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ABSTRACT	

Abstract	of	a	Thesis	submitted	in	partial	fulfillment	of	the	requirement	for	

the	Degree	of	Agricultural	Science	with	Honors.	

The	Efficacy	of	a	Standoff	Pad	Wintering	System	to	Capture	Urine	and	

Mitigate	Nitrate	Leaching	Whilst	Maintaining	Acceptable	Levels	of	Animal	

Performance	

By	

J.E.L	Scahill		

Wintering	of	dairy	cows	on	high	yielding	forage	crops	 is	a	key	contributor	towards	total	

farm	nitrate	leaching	loses.	High	stocking	density’s,	and	subsequent	excretion	of		nitrogen-

loaded	urine,	onto	bare,	saturated	soils	results	in	high	nitrate	leaching	rates.		Incorporation	

of	standoff	facilities	into	traditional	in	situ	wintering	systems	has	been	suggested	as	a	viable	

approach	to	mitigating	nitrate	leaching.,	but	limited	quantitative	data	exists	for	percentage	

of	urine	captured,	and	the	performance	of	non-lactating	dairy	cows	wintered	under	such	

systems.		

Two	 winter	 systems	 were	 compared	 between	 June	 and	 July	 2017	 at	 the	 Ashley	 Dene	

Research	 and	 Development	 Station	 (ADRDS).	 	 Both	 systems	 fed	 fodderbeet	 (7	

KgDM/cow/day	 fodderbeet,	 4	 Kg	DM/cow/day	 silage)	 but	 in	 	 the	 control	 system,	 cows	

spent	 23	 hours/day	 grazing	 fodderbeet	 in	 situ,	 with	 a	 one	 hour	 supplement	 allocation	

period	on	a	concrete	feedpad	while	the	comparison	was	a		standoff	pad	system,	were	cows	

were	restricted	to	a	6	hour	fodderbeet	allocation	period	(plus	one	hour	on	the	feedpad),	

and	spent	17	hours/day	on	a	variety	of	stand	of	pad	surfaces	(stones,	sand,	woodchip	and	

carpet).	To	quantify	variation	in	urine	deposition	between	the	two	systems,	PEETER	urine	

sensors	were	 attached	 to	 cows	 and	 used	 to	measure	 urination	 frequency	 and	 volume.	

Urination	behavior	from	eight	cows	were	successfully	measured	for	a	period	of	24	hours.	

To	compare	the	suitability	of	the	farms	systems	from	a	production	perspective,	fodderbeet	
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and	supplement	utilization,	cow	liveweight,	and	body	condition	score	were	also	measured	

throughout	the	trial.			

Results	 show	 there	 was	 no	 difference	 in	 dry	 matter	 utilization	 (94.2	 +	 ±3.4%),	 and	

liveweight	gain	(580±6.7	gCow/day)	between	systems.	Apparent	energy	consumption	(123	

MJME/cow/day)	suggested	that	body	condition	score	gain	targets	of	0.5	units	would	be	

achievable	over	a	60	day	wintering	period.	Urination	behavior	was	unaffected	by	wintering	

system,	with	average	urination	event	volumes,	urination	event	frequency’s,	and	total	daily	

urine	 volumes	 of	 (1.8±1.03l/event),	 (8.37±	 4.34	 events/day)	 and	 (15.12±5.5l/cow/day)	

were	 recorded.	 The	 percentage	 of	 total	 urine	 captured	 under	 the	 standoff	 pad	 system	

(82±8.66%)	suggest	that	the	expected	quantity	captured	is	reflective	of	the	duration	of	a	

stand	off	period.		When	compared	to	a	24	hour	in	situ	system,	the	capture	of	82%	of	urine	

reduced	estimated	urine	coverage	from	54.6%	to	9.6%	of	 total	paddock	area.	Based	on	

established	leaching	values	under	fodderbeet	in	stony,	Canterbury	soil	types,	this	reduction	

in	paddock	urine	coverage	resulted	in	an	estimated	reduction	in	winter	nitrate	leaching	of	

31.4	 Kg	N/ha	 or	 61.6%.	 It	was	 therefore	 concluded	 that	 stand	 off	 pad	 systems	 can	 be	

effectively	used	to	mitigate	winter	nitrate	leaching	whilst	maintaining	acceptable	levels	of	

cow	performance.		

Keywords:	 Dairy,	 nitrate,	 leaching,	 wintering,	 fodderbeet,	 urine,	 restricted	 grazing,	

utiisation,	intake,	body	condition	score,	liveweight,	standoff	pad.		
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1 INTRODUCTION	

The	dairy	industry	is	a	significant	export	earner,	contributing	in	excess	of			$13.59	billion	

annually	to	the	New	Zealand	economy	(Statistics	NZ,	2014).	Rapid	intensification	both	at	

an	on	farm,	and	industry	wide	level,	has	resulted	in	an	increase	in	the	national	cow	herd	

of	1.2	million	cows,	with	an	associated	increase	in	stocking	rate	of	0.1	cows/ha	(DairyNZ,	

n.d).	Whilst	beneficial	to	farm	profitability,	and	the	New	Zealand	economy	as	a	whole,	the	

scale	and	intensity	of	New	Zealand’s	dairy	industry	has	significant	environmental	impacts	

(Baskaran,	Cullen,	&	Colombo,	2009).		Nitrate	leaching	from	intensive	production	drives	

eutrophication	and	degradation	of	regional	waterways;	an	issue	that	has	come	under	

considerable	public	scrutiny	in	recent	times	(Cameron,	Di,	&	Moir,	2013;	van	Reenan,	

2013).	Subsequently,	national	policies	have	been	released,	mandating	that	regional	

councils	manage	land	use	to	mitigate	further	environmental	damage	(Ministry	for	the	

Environment,	2017).	In	Canterbury,	the	country’s	most	intensive	dairying	province,	the	

‘Land	&	Water	Regional	Plan’	has	been	implemented,	ultimately	functioning	to	enforce	N	

leaching	limits	(DairyNZ,	n.d).		Farmers	must	therefore	adapt	their	farm	systems	to	meet	

regulatory	standards.	The	traditional	in	situ	approach	to	wintering	has	been	identified	as	

a	key	driver	of	whole	farm/enterprise	N	leaching	due	to	typically	high	stocking	density’s	

and	excretion	of	N	loaded	urine	onto	bare,	saturated	soils	(Monaghan,	2012).		The	

“Pastoral	21”	research	programme	has	identified	fodderbeet	as	the	optimal	wintering	

crop	due	to	its	inherently	low	N	content	(Shepherd,	Shorten,	Costall,	&	Macdonald,	

2017).	However,	simply	changing	crop	type	does	not	address	the	impact	of	high	stocking	

intensity’s,	and	large	nutrient	load	on	wintering	areas,	and	as	such	it	has	been	suggested	

that	stand-off	pad	wintering	systems	can	achieve	further	reductions	in	winter	N	leaching	

(Shepherd	et	al.,	2017;	Volger,	Beukes,		&	Burggraaf,	2013).	The	efficacy	of	such	systems	

is	dependent	on	several	factors;	1.	the	ability	of	cows	to	maintain	DMI	and	achieve	

acceptable	BCS/LW	gains	under	a	restricted	grazing	period	and	2.	the	quantity	of	urine	

captured	on	the	standoff	pad	and	the	subsequent	reduction	in	paddock	urine	coverage	

achieved.	Limited	research	exists	specifically	quantifying	these	factors.	This	research	
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project	therefore	aims	to	answer	three	key	research	questions	to	determine	whether	

standoff	pads	represent	a	viable	‘Next	Generation	Wintering	System’.	 

1.1 Research	Questions		

This	research	project	aims	to	answer	three	key	research	questions:	

- Can	 non-lactating	 dairy	 cows	 achieve	 fodderbeet/silage	 intake	 rates	 >	 10	

kgDM/cow/day	under	a	restricted	grazing	period?			

- Can	non-lactating	dairy	cows	achieve	acceptable	BCS	and	LW	gains	under	a	standoff	

wintering	system?		

- What	 percentage	 of	 total	 urine	 volume	 will	 be	 captured	 under	 a	 standoff	 pad	

wintering	system,	and	what	effect	does	this	have	on	paddock	scale	urine	coverage	

and	N	leaching	in	Canterbury?			
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2 REVIEW	OF	THE	LITERATURE	

2.1 Introduction				

The	New	Zealand	Dairy	industry	has	rapidly	intensified	both	at	an	on	farm,	and	industry	

wide	level,	driven	by	increased	returns	from	milk	production	(Baskaran	et	al.,	2009).	An	

increase	in	the	national	cow	herd	of	1.2	million	cows,	has	been	associated	with	a	rise	in	

average	 stocking	 rate	 of	 0.1	 cows/ha	 (DairyNZ,	 2016).	 Whilst	 beneficial	 to	 farm	

profitability,	and	the	New	Zealand	economy	as	a	whole,	intensification	has	environmental	

implications.	High	levels	of	nitrate	leaching	stimulate	eutrophication	and	degradation	of	

aquifers	and	waterways	(Cameron,	Di,	&	Condron,	2002;	Colins	et	al.,	2007;	Flemmer	&	

Flemmer,	 2008).	 	 Government	 policies	 have	 been	 released,	 mandating	 that	 regional	

authorities	manage	land	use	to	reach	targeted	reductions	in	nitrate	leaching	(DairyNZ,	n.d;	

Ministry	 for	 the	 Environment,	 2017).	 Farmers	 are	 therefore	 looking	 to	 adapt	 their	

operational	systems	to	the	new	reality	of	‘farming	within	limits’	(van Reenan, 2013)		

This	literature	review	discusses	the	environmental	impacts	of	intensive	dairy	production,	

identifies	the	traditional	wintering	approach	as	a	key	driver	of	total	farm	nitrate	leaching,	

outlines	recent	research	into	‘Next	Generation	Wintering	Systems’,	and	discusses	shortfalls	

in	 the	 research	 surrounding	 the	 use	 of	 restricted	 grazing	 and	 standoff	 pad	 systems	 to	

mitigate	winter	nitrate	leaching.		

