir extents were
extracted, and Section 2.5 describes the validation data used to determine the accuracy of these reservoir
extents. Sections 2.6 and 2.7 describes the comparison of accuracies and analysis of covariance with
environmental factors, while Section 2.8 explains how we used the GSW-derived reservoir extent data
to illustrate potential policy-relevant applications. Sections 3.1 and 3.2 reports the accuracy of reservoir
area estimates across water classification methods and how accuracies vary with environmental
conditions. Section 3.3 presents reservoir volume and seasonality derived from GSW where sufficient
data were available over the 1200 Volta basin reservoirs. Section 4 critically analyses the results and
the proposed approach for reservoir monitoring. In Section 5, we conclude by summarising the utility
of our approach for agricultural applications and in a broader context.

2. Materials and Methods

2.1. Study Site

The 413,000 km2 Volta basin, which drains parts of Benin, Burkina Faso, Cote d’Ivoire, Ghana,
Mali, and Togo, has a mean annual precipitation level relatively high when compared to other major
global basins at 953 mm/year [32]. This rainfall is unevenly distributed from north to south and
seasonally skewed across the basin, with parts of the south receiving over 1700 mm/year compared to
under 400 mm/year in the northern extremes (Figure 1) and rain typically falling between May and
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September in the south and June and September in the north, based on WorldClim data [33]. Between
11% (Ghana) and 64% (Burkina Faso), of the population are estimated to live in severe poverty [34].

The Volta basin is a pertinent region to use as a case study given the absence of consistent
information on reservoir locations and functionality between and within the basin’s six countries [35],
and the livelihood dependencies on the water stored in the basin’s small reservoirs which open up
opportunities for dry season food production and supplemental irrigation to avert losses during dry
spells. [36]. A lack of accessible data make it impossible to robustly monitor the basin’s water resources,
a problem that is emblematic of Africa’s water resources [3]. Identifying transferable, practical methods
for water resource monitoring in the Volta basin and Africa more generally is important to enable
better targeting of interventions to manage water resources under the continent’s rapid population
growth [37] and shift towards more resource-intensive diets [38].
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Figure 1. Annual precipitation over the Volta basin study site based on 1980–2010 WorldClim data,
with reservoirs identified in this study from Google Earth imagery.

2.2. Reservoir Locations

We made use of the most recent imagery hosted in Google Earth in September 2015 and a
100 km × 100 km grid to systematically, manually identify, and map all of the visible engineered
reservoirs across the Volta basin, generating a georeferenced point dataset of existing reservoir locations
(Figure 1). For each of the 1200 identified reservoirs, we placed a point inside the reservoir boundary
near the dam wall and where reservoir water was consistently present in months that the reservoir
contained water, as shown on imagery within Google Earth’s historical imagery collection.
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2.3. Landsat-Derived Surface Water Maps

We used Google Earth Engine (GEE) to source, generate, and analyse surface water maps that
were derived from Landsat imagery. GEE is an online coding environment enabling relatively rapid,
server-based analysis of large spatial datasets [39].

GEE provides access to the EC JRC/Google Monthly Water History V1.0 dataset [16], which
contains maps of Global Surface Water created from decadal analysis of Landsat 4, 5, and 7 imagery
and contains 30 m × 30 m pixel-level measures of water presence-absence on a monthly time step from
March 1984 to October 2015. We worked in GEE to create additional monthly surface water maps from
three spectral indices applied to Landsat 8 OLI imagery, for use in subsequent analyses. We sourced
1291 Landsat 8 OLI images that were acquired over the Volta basin (Landsat paths 192 to 197; rows 050
to 056) between 1 May 2013 and 31 October 2015, corresponding to the earliest complete month of
data available in GEE and the temporal limit of GSW data. We used imagery that was pre-processed
by USGS to Surface Reflectance and for each image, computed the Normalised Difference Water
Index (NDWI) [40], Modified NDWI [27] using band 6 (referred to here as MNDWI1), and using
band 7 (MNDWI2), indices that are commonly applied in peer-reviewed literature for surface water
mapping [14,41–43]. The relevant bands in Landsat 8 OLI imagery used to compute the three water
indices are:

NDWI =
Band 3 − Band 5
Band 3 + Band 5

(1)

MNDWI1 =
Band 3 − Band 6
Band 3 + Band 6

(2)

MNDWI2 =
Band 3 − Band 7
Band 3 + Band 7

(3)

The OLI on Landsat 8 collects data in slightly different bandwidths to that collected by sensors
on earlier Landsat satellites [44]. This can lead to substantially different reflectance values [45],
and therefore spectral index outputs [46–48] between these two sensor groups. Limiting this study
to Landsat 8 OLI imagery, rather than including images from several sensors in the Landsat satellite
series, allowed for a simpler analysis that ensured consistency in spectral index values over water and
non-water features.

We classified pixels on Landsat 8 OLI spectral indices as water, non-water or non-valid (masked),
consistent with GSW. Non-valid pixels correspond to those classified as cloud in the Landsat ‘CFmask’
layer [49]. To separate water from non-water pixels, we followed [29] who recommend testing several
indices and thresholds to identify the index and class boundaries that are most effective for the images
and the area of interest. We computed surface water maps using a “0” threshold, and 0.1 increments
either side of this up to +/−0.5 (i.e., −0.5, −0.4, −0.3, . . . , 0.5), for each index.

2.4. Landsat-Derived Reservoir Area and Volume Estimates

To derive reservoir area estimates from surface water maps, we used the connectedPixelCount
function in GEE [50] to extract a count of connected pixels classified as water by the GSW, NDWI,
MNDWI1, and MNDWI2 over each of the 1200 identified reservoirs. The connectedPixelCount
algorithm identifies adjacent pixels of the same value that share an edge, termed “4-way” connected,
or adjacent pixels which share an edge or a corner, termed “8-way” connected. We used 4-way
rather than 8-way connections to reduce the possibility of stretches of river being included in the
connectedPixelCount. The trade-off in this approach is under-estimates in area for reservoirs that have
an irregular edge.