2.2 Nitrate	Leaching	and	Environmental	Impacts		

Nitrogen	(N)	is	an	essential	element	for	plant	growth	as	it	is	a	primary	constituent	of	amino	

acids,	proteins,	chlorophyll	molecules	(Hatch,	Goulding,	&	Murphy,	2002),	enzymes	and	co-

enzymes	(Mclaren	&	Cameron,	1996).		To	become	available	for	plant	uptake,	N	must	be	

mineralised	 into	 (NH4
+),	 or	 nitrified	 into	 nitrate	 (NO3

-).	 Figure	 2-1	 displays	 this	 in	 the	

nitrogen	 cycle	 (Cameron	 et	 al.,	 2013).	 The	 process	 of	 nitrification	 represents	 an	

environmental	 issue;	As	nitrate	 is	 negatively	 charged,	 it	 is	 not	 retained	within	 the	 soils	

cation	exchange	matrix	(Mclaren	&	Cameron,	1996).	As	such,	when	large	drainage	events	

occur,	a	portion	of	free	moving	NO3
-	will	be	leached	from	the	soil	solution,	and	distributed	

into	 local	 waterways	 and/or	 aquifers.	 	 	 Increased	 nitrate	 concentration	 in	 waterways	

deteriorates	water	quality	and	decrease	ecosystem	diversity	(Cameron	et	al.,	2002;	Colins	
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et	 al.,	 2007;	 Flemmer	 &	 Flemmer,	 2008).	 This	 is	 driven	 by	 eutrophication	 and	 the	

subsequent	 shading	of	 rivers/lakebeds.	As	waters	 shift	 to	 trophic	 levels,	 populations	of	

plankton,	cyanobacteria	and	blue-green	algae	increase,	resulting	in	oxygen	deprivation	and	

subsequent	fish	death.	A	waterway	is	deemed	eutrophic	when	total	N	content	reaches	0.4-

0.6	mg	N	L	(Di	&	Cameron,	2002).			Whilst	the	quality	of	waterways	in	New	Zealand	is	high	

by	international	standards,	significant	degradation	has	been	observed	over	the	past	five	

decades	 (Baskaran	 et	 al.,	 2009).	 Thirty	 percent	 of	 major	 NZ	 rivers	 have	 higher	 NO3
-	

concentrations	than	were	measured	in	the	1970’s,	and	currently,	31.8%	of	New	Zealand’s	

total	river	length	does	not	meet	acceptable	guidelines	for	fresh	and	marine	water	quality	

(Ministry	 for	 the	 Environment,	 2011).	 Furthermore,	 approximately	 39%	 of	 monitored	

groundwater	 bodies	 contain	 elevated	 nitrate	 levels	 above	 natural	 background	

concentrations	(Ministry	for	the	Environment,	2011).	It	is	therefore	apparent	that	nitrate	

leaching	is	a	significant	environmental	issue.			

		

Figure 2-1 The	Nitrogen	Cycle.		
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2.3 Nitrate	Leaching	from	Intensive	Dairy	Systems		

It	 is	well	established	that	New	Zealand	dairy	farms	leach	significant	quantities	of	nitrate	

(Clark,	Givens,	&	Jeannie,	2007;	Parliamentary	Commissioner	for	the	Environment,	2004).	

The	quantity	of	nitrate	lost	from	the	soil	solution	is	ultimately	driven	by	two	fundamental	

factors;	 the	 amount	 accumulated	 in	 the	 top	 soil	 in	 excess	 of	 plant	 requirements,	 and	

drainage	volume	through	the	soil	profile	(Di	&	Cameron,	2002).	Reflecting	this,	the	greatest	

period	 of	 nitrate	 leaching	 typically	 occurs	 in	 autumn	 and	 winter,	 when	 excess	 rainfall	

exceeds	evapotranspiration,	soil	water	 levels	 rise	above	field	capacity	and	plant	growth	

potential	is	low	(Cameron	et	al.,	2013).		Drainage	volume	is	typically	outside	of	the	farmer’s	

control	(except	for	poor	irrigation	management).	However,	the	quantity	of	nitrate	in	the	

soil,	is	driven	to	a	large	extent	by	farm	system	intensity	(Di	&	Cameron,	2002).	Reflecting	

this,	dairy	farms	have	been	shown	to	leach	significant	quantities	of	nitrate	(25-110	Kg	N/ha)	

when	compared	to	alternative	systems	such	as	sheep,	grazing	and	cropping	(6-58	Kg	N/ha)	

(Cameron	et	al.,	2013).	 The	observed	difference	 in	 system	nitrate	 leaching	 is	driven	by	

greater	 nitrogen	 fertiliser	 application	 (Food	 and	Agriculture	Organization	 of	 the	United	

Nations,	 2014),	 allowing	 for	 increased	 stocking	 rates	 and	 subsequently	 greater	 nitrate	

losses	from	grazing.	The	various	sources	of	nitrate	leaching	are	displayed	in	figure	2-2	(de	

Klein	et	al.,	2010).	

	

Figure 2-2 Sources	of	nitrate	leaching	in	intensive	dairy	systems.	
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In	Canterbury,	nitrate	leaching	is	driven	by	regional	environmental	factors;	hot,	dry	

summers	facilitate	topsoil	accumulation	of	NO3
-	and	subsequently,	greater	leaching	rates	

in	autumn	and	winter	(Cameron	et	al.,	2002).	The	region’s	stony	soil	types	(such	as	

Lismore	stony	loam	and	Waimakariri	sandy	loam)	facilitate	rapid	drainage,	and	

subsequent	removal	of	nitrate	from	the	soil	matrix	(Cameron	et	al.,	2013).	Furthermore,	

Canterbury’s	average	stocking	rate	(3.25	cows/ha)	is	18%	higher	than	the	national	

average	(DairyNZ,	2016),	driven	by	the	development	of	efficient	irrigation	systems	(Sage,	

2008).	Subsequently,	it	is	recognised	as	New	Zealand’s	most	productive	region	on	a	

milksolids	per	hectare	basis,	and	accounts	for	13.8%	of	the	national	cow	herd	(DairyNZ,	

2016).	High	levels	of	nitrate	leaching	have	therefore	been	reported	in	the	Canterbury	

region	(Lilburne	et	al.,	2013).	It	is	apparent	that	dairy	production	in	Canterbury	and	New	

Zealand	as	a	whole	results	in	significant	levels	of	nitrate	leaching,	primarily	driven	by	

losses	from	grazing	(stocking	rate).		

 

2.3.1 Nitrate	Leaching	from	Grazing-	Urinary	N	Excretion	
A	primary	inefficiency	of	pastoral	based	farming	systems	is	the	discrepancy	between	plant	

and	animal	N	requirements	for	optimal	production;	dietary	N	requirements	of	mature	dairy	

cattle	range	from	1.8-2.2%	of	DMI	(Pacheco	&	Waghorn,	2008),	considerably	lower	than	

the	potential	forage	N	content	of	3.4%	(de	Klein	et	al.,	2010;	Ledgard,	de	Klein,	Crush,	&	

Thorrold,	 2000).	 As	 such,	 it	 has	 been	 shown	 that	N	 voided	 in	 urine	 is	 closely	 linked	 to	

dietary	N	content,	with	75-95%	of	dietary	N	intake	being	excreted	(Dijkstra	et	al.,	2013;	

Eckard,	 Grainger,	 &	 de	 Klein,	 2010).	 	 Subsequently,	 in	 dairy	 cows,	 were	 N	 intakes	 can	

exceed	 400g	 N/cow/day	 (Castillo,	 Kebreab,	 Beever,	 &	 France,	 2000),	 mean	 urine	 N	

concentrations	of	5.5g	N	L-1	-	8.6g	N	L-1	and	total	daily	excretions	of	80-320g	N/cow/day	

have	been	reported	(Betteridge	et	al.,	2013;	Shepherd	et	al.,	2017;	Whitehead	et	al.,	1995).		

Subsequent	urine	patch	N	loading	rates	between	200-2000	Kg	N/ha	have	been	outlined	by	

Selbie,	Buckthought,	&	Shepherd,	(2015),	with	it	being	generally	accepted	that	the	average	

N	 loading	 rate	 is	 somewhere	 in	 the	 range	of	 800-1300	Kg	N/ha	 (Cameron	et	 al.,	2002;	

Eckard	et	al.,	2010).	It	has	been	estimated	that	8%-20%	of	N	applied	as	urine	is	leached	

(Cameron	et	al.,	2002)	and	therefore	it	can	be	concluded	that	urinary	N	excretion	is	a	key	

driver	of	nitrate	leaching,	particularly	under	high	stocking	rates.		
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2.3.2 The	Challenges	of	Wintering	Dairy	Cows	in	Relation	to	Nitrate	Leaching		
Wintering	can	be	broadly	defined	as	“the	activity	of	feeding	cows	for	the	12	week	period	

from	 late	May	 to	 late	 August	 (Monaghan,	 2012).	 	 Common	 practice	 is	 to	 graze	winter	

forages	 in	situ	 (Chrystal,	Monaghan,	Dalley,	&	Styles,	2012)	 to	address	 the	typically	 low	

pasture	growth	rates	and	rapidly	increasing	maternal	energy	demands	during	this	period	

(Dalley,	 2013).	 The	 high	 yields	 of	 quality	 forage	 produced	 by	 crops	 such	 as	 kale	 and	

fodderbeet	 (Chakwizira	 et	 al.,	2012)	 allow	 for	 stocking	 density’s	 in	 excess	 of	 300-3000	

cows/ha	 (Cichota	 &	 Snow,	 2009).	 Assuming	 a	 single	 annual	 grazing,	 this	 equates	 to	 a	

stocking	intensity	of	up	to	3000	cow	grazing	days/ha/yr,	considerably	greater	than	the	700	

cow	 days/ha/yr	 reported	 for	 rotationally	 grazed	 pastoral	 blocks	 (Moir,	 Cameron,	 Di,	

Fertsak,	2010;	Whitehead,	2000).	As	such,	comparatively	high	levels	of	total	paddock	urine	

coverage,	 and	 N	 leaching	 can	 be	 expected	 under	 winter	 forages.	 In	 rotational	 grazing	

systems,	0.5-9%	of	the	allocated	area	will	receive	a	urination	event	within	a	24	hour	period	

(Vellinga	et	al.,	2001),	accumulating	to	10%-29%	annually	(average=23%)	(Moir	et	al.,	2010;	

Macklusky,	 1960;	Williams,	 1998;	Whitehead,	 2000;	White,	 Sheeld,	Washburn,	 King,	 &	

Green,	 2001).	 In	 forage	 based	 wintering	 systems,	 Ravera	 et	 al.,	 (2015)	 reported	 urine	

coverage	 of	 61%	 and	 58%	 for	 fodderbeet	 and	 kale	 crops	 respectively,	 reflecting	 the	

conclusion	of	Moir	et	al.,	(2010)	that	an	increase	in	stocking	intensity	of	10000	cow	grazing	

hours/ha/yr	will	result	in	a	7%	increase	in	paddock	urine	coverage.	Subsequently,	winter	

forage	blocks	have	been	shown	to	leach	significant	quantities	of	N,	ranging	from	51-173	Kg	

N/ha	across	a	variety	of	climate,	crop	and	soil	types	(Dalley,	2011;	Shepherd,	Stafford,	&	

Smeaton,	 2012;	 McDowell	 &	 Houlbrooke,	 2009;	Monaghan,	 Smith,	 &	 de	 Klein,	 2013;	

Monaghan,	2012;	Smith,	Orchiston,	&	Monaghan,	2012).	As	such,	it	has	been	outlined	that	

winter	forage	blocks	account	for	disproportionate	quantity	of	whole	farm	N	losses;	11%-	

60%	 from	4%	 -15%	of	 the	 total	 farm	area	 (Chrystal	et	al.,	2012;	Monaghan,	2012).	 It	 is	

therefore	 apparent	 that	 the	 traditional	 in	 situ	 approach	 to	 dairy	 farm	 wintering	 is	 a	

significant	contributor	to	total	system	N	leaching.	Whilst	wintering	often	occurs	on	support	

blocks	rather	than	the	milking	platform,	its	environmental	impact	is	ultimately	part	of	the	

dairy	enterprise.		
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2.4 Public	Concern	and	Government	Regulation	

The	apparent	contribution	of	 intensive	dairy	production	towards	waterway	degradation	

has	been	recognised,	and	as	such,	public	pressure	for	improved	environmental	practice	has	

increased	 (Scarsbrook,	 2013;	 van	Reenan,	 2013).	 In	 response,	 a	 series	of	 governmental	

policies	have	been	released,	outlining	quantifiable	targets	for	regional	and	national	water	

quality;	In	2011	the	‘National	Policy	Statement	for	Freshwater	Management’	was	released	

(Ministry	for	the	Environment,	2011),	whilst	more	recently,	the	“Clean	Water	Package”	was	

launched,	 with	 an	 aim	 of	 100%	 ‘swimmable’	 water	 ways	 by	 2050	 (Ministry	 for	 the	

Environment,	2017).	These	policy’s	ultimately	mandate	that	regional	councils	manage	land	

use	 to	maintain	water	quality.	 In	Canterbury,	 farmers	must	operate	under	 the	 councils	

‘Land	 &	Water	 Regional	 Plan’.	 This	 involves	 a	 consent	 to	 operate,	 establishment	 of	 a	

nitrogen	baseline,	and	development	of	a	farm	environmental	plan	to	ensure	that	annual	

nitrate	leaching	remains	below	the	established	baseline	level	(DairyNZ,	n.d).	Furthermore,	

farm	 systems	 with	 comparatively	 high	 N	 baselines	 will	 be	 required	 to	 meet	 lower	

determined	 ‘good	 management	 practice’	 loss	 rates	 by	 2020	 (DairyNZ,	 n.d).	 Wintering	

practices	will	also	be	regulated;	from	2020	onwards,	consent	will	be	required	to	establish	

winter	forage	crops	over	more	than	10%	of	the	total	farm	area	(DairyNZ,	n.d).	It	is	therefore	

apparent	that	intensive	dairy	operations	in	Canterbury	(and	nationwide)	must	adapt	their	

systems	to	the	reality	of	farming	within	limits	(van Reenan, 2013).		 

2.5 Next	Generation	Wintering	Systems		

It	is	apparent	that	the	wintering	period	is	a	key	contributor	to	total	farm	nitrate	leaching,	

due	to	high	stocking	density’s	and	urine	patch	coverage	(Cichota	&	Snow,	2009;	Ravera	et	

al.,	2015),	negligible	N	plant	uptake,	 and	high	drainage	volume	 (Cameron	et	al.,	2002).		

Therefore,	a	key	regional	focus	of	the	DairyNZ	Pastoral	21	programme	in	Canterbury	has	

been	 on	 developing	 ‘Next	 Generation	 Wintering	 Systems’	 that	 allow	 farmers	 to	 meet	

baseline	N	leaching	rates	(Shepherd	et	al.,	2017).	To	date,	a	series	of	trials	have	identified	

fodderbeet	 as	 the	 ideal	 crop	 for	 dairy	 cow	 wintering,	 due	 to	 its	 inherently	 low	 CP	

(<10.9%/DM)	and	low	forage	N	content	(<2%	DM)	(Edwards	et	al.,	2014;	Farrel	et	al.,	2016;	

Jenkinson,	Edwards,	&	Bryant,	2014).	As	discussed,	 the	quantity	of	N	voided	 in	urine	 is	

ultimately	 reflective	of	dietary	N	 intake	 (Dijkstra	et	al.,	2013;	Eckard	et	al.,	 2010),	with	

significant	reductions	observed	at	intakes	below	400	g	N/cow/day	(Castillo	et	al.,	2000).	At	
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moderate	 to	high	DM	allowances,	cows	offered	 fodder	beet,	will	achieve	a	significantly	

lower	nitrogen	 intake,	 than	 those	offered	kale,	or	pasture	 (231	g	N/cow/day	vs	>400	g	

N/cow/day)(Edwards	 et	 al.,	 2014;	 Jenkinson	 et	 al.,	 2014).	 As	 such,	 reduced	 urine	 N	

concentrations	 (2.1-4.02	 g	 N/L)	 and	 urine	 patch	 N	 loading	 rates	 (190-300	 Kg	 N/ha)	

(Edwards	et	al.,	2014;	Farrel	et	al.	2016;	Hogg,	1981;	 Jenkinson	et	al.,	2014)	have	been	

reported.	 It	 has	 been	 established	 that	 the	 quantity	 of	 urine	 N	 leached	 increases	

exponentially	 with	 urine	 patch	 N	 loading	 rate	 (de	 Klein	 et	 al.,	 2010).	 Reflecting	 this,	

lysimiter	based	trials	reported	leaching	loses	of	21-32%	and	43-54%	of	urine	N	deposited	

under	 fodderbeet	 and	 kale	 wintering	 systems	 respectively.	 The	 lower	 leaching	 rate	

observed	 under	 fodderbeet	was	 attributed	 to	 reduced	 urine	N	 loading,	 supporting	 the		

presumption	that	that	allocation	of	low	CP/N	forages	can	reduce	urinary	N	leaching	on	a	

per	cow	basis	 (Li,	Betteridge,	Cichota,	Hoogendorn,	 	&	 Jolly,	 	2012;	Malcolm,	Cameron,	

Edwards,	&	Di,	2014).			Estimated	paddock	scale	leaching	rates	of	64-79	Kg	N/ha	(Malcolm	

et	al.,	2016),	suggest	that	N	losses	under	fodderbeet	systems	will	be	at	the	lower	end	of	

the	51-173	Kg	N/ha	 range	 reported	across	a	variety	of	winter	 forages	 (Shepherd	et	al.,	

2012;	McDowell	&	Houlbrooke,	2009;	Monaghan	et	al.,	2013;	Monaghan,	2012;	Smith	et	

al.,	2012).	However,	simply	reducing	dietary	N	intake	does	not	address	the	effect	of	high	

stocking	densities	on	paddock	urine	patch	coverage.	It	has	therefore	been	suggested,	that	

incorporation	of	a	stand-off	pad	into	an	in	situ	fodderbeet	wintering	system	may	further	

reduce	nitrate	leaching	(Shepherd	et	al.,	2017).	Standoff	pad	systems	ultimately	function	

as	a	hybrid	between	wintering	barns	and	 in	situ	systems,	whereby	cows	spend	only	the	

time	required	to	consume	their	forage	allocation	in	the	paddock,	typically	4-8	hours.	Under	

such	systems,	a	portion	of	total	urine,	excreted	will	be	captured	on	the	stand-off,	rather	

than	being	deposited	on	the	soil	(Volger	et	al.,	2013).				