Reservoir water volumes can be estimated from reservoir extents by determining the empirical
relationship between these two variables for a given reservoir [51]. In this study, volume equivalents
were computed using the empirical method for relating reservoir surface area to volume derived
by [23], as per Equation (4). Liebe and colleagues [23] carried out bathymetric surveys at 41 small
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reservoirs in Upper-East Ghana, part of the Volta basin, and found that the following expression could
explain 97.5% of observed variance between Landsat-derived surface areas of between 1 and 35 ha
and measured reservoir volumes:

Volume = 0.00857 × Area1.4367 (4)

The Upper East region of Ghana where Liebe’s study focused has a mean of 1.1% slopes, similar
to the basin-wide mean of 0.9% slopes (USGS 15s elevation data).

2.5. Validation Data

To validate the Landsat-derived reservoir area estimates we used a dataset of reservoir extents that
were digitised manually from Google Earth imagery. Google Earth provides high resolution (<15 m)
images from multiple sources with most images in the collection are sourced from Digitial Globe’s
satellites (~2 m resolution). We derived the validation dataset by, first, randomly selecting 250 reservoirs
from the 1200 identified in this study. Second, we digitised 347 reservoir extents corresponding to
every date that imagery were available in the Google Earth historical imagery collection over the
250 reservoirs within the period May 2013 to October 2015. Google Earth images covering the entire
reservoir extent were available for more than one month during this period at some reservoirs, and
were not available for any month at other reservoirs. Of the 347 digitised reservoir surface extents,
75 were excluded from subsequent analyses because: (i) they exceeded the neighbourhood search area
in GEE’s connectedPixelCount function, which is limited to 1024 pixels (92 ha); or (ii) they were smaller
than 0.09 ha, equivalent to one Landsat pixel; or (iii) there were masked pixels in the underlying
Landsat imagery, and therefore no Landsat-derived extent estimates against which to compare the
validation data. Of the 250 randomly selected reservoirs, no suitable imagery were available over
48 reservoirs, while all of the digitized surface extents associated with a further 31 reservoirs were part
of the 75 extents excluded from the validation dataset for one of the aforementioned reasons. The final
validation dataset therefore contained 272 reservoir extents, from imagery acquired in different months
across three hydrological seasons over 171 reservoirs. These validation extents ranged from 0.09 ha
to 72.4 ha with a mean of 7.1 ha and median of 2.3 ha (lower QR: 0.8, upper QR: 7.1 ha), dispersed
spatially and seasonally across the basin (Appendix A Figure A1). As expected, the validation data
were skewed towards dry months (October through March for most of the basin) when cloud-free
images are more likely to be available in the Google Earth historical imagery collection. Reservoirs
are smaller in dry months as water levels recede, which partly explain the high proportion of small
reservoirs in the validation dataset. Because drying patterns can also depend on reservoir depth and
catchment size, we calculated the catchment area for each reservoir and confirmed that the distribution
of our validation dataset was representative of the distribution of basin-wide reservoir catchment sizes
using the WaterWorld [52] zones of interest tool.

2.6. Accuracy Assessment

To assess the accuracy of reservoir area estimates derived from each surface water map (GSW,
NDWI, MNDWI1, and MNDWI2), we compared the Landsat-derived reservoir areal extents and
equivalent volumes to those in the validation dataset for corresponding image dates. We used
the difference to compute the mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) of Landsat-derived reservoir area and volume estimates.
We identified the optimal threshold for classifying reservoir water using NDWI, MNDWI1, or MNDWI2
as that which provides reservoir area estimates with the lowest mean area percentage error.

2.7. Analysis of Environmental Covariates

Accurate mapping of reservoir extents from Landsat imagery can be hindered by the
methodological approach as well as environmental factors. Research on environmental sources of error
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in water classifications from Landsat data shows that green-brown water, arising for example because
of suspended sediment or high chlorophyll content, reduces classification accuracy [53]. Our validation
data were based on images from multiple sources available in Google Earth (e.g., WorldView, IKONOS,
GeoEye, SPOT), making it challenging to visibly determine water colours of reservoirs in our validation
dataset in a consistent manner. However, the Normalised Difference Vegetation Index (NDVI) [54]
is sensitive to fractional green vegetation cover [55] and may be a suitable indicator of surface or
sub-surface vegetation. The geometry of the reservoir has also been identified as an important factor,
with errors in water classification being higher on small or narrow reservoirs, or those with long
perimeters [53], since this increases the number of mixed water and non-water pixels, which are more
susceptible to misclassification. We hypothesize that seasonal rainfall patterns may also introduce
errors in reservoir extent analysis on a monthly time-step, since rainfall events can significantly alter
reservoir extents overnight, increasing discrepancies between area estimates derived from Landsat
and validation data, while cloud-cover during wetter periods of the year can obscure water pixels and
lead to underestimates in reservoir area.

We ran a random forest regression tree analysis in R for each of the four methods that were used to
generate reservoir area estimates from Landsat data, corresponding to GSW and the optimal threshold
identified (see Section 3.1) from applying NDWI, MNDWI1, and MNDWI2. We used percentage errors
in reservoir area estimates as the dependent variable, and indicators of reservoir surface vegetation,
reservoir geometry, and rainfall patterns as independent variables. In particular, as an indicator
of reservoir surface vegetation, we used the mean NDVI from all pixels intersecting the reservoir
extent, calculated in GEE from Landsat 8 OLI Surface Reflectance images acquired in the month each
reservoir area estimate is made. We used reservoir area in hectares and reservoir perimeter-area ratio
as recorded in our validation dataset, as indicators of reservoir size and shape. We used month and
latitude as indicators of rainfall patterns. We selected the Random Forest approach [56] as a statistical
method for checking the relationship between a dependent and multiple independent variables, which
accepts categorical and continuous data as well as correlated variables (such as reservoir size and
perimeter-area ratio) as inputs. Random forest regression works by splitting the dataset into 63%
test (bagged) data and 37% validation (out of bag) data, and then constructing multiple trees from
random samples of the bagged data, such that the tree nodes represent decreasingly good predictors
of the response variable [57]. Residual errors for each estimate are computed by comparing the
predicted response against actual response for out of bag data. The trees are combined into a single
tree whose nodes are ordered according to the importance of each variable in predicting the response.
The “Importance” is a measure of prediction error that is divided by the standard error.