2.6 Farmer	Adoption			

The	increasing	public	and	regulatory	pressures	for	agricultural	production	systems	to	meet	

environmental	benchmarks	requires	farmers	to	invest	in	mitigation	strategies.	In	a	farmer	

a	 survey,	Dalley,	 (2011)	 reported	 that	45%	of	 respondents	had	adapted	 their	wintering	

approach	away	from	in	situ	systems	in	the	5	years	preceding	2013.	14%	did	so	because	of	

environmental	concerns,	suggesting	that	farmers	are	willing	to	invest	in	sustainable	best	

practice.	 However,	 61%	 of	 respondents	 suggested	 that	 capital	 was	 a	 key	 barrier	 to	



 
 

10 

incorporating	 housing/structures	 into	 their	 wintering	 systems.	 Simple	 standoff	 pads	

represent	 an	 economic	 alternative	 to	 traditional	 wintering	 barns.	 The	 reported	 capital	

outlay	of	$125-$400/cow	(Beukes,	Gregorini,	Romera,	&	Dalley,	2011;	de	Klein,	Monaghan,	

Ledgard,	&	 Shepherd,	 2010),	 is	 considerably	 lower	 than	$1500-$3220/cow	 required	 for	

construction	of	a	 fully	enclosed	wintering	barn	 (de	Wolde,	2006;	 Journeaux,	2013;	New	

Zealand	 Institute	 of	 Primary	 Industry	 Management,	 2014).	 From	 an	 operational	

perspective,	standoff	pad	systems	are	cheaper	than	housed	systems,	as	cow’s	still	harvest	

forage	in	situ,	eliminating	the	requirement	to	cut	and	carry	feed,	and	reducing	the	portion	

of	supplement	in	the	diet	(de	Klein	et	al.,	2010).		It	is	therefore	apparent	that	stand	off	pads	

represent	an	economical	alternative	system	to	traditional	on	farm	structures,	that	does	not	

require	a	significant	shift	away	from	the	typically	favored	‘grass	based’	approach.	However,	

for	 farmer	 adoption	 to	 occur,	 it	 must	 be	 proven	 that	 that	 standoff	 pad	 systems	 can	

effectively	mitigate	nitrate	 leaching,	to	meet	regulatory	benchmarks,	whilst	maintaining	

acceptable	levels	of	animal	performance.			

2.7 Efficacy	to	Meet	Animal	Performance	Targets	

The	effectiveness	of	any	wintering	system	is	measured	by	the	capacity	for	cows	to	meet	

BCS/LW	 targets.	 A	 BCS	 of	 5	 and	 5.5	 is	 optimal	 at	 parturition	 for	 cows	 and	 heifers	

respectively,	with	a	typical	gain	of	0.5	units	required	over	winter	(Holmes	et	al.,	2007).	The	

maintenance/pregnancy/activity	 energy	 requirements	 of	 a	 non-lactating	 dairy	 cow	 is	

expressed	as	10.5	MJME/Kg	LW0.75,	equating	to	103	MJME/day	for	a	510	kg	animal	(Nicol	

&	Brookes,	2007).	Edwards	et	al.,	(2014)	suggested	that	an	additional	14-16	MJME/day	is	

require	 to	 gain	 weight	 in	 the	 cooler	 Canterbury	 climate,	 accumulating	 to	 117-119	

MJME/Day	to	achieve	a	total	winter	BCS	gain	of	0.5	units	over	a	60	day	wintering	period.		

BCS	gains	ranging	from	0.05-0.8	have	been	outlined	across	a	range	of	forages	at	moderate-

high	allowances	(Keogh,	French,	McGrath,	Story,	&	Mulligan,	2009;	Edwards	et	al.,	2014).	

The	 disparity	 often	 observed	 between	 estimated	ME	 intake	 and	 actual	 BCS/LW	 gain	 is	

attributed	to	overestimation	of	crop	yields,	underestimation	of	energy	requirements,	and	

incorrect	allocations	(Judson	&	Edwards,	2008).	However,	at	actual	ME	intakes	in	excess	of	

119	MJME/cow/day,	targeted	BCS	gains	(>0.5	units	per	60	days)	can	be	achieved	(Edwards	

et	al.,	2014;	Judson	et	al.,	2008;	Rugoho,	Gibbs,	&	Edwards,	2014).		Edwards	et	al.,	(2014)	

reported	 BCS	 gains	 of	 0.74-0.78	 when	 cows	 achieved	 an	 energy	 intake	 of	 155	



 
 

11 

MJME/cow/day	from	a	13.1	Kg	DM/cow/day	intake	of	fodderbeet	and	silage.	For	a	typical	

fodderbeet	wintering	 diet	 (65%	 fodderbeet,	 35%	 ryegrass	 silage	 (Al	Marshadesh	et	 al.,	

2017;	Edwards	et	al.,	2014),	a	DMI	of	6.3	Kg	DM/cow/day	of	fodderbeet	(12.2	MJME/Kg	

DM.	Edwards	et	al.,	2014),	and	3.7	KgDM/cow/day	of	silage	(11.1	MJME/Kg	DM.	de	Ruiter	

et	al.,	2007)	would	be	required.	It	 is	therefore	apparent	that	to	meet	typical	winter	BCS	

targets,	 intakes	 of	 10Kg	 DM/cow/day	 must	 be	 achievable.	 Under	 natural	 ad-libitum	

conditions,	cattle	display	two	distinctive	grazing	bouts	(morning	and	evening)	(Gregorini	et	

al.,	2009;	Linnane,	Brereton,	&	Giller,	2001;	Rook,	Huckle,	&	Penning,	1994).	However,	it	

has	 been	 suggested	 that	 restricted	 grazing	 drives	 impulsion	 to	 maximize	 intake	 rate	

because	 of	 behavioral	 adaptations	 (Greenwood	&	 Demmet,	 1988).	 As	 such,	 significant	

(P<0.05)	increases	in	bite	rate,	bite	mass	(0.69	g/bite	vs	0.49	g/bite)	and	reduced	handling	

time	(690	min	vs	950	min)	have	been	reported	when	grazing	is	restricted	to	6	hours/day	

(Kennedy	et	al.	2009).		Reflecting	this,	it	has	been	observed	that	>70%	&	>80%	of	perennial	

ryegrass	 intake	 can	 be	 achieved	 within	 two	 and	 four	 hours	 of	 allocation	 respectively	

(Dobos,	Fulkerson,	Sinclair,	&	Hinch,	2009),	whilst	Gregorini	et	al.,	(2009)	showed	that	cows	

offered	pasture	once	a	day	consumed	10	kg	DM/cow	within	three	hours.		It	is	therefore	

apparent	that	when	offered	pasture,	the	rate	of	DM	consumption	can	be	increased	by	upto	

27%	(Greenwood	&	Demmet,	1988),	and	the	grazing	period	can	be	restricted	to	as	low	as	

four	 hours	 with	 negligible	 impacts	 on	 DMI	 and	 animal	 performance	 (Perez-Ramirez,	

Delgarde,	&	Delaby,	2008).	However,	little	works	exists	on	the	restricted	intake	of	winter	

forage	 crops.	 It	 must	 therefore	 be	 considered	 that	 utilization	 and	 total	 intake	 of	 bulb	

dominant	crops	such	as	fodderbeet	may	be	reduced	with	restricted	grazing,	due	to	bulbs	

having	 to	be	 removed	 from	the	soil	prior	 to	consumption.	Thompson	&	Stevens	 (2012)	

observed	 a	 4.8	 KgDM/cow	 intake	 of	 swedes	 within	 5	 hours	 of	 allocation.	Whilst	 cows	

offered	fodderbeet	have	been	shown	to	achieve	a	six	hour	DMI	of	7.2	KgDM/cow	(90%	

utilization)	(Jenkinson	et	al.,	2014).	Whilst	 indicative	of	high	restricted	 intakes	of	winter	

forages,	neither	of	these	trials	actually	restricted	grazing	periods,	rather	intake	rates	were	

measured	five	to	six	hours’	post	allocation.	Subsequently,	the	adaptive	behavioral	changes	

outlined	by	Greenwood	&	Demmet	(1988)	may	not	have	been	expressed.	Furthermore,	it	

has	been	postulated	that	using	an	‘uncomfortable’	standoff	surface	may	reduce	DMI,	as	

cows	 will	 favor	 lying	 rather	 than	 foraging	 when	 in	 the	 paddock	 (R.	 Bryant	 personal	

communication,	 May	 2017).	 Reflecting	 this,	 Fisher,	 Stewart,	 Verkerk,	 Morrow,	 &	
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Matthews,	(2003)	reported	lying	times	(6-7	hours/day)	significantly	lower	than	established	

optimum	 of	 >12	 hours/days	when	 cows	were	 held	 in	 concrete	 yards	 and/or	 on	 gravel	

laneways.		Decreased	lying	time	results	in	increased	energy	expenditure	and	depression	of	

anabolic	metabolism	induced	by	release	of	stress	hormones.	(Fisher,	Verkerk,	Morrow,	&	

Matthews,	 2002).	 	 	 As	 such,	 reduced	 winter	 BCS/LW	 gains	 have	 been	 reported	 under	

various	 standoff	 pad	wintering	 systems	 (Fisher	et	 al.,	2003;	Webster	et	 al.,	2007).	 It	 is	

therefore	apparent	that	further	research	is	required	to	quantify	the	effects	of	a	restricted	

grazing,	standoff	pad	system	on	forage	crop	DMI	and	BCS	gain	over	winter.		

2.8 Efficacy	for	Standoff	Pads	to	Reduce	Nitrate	Leaching		

The	 efficacy	 of	 a	 standoff	 pad	 system	 to	 mitigate	 N	 leaching	 will	 be	 reflective	 of	 the	

quantity	 of	 urine	 captured,	 and	 the	 associated	 reduction	 in	 paddock	 urine	 coverage.	

Restricting	grazing	from	24	to	six	hours	daily,	at	a	stocking	density	of	3000	cows/ha	(over	

the	 daily	 crop	 area	 allocated),	 would	 reduce	 stocking	 intensity	 from	 >70,000	 cow	

hours/ha/yr,	to	<18,000	cow	hours/ha/yr.	The	findings	of	Moir	et	al.,	(2010)	suggest	that	

this	would	reduce	paddock	urine	coverage	by	35%	(7%	reduction	per	10,000	cow	h/ha/yr).		

Based	on	established	N	 leaching	 rates	under	 fodderbeet	 in	Canterbury	 (Malcolm	et	al.,	

2016),	a	35%	reduction	in	urine	patch	coverage	would	result	in	an	approximate	decrease	

in	N	 leaching	of	11.9-18.9	Kg	N/ha.	As	such,	 it	has	been	suggested	that	reductions	 in	N	

leaching	of	30-65%	have	been	can	be	achieved	with	standoff	durations	of	16-20	hours/day	

(Christensen	et	al.,	2011;	Environment	Waikato,	2008;	Lindsay	et	al.,	2011).	It	is	therefore	

apparent	that	standoff	pad	systems	have	potential	to	mitigate	N	losses	to	water.	However,	

the	 extent	 of	 mitigation	 will	 be	 reflective	 of	 the	 quantity	 of	 urine	 captured.	 A	 strong	

understanding	of	dairy	cow	urination	behaviour,	and	the	temporal	distribution	of	excretion	

is	therefore	required.		

2.8.1 Urination	Behavior		
Previous	 research	 has	 outlined	 significant	 inter-cow	 variability	 in	 total	 daily	 urination	

volume	(13-54.7	l/cow/day),	average	event	volume	(0.3-2.2	l/event),	and	event	frequency	

(5-18	events/day)	(Aland,	Lidfors,	&	Ekesbo,	2002;	Betteridge	et	al.,	1986;	Castle,	Foot,	&		

Halley,	1950;	Fuller,	1928;	Haynes	&	Williams,	1993;	Misselbrook	et	al.,	2016;	Selbie	et	al.,	

2015;	 Shepherd	 et	 al.,	 2017).	 	 Average	 urine	 patch	 areas	 range	 from	 0.03-0.7	 m2,	
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accumulating	to	daily	per	cow	urine	patch	coverage	of	0.68-3.3m2/cow/day	(Aland	et	al.,	

2002;	Betteridge	et	al.,	1986;	Castle	et	al.,	1950;	Haynes	&	Williams,	1993;	Misselbrook	et	

al.,	2016;	Selbie	et	al.,	2015).	Total	urination	volume,	and	thus	daily	urine	patch	coverage	

is	 ultimately	 reflective	 of	 the	 need	 to	 expel	 minerals	 and	 electrolytes	 from	 the	 body	

(Bannink,	Valk,	&	Van	Vuuren,	1999;	2012	Khelil-Arfa,	Boudon,	Maxin,	&	Faverdin,	2012).	

Subsequently,	increases	in	DM,	CP	and	N	intake	result	in	greater	urine	production.		As	such,	

it	has	been	shown	that	non-lactating,	fodderbeet	fed	cows	produce	comparatively	lower	

volumes	of	urine	(17.97	l/cow/day),	when	compared	to	kale	(29.91	L/cow/day)	or	pasture	

fed	cows	(upto	54.7	 l/cow/day)	(Betteridge,	Costall,	Luo,	&	Ganesh,	2013;	Ravera	et	al.,	

2015).	This,	along	with	the	effect	of	soil	micro-topography	(pooling	of	urine	in	depressions	

left	by	removed	bulbs)	(Williams	&	Haynes,	1994)	results	in	typically	lower	daily	urine	patch	

coverage	of	fodderbeet	wintered	cows	(2.04	m2/cow/day	vs	>3	m2/cow/day	for	pasture	

fed	 cows)	 (Ravera	 et	 al.,	2015).	 It	 is	 therefore	 apparent	 that	 fodderbeet	 fed	 cows	will	

produce	typically	low	quantities	of	urine,	resulting	in	low	per	cow	urine	patch	coverage.	

The	 significant	 inter-cow	 variability	 observed	 requires	 further	 quantification.	 However,	

potential	diurnal	variation	in	urination	behavior	is	an	area	of	greater	concern;	The	temporal	

distribution	of	urine	excretion	may	influence	the	volume,	and	percentage	of	urine	captured	

during	a	standoff	period.		Shepherd	et	al.,	(2017)	observed	consistent	peaks	and	minimums	

in	event	volume	at	4.30	AM	and	9AM	respectively,	whilst	time	to	next	event	was	greatest	

at	 2AM,	 and	 lowest	 and	10	AM.	 	 Several	 other	 authors	 have	outlined	 similar	 temporal	

variation,	 typically	 concluding	 that	 event	 volumes	 peak	 at	 dawn,	 with	 a	 lower	 event	

frequency	 overnight	 (Betteridge	 et	 al.,	 1986;	 Betteridge	 et	 al.,	 2013).	 The	 apparent	

synchronization	between	periods	of	high	event	volume,	and	low	event	frequency	suggest	

that	the	portion	of	total	daily	urine	excreted	within	a	given	time,	will	be	reflective	of	the	

duration	of	said	time	period.	Supporting	this,	Shepherd	et	al.,	(2017)	suggested	that	an	18-

hour	 standoff	 period	 would	 capture	 75%	 of	 urine	 excreted.	 However,	 the	 temporal	

distribution	of	urine	excretion	has	been	linked	to	the	well-established	diurnal	fluctuations	

in	grazing	activity	and	DMI	(Gregorini	et	al.,	2009),	and	therefore,	restricting	grazing	period	

may	induce	changes	in	urination	behavior.	It	is	therefore	apparent	that	further	research	is	

required	to	quantify	the	percentage	of	urine	that	will	be	captured	under	a	standoff	pad	

wintering	system.				
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2.9 Conclusions	and	Research	Objectives		

The	 environmental	 impact	 of	 intensive	 dairy	 farming	 in	 Canterbury	 and	 New	 Zealand	

cannot	 be	disputed.	Nitrate	 leaching	drives	 eutrophication	 and	degradation	of	 regional	

waterways;	 an	 issue	 that	 has	 come	 under	 considerable	 scrutiny	 in	 recent	 times.	

Subsequently,	 national	 policies	 have	 been	 released,	 mandating	 that	 regional	 councils	

manage	land	use	to	mitigate	further	environmental	damage.	In	Canterbury,	the	country’s	

most	intensive	dairying	province,	the	‘Land	&	Water	Regional	Plan’	has	been	implemented,	

ultimately	 functioning	 to	enforce	N	 leaching	 limits.	 Farmers	must	 therefore	adapt	 their	

systems	to	meet	regulatory	standards.	The	traditional	 in	situ	approach	to	wintering	has	

been	identified	as	a	key	driver	of	whole	farm/enterprise	N	leaching	due	to	typically	high	

stocking	density’s.	The	“Pastoral	21”	research	programme	has	identified	fodderbeet	as	the	

optimal	wintering	crop	due	to	its	inherently	low	N	content.	However,	simply	changing	crop	

type	 does	 not	 address	 the	 impact	 of	 high	 stocking	 intensity’s,	 and	 as	 such	 it	 has	 been	

suggested	that	stand-off	pad	wintering	systems	can	achieve	further	reductions	in	winter	N	

leaching.	The	efficacy	of	such	systems	is	dependent	on	several	factors;	1.	the	ability	of	cows	

to	maintain	DMI	and	achieve	acceptable	BCS/LW	gains	under	a	restricted	grazing	period	

and	2.	the	quantity	of	urine	captured	on	the	standoff	pad	and	the	subsequent	reduction	in	

paddock	 urine	 coverage	 achieved.	 Limited	 research	 exists	 specifically	 quantifying	 these	

factors.	This	 research	project	 therefore	aims	to	answer	three	key	research	questions	to	

determine	whether	standoff	pads	represent	a	viable	‘Next	Generation	Wintering	System’:		

- Can	 non-lactating	 dairy	 cows	 achieve	 fodderbeet/silage	 intake	 rates	 >	 10	

kgDM/cow/day	under	a	restricted	grazing	period?			

- Can	non-lactating	dairy	cows	achieve	acceptable	BCS	and	LW	gains	under	a	stand	

off	wintering	system?		

- What	 percentage	 of	 total	 urine	 volume	will	 be	 captured	 under	 a	 stand	 off	 pad	

wintering	system,	and	what	effect	does	this	have	on	paddock	scale	urine	coverage	

and	N	leaching	in	Canterbury?		 
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3 MATERIALS	AND	METHODS	

3.1 Experimental	Site	and	Design	

	The	trial	was	conducted	at	the	Lincoln	University	Ashley	Dene	Research	and	Development	

Station	(43°39’	S,	172°21’	E.),	Canterbury,	New	Zealand,	between	26	June	and	14	August	

2017.			All	procedures	were	approved	by	Lincoln	University	Animal	Ethics	Committee	(AEC	

2017-10).	The	experimental	site	soil	type	was	Lismore	stony	silt	 loam.	Lismore	stony	silt	

loam	has	excessive	drainage	with	water	holding	capacity	(WHC)	of	70-	100	mm/m	of	soil.	

It	is	a	very	light	soil	as	stones	are	found	at	a	depth	of	450-750mm	(McLenaghan	&	Webb,	

2012).		The	site	was	divided	into	three	areas:	1.	Crop	area,	sown	with	fodder	beet	which	

was	 fed	 in	 situ	 	 2.	 	 a	 stand-off	 area	 (0.56	 ha)	 and	 3.	 a	 feed	 pad	 area.	 	 All	 areas	were	

connected	by	packed	 limestone	 laneways,	with	a	maximum	distance	of	600	m	between	

crop	area	and	stand-off.	The	experimental	design	was	a	 factorial	design	comparing	two	

farm	systems:	1.	No	stand-off	facility	(Control)	2.	Stand-off	pad	(SOP)	facility.		Within	the	

SOP	treatment	there	were	four	stand-off	pad	surface	treatments	(stones,	sand,	carpet	and	

woodchip-as	described	 in	 section	3.1.2	 	 giving	a	 total	of	 five	groups.	The	control	group	

grazed	fodderbeet	in	situ	for	23	hours	per	day,	with	one	hour	spent	on	a	concrete	feed	pad	

for	supplement	feeding	(0900h-1000h).	The	remaining	4	groups,	in	addition	to	spending	

one	hour	on	the	feed	pad	at	the	same	time	as	the	control	group,	spent	6	hours	on	fodder	

beet	(1000h-1600h).	One	hundred	and	sixty	crossbred	in-calf	dairy	cows,	were	blocked	into	

five	groups	 (n=	32)	based	on	calving	date,	body	condition	score	 (BCS)	 (4.15),	 liveweight	

(LW)	 (462	 kg),	 breeding	worth	 (95)	 and	 age	 (4.56	 yrs),	 and	 randomly	 assigned	 to	 each	

group.		