Results from the Random Forest were used to compare which variables were associated with
errors in areal estimates, irrespective of the water classification method. In addition we assessed
variation in MAPE for validation data stratified by 0.1 percentiles (ratio data) or classes (categorical
data) for each factor.

2.8. Data Applications in Agricultural Landscapes

We used our GEE approach to extract area estimates for the 1200 identified Volta basin reservoirs
over the period 1984 to 2015 from GSW data, to test what information on reservoir volumes and
seasonality could be determined given the limitations of data coverage and estimation errors.

We identified non-valid estimates, corresponding to months where pixels were masked or where
no information was available in the underlying GSW data, and used these to assess the inter-annual,
intra-annual and spatial availability of monthly reservoir area estimates. This information is used to
evaluate whether there is sufficient data to obtain information on annual and intra-annual fluctuations
in reservoir volumes and thus seasonality, which is useful for agricultural planning.

Next, we estimated the current maximum capacity for 1117 of the 1200 Volta basin reservoirs
by identifying the largest extent recorded at these reservoirs between 1984 and 2015. We used one of
the GSW derivative layers, the GSW Maximum Extent (GSW-MX), to get the maximum extent for the
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remaining 83 reservoirs whose maxima derived from GSW were ≥(92 ha—RMSE of area estimates),
and therefore cannot be measured using our GEE approach, which is restricted to extents of less than
1024 pixels (~92 ha). The GSW-MX dataset highlights all of the pixels that have contained water at
any time between 1984 and 2015. It was not available through GEE at the time of this analysis and
so we extracted estimates from the GSW-MX in a desktop GIS. We assumed that reservoirs where no
water was ever recorded are smaller than the minimum areal unit that can be reliably mapped using
GSW data. Based on their maximums, we classified reservoirs as “Small” (<1 Mm3), “Large” (≥1 Mm3

and <100 Mm3), “Very large” (≥100 Mm3) or “Unknown” (no water identified in any month).
Finally, we analysed monthly fluctuations in area estimates for reservoirs where GSW-derived

reservoir extents were available throughout the dry season in 2014–2015, the most recent hydrological
year of data available, to distinguish the reservoirs that are perennial, ephemeral with 6–11 months
water, and ephemeral with <6 months water within estimate uncertainties. June, July, and August are
rainfall months across the entire basin, and likely due to cloud cover, reservoir extent data were often
missing over these months. Reservoirs with no valid observations for June, July and August were
assumed to contain water during these months. Reservoirs with data missing for any month outside
this period were excluded from the analysis, as were reservoirs with no water ever recorded during
the 32 years covered by the dataset. The monthly rate of water loss can be obtained from GSW-derived
reservoir area estimates by subtracting the annual minima from the maxima, and dividing this by
the number of months between the two extremes. Where the monthly water loss was less than the
uncertainty contained in the reservoir area estimates, as estimated by the RMSE, we assumed the
estimates cannot be reliably used to monitor the loss in reservoir water through the year and classified
its seasonality as “uncertain”.

GEE codes that were used in our analyses are available here: https://earthengine.googlesource.
com/SurfaceWaterMapping. R codes used to calculate estimation errors and the run random forest
analyses are available on request.

3. Results

3.1. Accuracy of Reservoir Area Estimates

Comparing reservoir area estimates from GSW, NDWI, MDNWI1, and MNDWI2 against those
in our validation dataset, we find that estimates varied sustainably in accuracy across methods.
Careful selection of the threshold for water classification is critical for minimizing percentage errors
in reservoir area estimates derived from NDWI, MNDWI1, and MNDWI2. The lowest MAPE was
achieved using a threshold of −0.2 on both the NDWI and MNDWI1, and a 0 threshold on MNDWI2
(see Appendix C Table A1 for comparative accuracies of NDWI, MNDWI1, and MNDWI2 across all
thresholds). We subsequently refer to results from NDWI, MNDWI1 and MNDWI2 corresponding to
these optimal thresholds.

Comparison of absolute errors in reservoir area estimates indicates MNDWI1 produced slightly
better estimates than the other three approaches. Estimates using MNDW1 had an RMSE of 3.0 ha
equivalent to 22,581 m3, and an MAE of 1.7 ha (10,085 m3), while estimates from the GSW had a nearly
two-fold higher RMSE of 5.1 ha (49,376 m3) and an MAE of 2.8 ha (20,786 m3). Small absolute errors
can mask large percentage errors in area estimates. Moreover, a high percentage area error can translate
to an even higher percentage volume error, since reservoir area and volume are related through a
power relationship. Comparing percentage errors indicates that MNDWI1 still out-performed other
approaches, producing estimates with a mean absolute percentage error at 51%, which equates to a
mean volume percentage error of 58%. The GSW method had a higher MAPE than all three water
indices tested, producing estimates with a mean area percentage error of 70%, which equate to a
75% mean volume percentage error. In other words, reservoir area estimates that were derived
from the GSW dataset using our method were 19% less accurate that those that can be derived by

https://earthengine.googlesource.com/SurfaceWaterMapping
https://earthengine.googlesource.com/SurfaceWaterMapping
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applying MNDWI1 to Landsat 8 OLI imagery, resulting in 17% less accurate reservoir volume estimates
(see Table 1).

Table 1. Accuracy of 272 reservoir areal extents and volume equivalents derived from Global Surface
Water Monthly Water History (GSW), Normalised Difference Water Index (NDWI), Modified NDWI
with band 6 (MNDWI1), and Modified NDWI with band 7 (MNDWI2).

Method Threshold Mean Error
(ha) SD (ha) RMSE (ha) RMSE

(m3)
MAE
(ha)

MAE
(m3)

MAPE
(% Area)

MAPE
(% Volume)

GSW − −2.7 4.3 5.1 49,376 2.8 20,786 70.3 75.1
NDWI −0.2 −2.1 3.5 4.0 35,605 2.4 16,325 64.4 69.6

MNDWI1 −0.2 −1.3 2.6 3.0 22,581 1.7 10,085 51.2 58.3
MNDWI2 0 −1.3 2.8 3.0 24,041 1.8 10,705 52.7 60.1

The additional overall inaccuracy of the GSW method when compared to MNDWI1 was associated
with a higher number of omission errors, i.e., 100% under-estimates (Table 2). In total 140 (51%)
reservoir areas were omitted using the GSW-derived estimates, as compared to 82 using those
from MNDWI1. These 100% GSW-derived underestimates occurred over very small reservoirs:
75% were smaller than 2.9 ha (~21,788 m3), and the median reservoir area was 1.0 ha. In contrast,
100% underestimates in MNDWI1-derived reservoir areas occurred on reservoirs with a median area
of 0.7 ha and 75% of which were smaller than 1.5 ha (~8396 m3).

Table 2. Number and type of errors in reservoir area estimates (n = 272) derived from GSW, NDWI,
MNDWI1, and MNDWI2.

Method Omissions (100% Under-Estimate) Under-Estimates (by <100%) Over-Estimates

GSW 140 121 11
NDWI 124 123 25

MNDWI1 82 153 37
MNDWI2 86 148 38

3.2. Environmental Covariates

We analysed how the accuracy of reservoir area estimates from GSW, MNDWI1, MNDWI2, and
NDWI vary with environmental conditions. Factors included in the random forest regression analysis
explained 63% of variance in reservoir area percentage estimation errors for GSW when compared to
49% for MNDWI1, 41% for MNDWI2 and 72% for NDWI. Mean NDVI over the reservoir was identified
as the most important variable in all of the cases, followed by reservoir extent and perimeter-area ratio
(i.e., reservoir geometry). Latitude was the next most important factor, while month of year was of
least importance to improving accuracy under all of the methods (Figure 2).

Reviewing the MAPE for reservoir area estimates from GSW, NDWI, MNDWI1, and MNDWI2
as environmental factors vary gives an indication of when area estimates are most accurate and
when estimates from GSW are comparable in accuracy to other methods. We stratified reservoir area
estimates into 0.1 percentile classes for each factor that was included in the random forest analysis and
compared variance in mean absolute percentage errors across each class (see Figure 3).

Results show that area estimates from MNDWI1 and MNDWI2 were more accurate than those
from GSW, while accuracies of GSW and NDWI are similar, under all of the conditions. For all of the
methods, percentage errors increased with NDVI and with reservoir perimeter-area ratio, and reduced
with increasing reservoir size. Percentage errors were lower at mid-latitudes across all of the methods,
and relatively stable through the year except in July and September where there was high variability
across methods. Errors in GSW estimates were lower than average when mean NDVI ≤ 0.09; reservoir
area is >3.64 ha, reservoir perimeter-area ratio is ≤0.32.
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Figure 3. MAPE in reservoir area estimates derived from the four water classification methods (GSW,
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area, (c) perimeter-area ratio, (d) latitude, and (e) month. Dashed lines indicate the overall MAPE
corresponding to each method.
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3.3. Applications of Reservoir Extent Data in Agricultural Landscapes

In total, 380 months of data are embedded in the March 1984 to October 2015 GSW dataset.
However, there were substantial gaps in coverage over specific reservoirs and time periods in our
derivative reservoir extent layer. Individual reservoirs had between 47% and 87% missing data across
the 380 months; or, 74–98% pre-2000 and 18–77% from 2000 onwards. Gaps were concentrated in the
period 1984–1999, indicative of gaps in the underlying USGS Landsat image archive [58] specifically
over West and north Africa [25]. Data availability increased with latitude, likely being a result of
decreasing cloud cover. Data gaps of over 50% were present in most years during peak rainfall months,
from June to September, when cloud-cover may prevent accurate water classification. The bias towards
reservoir area estimates in dry season months means annual mean and maximum reservoir areas
will be underestimated, especially for reservoirs that dry up quickly after rains cease (e.g., very small
reservoirs). Individual reservoirs had one or more valid area estimate per year (i.e., one month or more
of data) for between 19 and 28 of the 32 years, meaning there were whole years of no data at every
reservoir. While at most reservoirs the years of missing data are pre-2000, data coverage was very low
in some subsequent years, including 2003 and 2012. Even in years with valid observations if these
are from the dry season then they can be 0 ha, indicating an absence of water. Further details on data
coverage are provided in Appendix B Figure A2.

Reservoir capacities as indicated by the maximum extents ever recorded show that at
339 reservoirs, the reservoir areas were permanently recorded as 0 ha, and were therefore assumed
to be reservoirs smaller than the minimum mapping unit for GSW. Including these 339 reservoirs,
674 (56%) of the basin’s reservoirs were smaller than 5.1 ha, the RMSE for GSW-derived estimates,
while an estimated 1055 (88%) of the basin’s reservoirs are smaller than 41.2 ha (1 Mm3) (see Table 3).
At their maximums, small reservoirs cover 6618 ha of the Volta basin, collectively holding 1476 Mm3

of water. This equates to about 0.1% of the total water stored in reservoirs in the Volta basin, or 16% if
the 13 very large reservoirs (>100 Mm3) are excluded. The mean area that is covered by these small
reservoirs at their maximum extents is 9.2 ha (SD = 10.0 ha), with each estimated to contain 116,780 m3

water, equivalent to 47 Olympic swimming pools.

Table 3. Reservoir number and size based on their maximum GSW-derived extents, providing an
indication of reservoir capacity and an upper limit for current reservoir size. Volumes are calculated
using Equation (4).