3.1.1 Grazing	Area	
The	crop	area	was	 sprayed	out	with	 roundup	 (1/10/16),	 cultivated	 (8/10/16)	and	 roller	

drilled	(18/10/16)	with	8500	seeds/ha	of	fodderbeet	(Cv.	Rivage	and	Cerise).	Pre-planting,	

2	t	Lime/ha,	250Kg	Cropmaster/ha,	100	kg	Muriate	of	potash/ha,	150	Kg	NaCl/ha	and	15Kg	

Boronate/ha	 was	 applied.	 Two	 applications	 of	 urea	 (85	 Kg/ha)	 were	 applied	 in	 late	

November	 and	 January.	 Post	 planting,	 2L/ha	 of	 Nortron,	 25L/ha	 of	 Lorsban	 50	 EC	 and	

100Ml/ha	of	Magister	was	applied.	The	crop	received	approximately	360ml	of	water	from	

irrigation	over	the	growing	season.			
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3.1.2 Stand	Off	Pad	and	Feed	Pad	Area	
The	 stand-off	 area	 was	 subdivided	 into	 five	 0.112ha	 sections	 separated	 by	 dual	 wire	

electric	 fences.	 	 At	 construction,	 the	 stand-off	 pad	 area	 was	 lined	 with	 high	 density	

polyethylene	 (HDPE)	 liner.	 A	 BIDIM®	 nonwoven	 needle-punched	 continuous	 filament	

polyester	geotextile	A24	filter	fabric	was	installed	over	and	under	the	HDPE	liner.	Above	

this,	 sub	bedding	base	material	was	 laid	down.	This	 layer	consisted	5cm	of	compacted,	

angular	graded	gravel,	approximately	40mm	in	diameter.	Each	bedding	material	was	then	

applied	to	a	depth	of	40cm.	Below	the	subsurface	layer,	two	110mm	NEXUSFLOTM	subsoil	

polyethylene	punched	pipes	were	installed	for	drainage	into	the	effluent	holding	pond.	The	

four	standoff	pad	surfaces	used	were	40mm	woodchip,	<0.2mm	sand,	40-60mm,	rounded	

Greywacke	 stones	 sourced	 from	 the	ADRDS	 conversion,	 and	CowMax	 geotextile	 carpet	

(designed	for	laneways),	above	a	100mm	sand	layer.				Due	to	issues	with	drainage	under	

one	of	the	sections,	only	four	standoff	‘sections’	were	used	in	this	trial.			

3.2 Management		

Each	cow	had	access	to	a	10m2	lying	area	in	line	with	industry	recommendations	

(DairyNZ,	n.d).	Electric	fence	reels	were	used	to	adjust	each	standoff	area	to	the	desired	

320	m2.	Each	group	was	offered	4	kg	DM/cow/day	on	a	concrete	feed	pad	(0900h-1000h),	

of	a	silage	mix	containing	grass	and	lucerne	followed	by	7	kg	DM/cow/day	of	fodderbeet.	

Cows	in	the	SOP	groups	were	allowed	access	to	fodderbeet	for	a	restricted	six	hour	

period	(1000h-1600h),	and	were	held	on	the	standoff	area	for	17	hour/day	(1600h-

0900h).	Control	group	cows	grazed	fodderbeet	in	situ	for	23	hours/day	(1000h-0900h).	

Initially,	groups	were	allocated	to	fodderbeet	paddocks	based	on	distance,	with	the	

furthest	standoff	pad	cows	grazing	the	closest	paddock.		At	the	initiation	of	the	trial,	cows	

were	already	transitioned	to	a	daily	fodderbeet	intake	of	6	kg	DM/cow/day.		From	the	

26th	June-	2nd	July,	cows	were	transitioned	onto	the	Standoff	pads	to	reduce	the	risk	of	

acidosis	associated	with	decreased	grazing	length.	Initially	cows	were	moved	onto	the	

feed	pads	at	9pm,	with	this	occurring	two	hours	earlier	every	second	day	until	the	

standard	time	of	4pm	was	achieved.		Break	sizes	were	adjusted	fortnightly	following	
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collection	of	fodderbeet	yield	data	and	any	variation	in	stock	number.	There	was	no	back-

fencing	thus	the	paddock	area	offered	increased	throughout	the	trial.		Any	cows	with	

health	issues,	such	as	lameness,	were	removed	from	the	trial	and	treated.	Treated	cows	

may	then	be	re-introduced	into	their	treatment	group	when	deemed	appropriate.		

3.2.1 Stand	Off	Pad	Cleaning		
At	the	beginning	of	the	trial	the	maintenance	requirements	of	each	standoff	pad	material	

was	unknown,	thus	and	‘as	required’	approach	was	taken.	The	wood	chip	was	rotary	hoed	

every	second	week.		The	carpet	was	cleaned	fortnightly	by	scraping	the	surface	to	remove	

dung.	The	stone	and	sand	based	stand-off	areas	were	not	cleaned,	or	 subjected	 to	any	

maintenance	activities.		

3.3 Measurements		

3.3.1 Crop	Yield	and	Dry	Matter	Utilization		
Crop	yield	was	measured	fortnightly	in	all	fodderbeet	blocks.	All	plants	were	removed	from	

three	2	meter	x	2	row	plots	within	the	following	two	weeks’	allocation	and	DM	yield	was	

calculated	 accordingly.	 Utilisation	 was	 measured	 fortnightly	 using	 the	 dry	 matter	

disappearance	technique.	Yield	cuts	were	used	to	determine	the	amount	of	 fodderbeet	

offered.	Two,	2-meter-long	rows	were	randomly	selected	in	the	break	area,	and	the	same	

process	 as	 for	 yield	 testing	 occurred.	 Utilisation	 rate	was	 expressed	 as	 pre-mass-	 post	

mass/pre-mass	 x	 100.	 Supplement	 was	 weighed	 prior	 to	 allocation	 and	 residual	

supplement	after	the	1	hour	allocation	period	were	collected	(by	sweeping	the	feed	pad)	

and	 weighed.	 The	 rate	 of	 utilisation	 was	 then	 calculated	 (100-(residual	

supplement/supplement	offered)).		

3.3.2 	Liveweight	and	Body	Condition	Score				
Liveweight	and	BCS	was	recorded	at	the	end	of	the	standoff	transition	period	(4/7/2017)	

mid	way	 through	 the	wintering	 period	 (25/7/2017),	 and	 at	 the	 termination	 of	 the	 trial	

(14/8/2017).		The	standard	0-10	BCS	scale	was	used	with	a	single	person	(Charissa	Thomas,	

LURDF	Technician)	assessing	all	cows.	LW	was	recorded	using	a	‘Gallagher			W110	Digital	

Weigh	System’.	This	occurred	after	the	supplement	allocation	period,	and	was	conducted	

as	rapidly	as	possible	to	limit	impacts	on	grazing	time.		
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3.3.3 Urination	Frequency	and	Volume			
Urination	activity	was	measured	using	modified	urine	sensors	(PEETER	sensors)	to	compare	

urine	 behaviour	 of	 cows	 on	 Control	 treatments	 with	 those	 on	 SOP.	 Cows	 from	 the	

Woodchip	surface	treatment	were	used	in	this	part	of	the	study	as	woodchip	is	the	most	

commonly	 used	 surface	 material	 in	 commercial	 farming.	 Each	 urination	 event	 was	

measured	 as	 volume	 (L),	with	 an	 associated	 time	 stamp	 to	 determine	where	 urination	

occurred.	Sensors	were	fitted	onto	a	30	cm	long	plastic	sheath	joint	to	a	3d	printed,	plastic	

mould.	 This	was	 initially	 achieved	using	 silicone	 glue	 and	 cable	 ties.	A	 leather	 flap	was	

installed	 around	 the	mould	 to	 be	 glued	 over	 the	 cow’s	 vulva.	 	 Prior	 to	 application	 the	

rear/vulva	area	of	the	cow	was	scrubbed	clean	and	wiped	with	ethanol.	The	urine	harness	

was	 then	attached	 to	 cows	using	non-toxic	 Loctite	glue	applied	 to	 the	 leather,	 and	 the	

underside	of	the	vulva	mould.			A	measurement	period	of	24	hours	for	each	attachment	

was	targeted.	 If	sensors	 fell	of	cows	they	were	collected	and	the	reason	for	 failure	was	

noted.	 This	 allowed	 for	 continual	 development	 of	 the	 attachment	 process/design	

throughout	the	trial;	Cable	ties	were	replaced	with	steel	hose	clamps,	and	the	3D	printing	

of	the	vulva	moulds	was	adapted	(change	in	gluing	direction)	to	increase	strength.		

3.3.3.1 Characterisation	and	Calibration		

The	 urine	 sensors	 operate	 on	 the	 principle	 of	 pressure	 differentiation.	 The	 bulk	 of	

differential	pressure	comes	 from	the	height	of	 fluid	acting	on	 the	pressure	 sensor	 inlet	

orifice.	Primarily	this	pressure	 is	equal	to	gravity,	however	fluids	entering	the	collection	

chamber	display	varying	velocity’s,	reflective	of	volume,	and	subsequently	force	is	applied	

to	the	pressure	sensor.		The	sensors	calculate	outlet	velocity	as	a	proxy	for	event	volume.	