Type Size Number Mean Area (ha) Mean Volume (m3)
Total Area

(ha)
Total Volume

(m3)

Small

Unknown
(likely very small) 339 - - - -

<41.2 ha (1 Mm3) 716 9.2 (SD = 10.0) 116,780 (SD = 130,197) 6618 1475.8 M

Large

41.2 (1 Mm3)–
1016.3 ha (100 Mm3)

132 157.0 (SD = 163.1) 6.8 M (7.2 M) 20,728 7610.0 M

>1016.3 ha (100 Mm3) 13 63,511.7
(SD = 197,167.2)

38,022.5 M
(SD = 193,584.2 M) 825,652 1,515,106.4 M

All - 1200 - - 852,998 1,524,192.0 M

Over 92% of the identified reservoirs are located in Burkina Faso or Ghana. Reservoir density
is higher (>50 per sq km) in the southern tip and central corridor of the basin, while reservoirs are,
on average, substantially larger towards the north of the basin, in Burkina Faso, and in pockets of
southern and western Ghana. Small reservoirs dominate the central plains (see Figure 4). While the
volumes that are contained in small reservoirs are relatively small, their spatial dispersion means they
make water accessible to people in many otherwise unserviced parts of the basin, which includes some
of the basin’s poorest households and driest landscapes.

The presence of a reservoir does not assure that it contains water throughout the dry season,
information that is important for water scarcity mapping and agricultural planning. The large
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intra-annual data gaps and uncertainties in GSW derived reservoir extent data make it challenging
to monitor the rates of change in reservoir area and equivalent volumes, for example to identify the
month a reservoir runs dry. However, this is possible at reservoirs where data exist throughout the dry
season in a single hydrological year. We find that, excluding June, July, and August, which correspond
to rainfall months throughout the basin, and excluding reservoirs where no water was ever recorded
between 1984 and 2015, GSW derived reservoir areas are available for every month for 350 reservoirs
in the 2014–2015 hydrological year. Area estimates from September 2014 to May 2015 show that 256 of
these reservoirs had a monthly area loss equal to or smaller than the 5.1 ha RMSE for GSW-derived
estimates, and therefore their seasonality cannot be reliably determined. Of these 256 reservoirs,
255 were classified as Small and one as Large based on their maximum volumes (see Table 3). For the
remaining 94 reservoirs, of which 30 were Small and the others Large or Very Large, and 25 were
perennial while 69 were ephemeral running dry for up to seven months of the year (see Figure 5).
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Figure 5. Seasonality of a subset of reservoirs (n = 350), for which valid GSW derived reservoir area
estimates were available from September 2014 to May 2015. The figure shows the number of months
a reservoir was recorded as dry distinguishing reservoirs where the mean monthly change in area
was larger than the RMSE in GSW derived area estimates (“Reliable estimate”, n = 94) from reservoirs
where the monthly area change was equal to or smaller than the RMSE (“Unreliable estimate”, n = 256).
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4. Discussion

4.1. Accuracy of Reservoir Extents Derived from Landsat-Based Surface Water Maps

Landsat-derived reservoir area estimates contain uncertainty with even MNDWI1, the best
performing of the water classification methods that were tested, producing estimates with a MAPE
of 51%, for reservoirs between 0.09 ha and 72 ha in extent. Reservoir area estimates from MNDWI1,
which uses Landsat 8 band 6, are 1.6% more accurate than those from MNDWI2, which uses Landsat 8
OLI band 7, and 13% more accurate than those derived from the NDWI. In contrast, GSW produces
area estimates with a MAPE of 71%, or 19% less accurate than those derived from MNDWI1.

These results indicate that exploiting the difference between visible and short-wave infrared light,
rather than visible and infrared, is preferable for surface water mapping in the Volta basin. This may be
because the difference in the amount of infrared light reflected from pure water and from vegetation is
small relative to the difference in short-wave infrared light reflected [27], and crops and other waterline
vegetation are prevalent around dryland reservoirs. The results further indicate that bands with shorter
wavelengths slightly out-perform those with longer as short-wave infrared inputs to the MNDWI for
mapping surface water extents from Landsat satellite imagery, as consistent with [14,29]. The higher
uncertainty in GSW-derived area estimates indicates that the water classification algorithm used in
creating the GSW datasets is less effective at distinguishing water from non-water pixels than NDWI
or MNDWI using Landsat 8 OLI imagery, for our West African study site. Further research is required
to check whether this result holds for other sensors and dryland regions.

For NDWI, MNDWI1, and MNDWI2, we find that careful selection of the threshold for water
classification is critical to reduce errors in reservoir area estimates. Across all three spectral indices,
the accuracy of reservoir area estimates varies significantly with thresholds between −0.5 and 0.5.
The commonly used zero-threshold for water classification is sub-optimal for two of the three water
indices that were tested, NDWI and MNDWI1, for which use of a slightly negative (−0.2) threshold
produces superior reservoir area estimates. This may be because while pure water normally reflects
little or no infrared or short-wave infrared light, the inverse is true for both vegetation and soil [59].
Therefore, water with suspended sediment or high chlorophyll concentrations, likely to be common in
dryland reservoirs in agricultural landscapes that are exposed to both accelerated erosion and nutrient
runoff [60], may reflect more infrared and short-wave infrared light than clear water. This increases the
possibility of a slightly negative difference between visible and infrared or short-wave infrared light.

Reservoir area estimates from MNDWI1 and MNDWI2 are more accurate than those from GSW
under all of the conditions tested in this study, while estimates from NDWI slightly outperform those
from GSW, except in a few cases, such as for larger reservoirs (see Figure 3). Percentage errors in
reservoir area estimates increase with NDVI and with reservoir perimeter-area ratio, and reduce
with an increasing reservoir size, for all four water classification methods. Since NDVI responds to
green vegetation cover [55], it is likely that surface or sub-surface vegetation is responsible for an
increase in errors with mean NDVI. We expect the poor performance of all the methods on very small
reservoirs and those with a high perimeter to area ratio is due to the 30 m resolution of Landsat data,
limitations in pixel-based water-classification algorithms, and our automated approach that extracts
connected water features above a pre-defined point. Reservoir area estimates have lower percentage
errors at mid-latitudes of the Volta basin across all of the methods, which might be a result of higher
annual cloud cover in the south and higher airborne sand and dust levels in the north hindering water
classification. Percentage errors in reservoir area estimates from GSW and NDWI show a sudden
increase in wetter months, while those from MNDWI1 and MNDWI2 show a sharp decline. This result
is partly a reflection of the superior performance of MNDWI1 and MNDWI2 over very small reservoirs,
since all of the reservoirs from July to September are <7.6 ha with a median of 3.5 ha, however it may
also be symptomatic of shortcomings in GSW and NDWI water classification approaches over the
turbid waters that are associated with heavy rainfall.
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4.2. Conditions Under Which GSW Can Provide Reliable Information on Reservoir Size and Seasonality

Results of the random forest and subsequent analysis of percentage error variance with
environmental conditions show that controlling for surface water vegetation (as indicated by NDVI)
and reservoir size and shape would improve the reliability of area estimates from GSW, since these are
the main factors underpinning 63% of the variance in percentage errors. Users can apply thresholds
for NDVI and reservoir size and shape to identify when reservoir area estimates have an unacceptable
error depending on the end-use, or when errors are lower than average and therefore reliability
increases. For example, in our study, percentage errors in GSW estimates were lower than average
when mean NDVI ≤ 0.09, reservoir area >3.64 ha, and reservoir perimeter-area ratio ≤ 0.32.

Correctly identifying when a reservoir contains water during the year is necessary for seasonality
analyses and for determining reservoir locations if these are unknown. Our analysis shows that GSW
produces reservoir area estimates with a RMSE of 5.1 ha, meaning that if a reservoir extent changes
by ≤5.1 ha, this change may not be detected in GSW-based analyses of reservoir size. For reservoirs
≤5.1 ha in extent, the equivalent loss in volume is ≤49,759 m3, while for larger reservoirs, any loss
in area would occur in the shallowest regions and therefore represent a smaller equivalent loss in
volume. In contrast, reservoir areas estimated from MNDWI1 in this study had an RMSE of 3.0 ha,
equivalent to 24,041 m3. Further, if a reservoir extent is equal to or smaller than the RMSE for any
given month, the reservoir may be incorrectly identified as dry introducing additional uncertainty to
seasonality analyses (see Figure 5). Indeed, we find that the presence of water in very small reservoirs,
specifically those under 2.9 ha for GSW estimates and under 1.5 ha for MNDWI1 estimates, is often
entirely missed using Landsat-based water classification approaches. The omission of many small
waterbodies in national or global inventories will lead to inaccurate surface water accounting and
may hinder government or NGO ability to target dam construction and maintenance effectively or
allocate water resources in a socially and environmentally sustainable manner. Moreover small surface
waterbodies can have surprisingly large-scale cumulative effects on hydrological and ecosystem
processes [10], including altering downstream water supplies, trapping sediment, and impacting on
global greenhouse gas emissions [61,62].

Knowing the reservoir size constraints that are associated with a selected method is important for
agricultural and water resource management planning, particularly in landscapes with small reservoirs.
For example, our results indicate there are 674 reservoirs in the Volta basin with a GSW-estimated
maximum capacity of 49,759 m3 (5.1 ha), for which GSW-derived size estimates are not reliable and
complete omissions of reservoir water presence are likely. Further, of 350 reservoirs where continuous
monthly area estimates were derived from GSW through the 2014–2015 dry season, reliable estimates
of intra-annual dry periods could be obtained for only 30 of the 285 reservoirs that were classified as
small since all of the other small reservoirs had a monthly area loss of less than 5.1 ha (see Figure 5).
However, even when the quantity of water cannot be reliably measured, the presence or absence of
water may still be correctly identified since the RMSE will be inflated by errors at larger reservoirs.
As a minimum, end-users should indicate the expected uncertainty in area or volumes derived from
GSW, for example, based on the RMSE or a similar measure. This can be used to indicate when the
size of a reservoir or change in reservoir size drops below the size of the estimation error and thus
estimates are unreliable.

4.3. Value of a Mixed-Methods Approach

We developed a method for remotely mapping small reservoirs, monitoring reservoir extents
through time, and quantifying uncertainty in these extent estimates, that uses freely available
data and tools. The added value of this method over previous attempts to monitor surface water
dynamics is that it can be easily repeated anywhere to improve global reservoir data and establish
rates of uncertainty in Landsat-derived reservoir extent estimates for other contexts and regions of
interest. Our results indicate studies that rely solely on Landsat or coarser resolution data to map
surface water dynamics will omit smaller reservoirs. Integrating data from freely available high
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resolution imagery or ground-based monitoring systems is a practical, low-cost approach to ensuring
reservoirs of all sizes are captured in Landsat-based water resource assessments. We show that
reservoirs can be mapped manually through freely available Google Earth imagery—which could
be completed using crowd-sourcing techniques (for example, see http://geodata.policysupport.org/
geowiki-databases)—allowing for reservoir capture over large spatial extents.

As well as reducing gaps in reservoir inventories, mapping reservoirs prior to analysis of
surface water maps enables application of simple waterbody extraction algorithms, such as the
connectedPixelCount in GEE, significantly reducing the time required to extract data over large
spatio-temporal extents. Using a server-based approach also avoids the significant computer storage
and processing requirements that create challenges to analyses of multiple Landsat images [16,24,39].
GEE is particularly useful for the analysis of many Landsat images, since each Landsat image is ~1 GB
in size with a footprint of approximately 185 km2 and collected on a 16-day time step, so temporal
analyses over large areas require hundreds of gigabytes of imagery. Access to Landsat satellite imagery,
GSW datasets, and image processing algorithms through server-based tools such as GEE, once the
software learning curve is surpassed, significantly reduces the time and cost that is involved in deriving
and comparing the accuracy of waterbody extents across time and space.