Out	let	velocity	when	liquid	is	draining	from	a	vessel	is	described	by	Bernoulli’s	equation:		

Equation	3-1 PEETER	Urine	Sensor	Calibration:	Bernoulli’s	Equation 
	

V=Cv	(2gH)
1/2		

Where:		
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V=outlet	velocity	(m/s)		

Cv=	velocity	coefficient				

G=	acceleration	of	gravity		

Volume	flow	is	expressed	as				

V=CdA	(2gH)
1/2		

Where:		

V=Volume	flow	(m3/s)		

Cd=	discharge	coefficient	(where	Cd=CcCv)	

A=	area	aperture	(m2)		

G=acceleration	of	gravity	(9.81	m/s2)		

H=height	(m)		

A	calibration	apparatus	that	could	stimulate	variable	 flows	was	developed,	 to	allow	the	

above	 equations	 to	 be	 calibrated.	 This	 was	 done	 by	 passing	 five	 litres	 of	 fluid	 at	 four	

different	velocities	and	recording	the	time	for	each	volume	to	pass,	which	when	plotted	

against	 volume,	 generated	 a	 flowtime	 relationship	 (Pascals).	 Post	 calibration,	 sensors	

displayed	an	accuracy	of	+/-	15%	at	volumes	below	0.75	L,	with	improved	accuracy	of	+/-	

0.25%	at	volumes	above	0.75	L.	Precession	was	+/-	0.050	L.		

3.4 Statistical	Analysis			

Results	were	analysed	using	Microsoft	excel	and	Minitab	17.	Excel	was	used	to	sort/filter	

data	and	calculate	means,	standard	deviations	and	standard	errors.	Minitab	17	was	then	

used	to	conduct	ANOVA,	and	Fishers	LSD	tests.	A	significance	level	of	0.05	was	used.		Urine	

sensor	data	was	filtered	so	that	false	data	could	be	discarded.	Any	logs	with	excessive,	false	
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events,	 or	 that	 did	 not	 stay	 attached	 for	 24	 hours	were	 not	 included	 in	 the	 statistical	

analysis.	Only	complete,	correct	data	sets	were	used	for	calculating	average	volumes,	and	

the	distributions	of	urine	volume.			

3.5 Leaching	Loss	Calculations		

Paddock	scale	nitrogen	(N)	leaching	losses	were	calculated	using	average	urination	values,	

comparing	the	standoff	pad	system	outlined,	and	a	traditional	24	hour	in	situ	system:	

Equation	3-2	Paddock	Scale	Leaching	Losses.		
 

NL=	(NL1	x	P1)	+	(NL2	x	P2)		

NL	=	annual	average	nitrate	leaching	losses	from	a	grazed	field.		

NL1	=	N	leaching	losses	at	the	urine	patch.		

NL2	=	N	leaching	losses	at	non-urine	patch	areas.			

P1=	Proportion	of	are	covered	by	urine	patches.		

P2	=	Proportion	of	area	covered	by	non-urine	patch	areas.		

Estimates	of	leaching	losses	were	calculated	using	the	average	leaching	losses	(26.5%	of	

urine	N	leached,	10.5Kg	N/ha	leached	for	non-urine	patch	areas)	from	lysimetric	studies	at	

the	ADRDS	in	Canterbury,	New	Zealand	(Malcolm	et	al.,	2016).	N	leaching	losses	for	urine	

patches	were	calculated	by	first	determining	the	N	load	per	urination,	then	multiplying	this	

by	the	percentage	of	N	load	leached.	The	equation	used	to	determine	N	load	is	as	follows:			

Equation	3-3	Urine	Patch	Nitrogen	Loading.	
	

Urine	Patch	N	Load	=	(Urine	N	concentration	x	Average	urination	volume)/average	urine	

patch	area).				
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The	average	urine	patch	area	was	calculated	from	the	urine	volumes	recorded	in	this	trial	

using	the	regression	equation	(Area=	0.1092	x	volume,	R2=	0.89)	developed	by	Ravera	et	

al.,	(2015).	The	urine	N	concentration	used	was	2.76	g/L,	the	average	of	the	concentration	

values	reported	by	a	range	of	authors	for	cows	offered	a	comparative	diet	(Edwards	et	al.,	

2014;	Ravera	et	al.,	2015;	Farrel	et	al.,	2016).		

The	proportion	of	area	covered	by	urine	patches	was	calculated	as	followed,	assuming	that	

no	urine	patch	overlap	occurred:			

Equation	3-4	Paddock	urine	patch	coverage		
 

Urine	Patch	Coverage	(%)	=	(Average	number	of	urinations/24hrs	x	average	area	per	

urination	x	number	of	cows	x	number	of	days	in	paddock)/	total	area	grazed		

Total	Area	Grazed	=	(Number	of	Cows	x	daily	allocation	(kg	DM/cow))	/	Crop	yield)		

The	proportion	of	area	not	covered	by	urine	patches	was	calculated	by	 subtracting	 the	

above	value	from	the	total	area	grazed.	These	values	were	then	entered	the	initial	equation	

described.		The	daily	area	grazed	was	calculated	based	on	the	trial	cow’s	daily	allocation,	

and	actual	fodderbeet	yields.	 
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4 RESULTS	

4.1 Crop	Yield			

Average	fodderbeet	yield	during	the	trial	period	was	22.95±2.61	t	DM/ha.	There	was	no	

difference	in	yield	between	SOP	groups	fodder	beet	blocks,	but	yield	for	the	control	groups	

block	was	lower	(P=0.00)	(Table	4-1).		Average	herbage	accumulation	from	the	7th	July-	10th	

August	was	-0.16±4.3	t	DM/ha,	ranging	from	-5.8-	5.8	T	DM/ha.		

Table 4-1 Average	 yield	 and	 growth	 over	 the	 trial	 period	 of	 each	 treatment	 groups	
allocated	fodderbeet	paddock.	

 
 
Group	 Crop	Yield1	(T	DM/ha)	 Crop	Growth1	(T	DM/ha)	

WC	 25.0A	 -2.2	

Stones		 24.5A	 -0.1	

Carpet	 22.7	A	 5.8	

Sand	 																23.9A		 1.5	

Control		 																18.5B	 -5.8	

Grand	Mean	 22.95±2.61	 -0.16±4.3	

SEM	 0.57	 1.92	

Significance2	 ***	 N.S	

1. values	with	different	supper	scripts	are	significantly	different					
2. 	N.S=		P>0.05,	**=	P<0.05,	***=P<0.01.	

4.2 Crop	and	Supplement	Utilization				

Mean	fodderbeet	utilization	was	94.2%,	exceeding	90%	across	all	 treatment	groups.	No	

difference	 between	 treatment	 groups	 was	 observed	 (P>0.05)	 (Table	 4-2).	 Supplement	

utilization	averaged	94.95%,	exceeding	90%	across	all	treatments.	Again,	no	difference	was	

observed	 (P>0.05).	 Apparent	 daily	 DMI	 was	 6.65	 Kg	 DM/FB/cow/day,	 and	 3.8	 Kg	

DM/cow/day	of	 silage.	Due	 to	 the	 lack	of	difference	 in	utilization	 rate	observed,	 intake	

rates	were	comparative	amongst	treatments.		
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Table 4-2	Average	utilization	of	fodderbeet	and	supplement	of			control	and	SOP	cows. 
 
Group	 Fodderbeet	Utilization	(%	

of	DM)	
Supplement	Utilization														(%	

of	DM)	

WC	 96.3	 93.4	

Stones		 94.1	 91.8	

Carpet	 92.0	 96.6	

Sand	 90.0	 96.7	

Control		 98.6	 96.2	

Grand	Mean	 94.2±3.4	 95±2.21	

SEM	 0.010	 0.008	

Significance1	 N.S	 N.S	

1. N.S=		P>0.05,	**=	P<0.05,	***=P<0.01.	

4.3 Body	Condition	Score	and	liveweight					

Over	 the	 course	 of	 the	 wintering	 period,	 all	 treatment	 groups	 increased	 average	 LW	

(P<0.05),	with	 no	difference	 in	 final	 LW	observed	 (P>0.1)	 (Table	 4-4).	 Average	 LW	gain	

equated	to	580	g/day,	accumulating	to	24	Kg	LW/cow	over	the	41-day	recording	period.	

BCS	was	different	between	treatment	groups	at	the	start	and	end	of	the	wintering	period	

(P<0.05) 

Table 4-3 Average	start	liveweight	(4/7/2017),	end	liveweight	(14/8/2017)	and	liveweight	
gain		of	control	and	SOP	cows. 

 	

Group	 Start	LW	(kg)	 End	LW	(Kg)	 LW	Change	(Kg)	

WC	 490	 511	 21	

Stones	 484	 507	 23	

Carpet	 495	 520	 25	

Sand	 497	 519	 22	

Control	 491	 519	 28	

Grand	Mean	 491±5.0	 515±5.84	 24±2.77	

SEM	 												4.67	 5.45	 5.53	

Significance1	 N.S	 N.S	 N.S	

1. N.S=		P>0.05,	**=	P<0.05,	***=P<0.01.	
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Average	BCS	gain	was	0.425	units,	however	again,	variability	between	groups	was	observed	

(P<0.01).	The	highest	gain	observed	was	within	the	stones	group,	whilst	the	WC	and	control	

cows	displayed	the	lowest	gains	of	just	over	0.25	units.	The	carpet	group	was	the	only	one	

to	exceed	an	average	end	BCS	of	five,	however	all	groups	exceeded	an	end	BCS	of	4.5	(Table	

4-4).	There	was	no	relationship	between	initial	BCS	and	BCS	gain	(P>0.1).	In	line	with	the	

average	LW	gain	 recorded,	each	0.1-unit	 increase	 in	BCS	was	associated	with	a	5.64	Kg	

increase	in	LW.		

Table 4-4 Average	start	BCS	(4/7/2017),	end	BCS	(14/8/2017)	and	BCS	gain	of	control	and	
SOP	cows. 

 	

Group	 Start	BCS1	 End	BCS1	 BCS	Change1	

WC	 4.32AB	 4.59C	 0.258B	

Stones	 4.10B	 4.78BC	 0.683A	

Carpet	 4.50A	 5.06A	 0.54AB	

Sand	 4.15A	 4.88AB	 0.367AB	

Control	 4.45A	 4.74BC	 0.259B	

Grand	Mean	 4.39±0.17	 4.81±0.17	 0.425±0.186	

SEM	 0.043	 0.037	 0.051	

Significance2	 *	 *	 ***	

1. values	with	different	supper	scripts	are	significantly	different					
2. 	N.S=		P>0.05,	**=	P<0.05,	***=P<0.01.	