Data gaps in the reservoir area estimates from the GSW Monthly Histories dataset over the
Volta basin limit the types of information that can be gathered from this resource. Most of these
gaps are caused by missing imagery in the underlying Landsat archive [25], and therefore would
not be avoided by applying an alternative water classification method on Landsat satellite imagery.
Other gaps represent areas that are classified as non-valid by [16], e.g., cloud or shadow. Time series
interpolation at distinct reservoirs, for example using Amelia [63], can produce estimates of missing
monthly reservoir areas, but levels of uncertainty are likely to be high over many reservoirs and years
due to the large data gaps. The most promising solution to filling time-series data gaps—in the absence
of access to additional Landsat and other historical satellite data [64]—is probably by integrating water
classifications from Landsat data with those produced from lower resolution optical imagery, such as
from MODIS [20], while seasonal gaps may be reduced by integration with water classified using
synthetic aperture radar data, such as from Sentinel-1 [65], since these are not sensitive to periods of
cloud cover.

4.4. Policy Applications in Agricultural Landscapes

In the Volta basin, applying our approach shows that the availability of small reservoir water is
currently highly uneven across space and through the seasons. For example, dam density is higher in
central Burkina Faso and northern Ghana, while some of the northern, western, and eastern regions of
Burkina Faso, despite being among the driest in the Volta basin, are served by far fewer reservoirs.
However, the extent of the gaps in GSW-derived data, which cover entre years for many reservoirs, limit
its use for monitoring long-term trends in reservoir water availability. For some policy applications,
this may not present a constraint, since long-term trends will be of less interest than analyses that
show current conditions and short-term fluctuations, which can be derived from data post-2012 when
underlying coverage is much higher in the GSW dataset for our West African site, and imagery from
Landsat 8 OLI are available. Even without data gaps, agricultural policy applications in landscapes
with small reservoirs, such as the Volta basin, where our analysis indicates 88% of reservoirs are
<1 Mm3, remains a challenge since the level of uncertainty in GSW and other Landsat derived reservoir
areas hinders reliable seasonality analyses and can result in omissions of whole reservoirs.

4.5. Limitations of Our Approach

While our approach to obtaining time series reservoir extents can be rapidly applied over large
spatio-temporal extents through GEE, it relies on the prior identification of dam locations. For this
study, we mapped dams from the most recent imagery available in Google Earth in 2015. Dams that
were subsequently constructed, or previously constructed and are now out of use, are not captured in

http://geodata.policysupport.org/geowiki-databases
http://geodata.policysupport.org/geowiki-databases
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our analysis. Automating the identification of reservoir locations would be a faster approach, however
we have demonstrated that water classification maps from Landsat imagery are unable to reliably
detect reservoirs <2 ha, which constitute over a third of reservoirs in the Volta basin. A useful future
step would be to explore the potential for using higher resolution imagery, particularly from the
Sentinel-2 satellite (10 m resolution), to automate the identification of small reservoirs.

Gaps in the 32-year reservoir extent data derived from GSW-MH arise from masked pixels
(e.g., cloud or haze-covered) or a lack of imagery in the underlying Landsat collection [16]. Additional
gaps may arise from our automated area-extraction method where the reservoir point is outside the
reservoir water extent. Missing data in monthly reservoir area estimates distorts individual and
population reservoir storage means, maximums, and minimums, and therefore limits the utility of the
dataset for monitoring changes in reservoir surface areas through time.

In addition to missing values in the GSW-MH dataset, a limitation of our method is that
the connectedPixelCount algorithm in GEE used to extract reservoir extents can handle up to
1024 connected pixels, meaning that reservoirs that cover a larger area will be underestimated.
For Landsat data at 30 m resolution, this area limit is equivalent to 92.16 ha. This is substantially
larger than the 41.2 ha upper size limit for small reservoirs, but creates a problem for the analysis of
larger waterbodies. Reservoir estimates for these reservoirs can either be obtained by reducing the
resolution (and therefore the number of pixels covered by a reservoir) on underlying Landsat imagery
over larger reservoirs to enable use of the connectedPixelCount algorithm, or performing the analysis
in a desktop GIS.

5. Conclusions

Reservoirs can provide a lifeline to the basin’s rural poor during dry spells and seasons, generating
stable sources of food and income through livestock, fish, and crop production. But households that
depend on small reservoirs for their livelihoods do so at substantial risk. In years with low rainfall
or heavy withdrawals, there may not be enough water to complete the dry season cropping season,
to water livestock, or to sustain fish populations. Crop failure or fish decline means the loss of food and
income at the household and community level. Lack of livestock water forces seasonal migration often
to areas with their own land and water resource management challenges. Monitoring the distribution
and seasonality of reservoir water on a regular basis through remote methods in the Volta basin and
elsewhere is a cost-effective way for governments and non-governmental organisations to identify
high risk zones. This knowledge may facilitate the implementation of safeguards to minimise water
shortages and food losses, and can be used to inform decisions on future dam investments.

We developed a semi-automated method for mapping reservoirs and their extents through time,
and assessing uncertainty in Landsat-derived reservoir size estimates, which can be readily applied
anywhere in the globe using freely available data and tools. We used our method to compare estimates
of reservoir area that were derived from four approaches to classifying surface water from Landsat
data. These include the approach that was used to create the Global Surface Water Monthly Water
History (GSW) datasets [16], and surface water maps created in this study from Landsat 8 OLI imagery
by computing the Normalised Difference Water Index (NDWI) and two variations of the Modified
NDWI, which employ band 6 (MNDWI1) and band 7 (MNDWI2) as the short-wave infrared inputs,
testing effects of classifying water across 11 thresholds. We find the mean absolute percentage error is
71% for reservoir area estimates derived from GSW data, tested over 272 reservoirs between 0.09 ha
and 72 ha in extent. The accuracy of these reservoir areal estimates can be improved by up to 19%
by classifying water pixels on Landsat 8 OLI imagery using MNDWI1 with a carefully selected
threshold, and improved to a lesser degree using NDWI or MNDWI2. Estimates that are derived
from MNDWI1 consistently out-perform estimates from GSW as reservoir geometry, vegetation
characteristics, and measurement season vary. Our results imply that the expert system classifier used
to identify water pixels in creation of the GSW is sub-optimal to using any of the three water indices
tested here, for images from the Landsat 8 OLI and over our West African study site. Further research
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is required to check whether this result holds in other contexts, and for imagery that is collected by the
Thematic Mappers and Enhanced Thematic Mapper onboard Landsat satellites 4, 5, and 7.

Our study provides new information on the reliability of reservoir size and seasonality from
GSW and other Landsat-based surface water maps, which is important given that these data are freely
and globally available and use of information on reservoir resources for policy making without the
knowledge of inherent uncertainties may have serious consequences. Whether or not the 19% increase
in accuracy in reservoir area estimates obtained from using surface water maps generated by applying
MNDWI1 to Landsat 8 OLI images rather than using the pre-prepared GSW data, depends on the
end-use. For agricultural planning and seasonal water resource management, we recommend that
the use of GSW estimates be restricted to reservoirs with a maximum volume and monthly water loss
of >49,759 m3 (5.1 ha), to avoid masked or false detection of water shortages. Further, Landsat-based
approaches are often unable to detect any water in very small reservoirs, namely those <1.5 ha using
MNDWI1 and <2.9 ha using GSW. New opportunities for the remote monitoring of small reservoirs
are opening up with the availability of Sentinel-1 radar and high resolution (up to 10 m) Sentinel-2
optical data, which together should help to reduce spatial and seasonal data gaps, and improve the
accuracy of derived reservoir area estimates. In the meantime, adopting integrated approaches to
mapping small reservoirs remotely, such as manual digitising reservoir locations from high resolution
imagery combined with automated reservoir extent extraction from Landsat imagery, is essential to
avoid entirely omitting numerous water bodies.
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Appendix C

Table A1. Accuracy of reservoir area estimates (n = 272) derived from Landsat 8 OLI imagery across the 11 thresholds tested for NDWI, MNDWI1 and MNDWI2.
Highlighted rows represent optimal thresholds, i.e., those with the lowest mean absolute percentage error for reservoir area estimates.

Method Threshold Mean Error (ha) SD (ha) RMSE (ha) RMSE (m3) MAE (ha) MAE (m3) MAPE (% Area) MAPE (% Volume)
NDWI −0.2 −2.10 3.46 4.04 35,604.71 2.35 16,325.01 64.36 69.63
NDWI −0.3 0.18 5.20 5.19 50,983.33 2.33 16,097.32 80.94 170.03
NDWI −0.1 −3.25 4.72 5.72 58,641.61 3.30 26,624.84 75.92 79.38
NDWI 0 −4.19 5.83 7.17 81,063.24 4.20 37,658.41 85.93 88.36
NDWI 0.1 −5.35 8.41 9.95 129,900.56 5.35 53,278.05 92.77 94.28
NDWI 0.2 −6.28 10.14 11.91 168,116.85 6.28 67,039.37 97.21 97.84
NDWI 0.3 −6.87 11.43 13.32 197,431.62 6.87 76,284.01 99.24 99.42
NDWI 0.4 −7.05 11.70 13.64 204,164.64 7.05 79,058.93 99.87 99.92
NDWI 0.5 −7.09 11.80 13.75 206,626.22 7.09 79,844.29 100.00 100.00
NDWI −0.4 28.00 39.07 48.01 1,245,499.69 28.98 603,229.78 4025.68 49,456.09
NDWI −0.5 64.76 37.03 74.56 2,344,505.15 65.06 1,927,217.86 7244.77 84,773.09

MNDWI1 −0.3 −0.28 2.62 2.63 19,241.17 1.43 7989.78 56.81 123.11
MNDWI1 −0.2 −1.32 2.64 2.95 22,581.41 1.68 10,085.23 51.17 58.30
MNDWI1 −0.1 −2.29 3.58 4.25 38,206.12 2.45 17,316.77 63.29 68.82
MNDWI1 0 −3.15 4.71 5.66 57,726.14 3.21 25,599.05 73.34 77.38
MNDWI1 0.1 −4.16 6.88 8.02 95,314.52 4.19 37,427.90 81.80 84.90
MNDWI1 0.2 −5.16 9.33 10.64 143,043.85 5.18 50,788.42 88.38 90.61
MNDWI1 0.3 −5.75 9.90 11.43 158,542.46 5.76 59,134.43 92.56 94.04
MNDWI1 0.4 −6.47 11.21 12.93 189,063.76 6.47 69,929.69 96.03 96.91
MNDWI1 0.5 −6.71 11.50 13.29 196,860.03 6.71 73,649.05 97.77 98.23
MNDWI1 −0.4 3.82 13.17 13.69 205,231.30 4.24 38,102.16 497.09 5788.66
MNDWI1 −0.5 35.12 39.54 52.83 1,429,033.43 35.18 796,790.10 4424.54 55,829.47
MNDWI2 0 −1.33 2.78 3.08 24,040.58 1.75 10,704.68 52.74 60.11
MNDWI2 0.1 −2.30 3.56 4.23 38,001.46 2.45 17,381.79 64.08 69.66
MNDWI2 −0.1 0.10 4.39 4.39 40,035.31 1.77 10,841.12 74.68 200.54
MNDWI2 0.2 −3.21 4.97 5.91 61,382.62 3.29 26,462.21 74.09 78.32
MNDWI2 0.3 −4.73 8.99 10.15 133,549.18 4.77 45,100.89 83.62 86.37
MNDWI2 0.4 −5.40 9.67 11.06 151,062.42 5.41 54,122.27 89.85 91.70
MNDWI2 0.5 −6.11 10.28 11.94 168,735.67 6.11 64,469.66 94.60 95.68
MNDWI2 −0.2 3.74 14.56 15.01 234,362.69 4.40 40,225.86 560.81 8282.32
MNDWI2 −0.3 14.44 27.85 31.32 674,344.73 14.60 225,195.18 1568.41 18,858.55
MNDWI2 −0.4 55.46 38.07 67.23 2,020,361.07 55.50 1,534,017.70 6123.54 71,805.25
MNDWI2 −0.5 84.73 12.88 85.70 2,863,350.91 84.73 2,817,038.71 10,128.18 118,618.67
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