4.4 Urine	Sensor	Performance		

A	total	of	eight	cows	were	successfully	recorded	for	24	hours,	to	produce	valid	datasets.		

Six	of	these	cows	were	from	the	SOP	treatment	(42	events	recorded),	with	only	two	from	

the	 control	 treatment	 (25	 events	 recorded)	 successfully	 measured.	 Of	 24	 total	 sensor	

attachments	(C=12,	WC=12),	11	failed	to	reach	24	hours.	The	causes	of	this	were	due	to	

failure	 of	 various	 harness	 components.	 	 The	 lower	 number	 of	 cows	 recorded	 from	 the	

control	group	was	attributed	to	the	extended	period	of	time	(23	hours/day)	spent	in	the	

paddock.	It	was	postulated	that	when	cows	lay	down,	the	sensors	were	getting	‘stuck	in	

the	mud’	and	dispatching	when	cows	stood	up.	Three	of	the	24	hour	datasets	were	not	

valid	due	to	the	recording	of	‘false’	urination	events	of	excessive	value.	An	overall	success	

rate	of	25%	was	achieved.	The	success	rate	in	the	control	cows	was	lower	(16.67%)	than	

the	SOP	cows	(50%). 
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4.5 Urination	Behavior				

There	 was	 large	 inter-cow	 variability	 regarding	 total	 daily	 urine	 volume	 (9.2-26.8	

l/cow/day)	and	frequency	of	events	(7-18	urination	events/day)	(Table	4-5).		However,	due	

to	large	variance,	no	differences	in	average	daily	urination	volume	(15.12±5.5	L/cow/day)	

or	frequency	(8.37±	4.34	events/cow/day)	was	detected	between	control	and	SOP	cows	

(P>0.1)	(Table	4-6).	Urine	volume	per	event	was	also	highly	variable.	The	maximum	value	

recorded	was	5.29	litres,	with	20.9%	of	events	accounting	for	less	than	one	litre.	Average	

daily	event	volume	was	1.81±1.03	L,	and	was	not	different	between	treatments	(P>0.1).		

Event	 volume	 did	 not	 differ	 from	 1000h-1600h,	 and	 1600h-1000h	 between,	 or	 within	

treatment	 groups	 (P>0.1).	 The	 volume	 of	 urine	 excreted	 from	 1600h-1000h	 was	 not	

different	between	treatment	groups	(P>0.05),	and	accounted	for	82	%	of	total	daily	urine	

volume.	With	95%	confidence,	it	can	be	predicted	that	65%-99%	of	total	daily	urine	will	be	

deposited	during	this	period.			

Table 4-5 Urination	Behavior	of	eight	non-lactating	dairy	cows	wintered	on	fodderbeet.		
 

Cow	ID	and	treatment			

group	

Total	Volume	
(l/day)	

Average	event	
volume	(l)		

Frequency	
(events/day)	

	Cow	30	(SOP)	 17.88	 2.56±0.58		 7	

Cow	147	(SOP)	 17.93	 2.98±1.89	 6	

Cow	236	(SOP)	 9.2	 1.84±0.83	 5	

Cow	105	(SOP)	 14.11	 1.56±1.52	 9	

Cow	390	(SOP)	 12.17	 1.10±0.47	 11	

Cow	246	(SOP)	 18.55	 2.98±0.66	 5	

Cow	62	(Control)		 12.1	 1.72±1.5	 7	

Cow	85	(Control)		 26.88	 1.49±0.57	 18	
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Table 4-6 Effect	of	wintering	system	on	urination	behavior.	Numbers	in	parenthesis	are	
the	number	of	observations. 

 
	 Control	 SOP		 P	value	

Total	Volume	(l)	 19.49	±	10.5	
(2)		

13.66	±	3.7	(6)	 0.358	

	
Frequency	(urinations/day)	

		
12.5±7.77	(2)	

			
7	±	2.28	(6)	

	
0.126	

	
Average	event	Volume			

	
1.55±	0.90	(25)	

	
1.95±	1.08	(42)	

	
0.134	

(l/urination)	
	

Average	event	volume		
1000-1600h	(l/	event)	
	

	
	

1.70±0.79(4)	

			
	

1.74±0.744	(15)	
	

	

	
	

0.925	

Average	event	volume			

1600-1000h		(l/event)			
	

1.53±0.94(21)	 2.06±1.23(27)	 0.134	

Volume	of	urine			

deposited	1600-1000h	(l)	
	

16.0±8.88(2)	 11.4±4.26(6)	 0.323	

Percentage	of	total			
urine	deposited	1600-1000h	
(l)	

82±10.2(6)	 82±1.58(2)	 1.00	

 

4.6 Calculated	Urine	Patch	Coverage	and	Nitrogen	Leaching		

Paddock	urine	patch	coverage	and	nitrogen	leaching	rate	were	calculated	(using	average	

urination	behavior	values	across	all	cows)	for	a	standoff	pad	(6	h/day	in	the	paddock)	and	

‘traditional’	24	hour	 in	situ	wintering	system	as	per	the	method	outlined	 in	section	3.5.	

Actual	 stocking	 density	 on	 the	 daily	 allocated	 area	 of	 fodderbeet	 was	 3278	 cows/ha,	

equating	to	an	annual	stocking	 intensity	of	78,	688	cow	hours/ha/yr.	Under	an	18-hour	

standoff	system,	stocking	intensity	was	reduced	to	19,672	cow	hours/ha/yr.	Average	urine	

patch	area	was	0.197	m2	covering	a	total	area	of	1.65	m2/cow/day.	Calculated	paddock	

urine	coverage	was	reduced	by	82%,	from	54.1%	to	9.68%	of	total	paddock	area	(Table	4-

7).	Calculated	nitrate	leaching	rate	was	reduced	by	61%	under	the	standoff	system.		
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Table 4-7 Calculated	 paddock	 urine	 coverage	 and	 nitrogen	 leaching	 of	 two	 wintering	
systems.  

 

Measure		 Standoff	pad	system		 Traditional	system		

Paddock	urine	coverage	(%)	 9.68	 54.1		

Urine	N	leaching	(Kg	N/ha)	 6.48	 36.35	

Non	urine	N	leaching			

(Kg	N/ha)		

4.81	 9.48	

Total	N	leaching	(Kg	N/ha)	 15.96	 41.07	

	

 

	

 

 

 

 

 

 

 

 

 

 

 

  



 
 

28 

 

5 DISCUSSION	

The	aim	of	 this	discussion	 is	 to	 interpret	 the	above	 results	and	determine	whether	 the	

incorporation	 of	 a	 standoff	 pad	 structure	 can	 reduce	 paddock	 urine	 coverage	 and	

subsequently	 N	 leaching	 of	 the	 traditional	 in	 situ	wintering	 system,	whilst	maintaining	

acceptable	levels	of	key	production	parameters,	namely	cow	DMI,	and	BCS/LW	gain.			

5.1 Crop	Yield					

The	average	fodderbeet	yield	of	22.95	t	DM/ha	was	within	the	range	of	11	to	27	t	DM/ha	

outlined	by	Goh	&	Maget	(1989).		Previous	crop	yields	reported	at	the	same	site	(ADRDS)	

range	 from	18.5-21.8	 t	DM/ha	 (Edwards	et	al.	2014;	 Jenkinson	et	al.	2014;	Farrel	et	al.	

2016).	Chakwizira	et	al.,	 (2012)	 reported	a	 comparatively	higher	yield	of	32.8	 t	DM/ha,	

suggesting	that	greater	production	can	be	achieved.		Total	crop	nitrogen	application	was	

similar	to	that	of	Chakwizira	et	al.,	(2012)	(116.2	Kg	N/ha	vs	100	Kg	N/ha),	and	thus	the	

production	shortfall	observed	could	be	attributed,	at	 least	 in	part,	 to	soil	 type	 (Lismore	

stony	 loam	 vs	 Waimakariri	 sandy	 loam),	 and	 cultivar	 ‘(Rivage/Cersie’	 vs	 ‘Collessie’)	

differences.	Four	fodderbeet	blocks	displayed	comparative	yields,	ranging	from	22.7-25	T	

DM/ha,	 however	 one	 was	 lower	 (P<0.05)	 at	 18.5	 t	 DM/ha.	 Several	 factors	 may	 have	

contributed	 to	 this	area	of	 low	performance;	Edwards	et	al.,	 (2014)	 suggested	 that	 low	

yields	 could	 be	 attributed	 to	 poor	 seedling	 establishment	 (<8-10	 plants/m2).	 This	

presumption	was	supported	by	visual	observation,	as	the	low	yielding	block	appeared	to	

support	a	greater	weed	population.	However,	the	effect	of	this	was	not	quantified.	 It	 is	

therefore	 apparent	 that	 the	 observed	 crop	 yield	 is	 reflective	 of	 typical	 industry	

expectations.	

5.2 Diet	Utilization	and	Intake		

The	effectiveness	of	a	restricted	grazing	system	is	reflective	of	the	cow’s	ability	to	consume	

its	forage	allowance	within	the	allocated	time	period.		It	has	been	suggested	that	restricted	

grazing	 drives	 impulsion	 to	 maximize	 intake	 rate	 as	 a	 consequence	 of	 behavioral	

adaptations	(Greenwood	&	Demmet,	1988).	As	such,	significant	increases	in	bite	rate,	bite	

mass	 and	 reduced	 handling	 time	 have	 been	 reported	 when	 grazing	 is	 restricted	 to	 6	
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hours/day	(Kennedy,	McEvoy,	Murphy,	&	O’Donovan,	2009).		Reflecting	this,	it	has	been	

observed	 that	 >70%	of	 perennial	 ryegrass	 intake	 can	 be	 achieved	within	 four	 hours	 of	

allocation	(Dobos	et	al.,	2009),	whilst	Gregorini	et	al.,	 (2009)	showed	that	cows	offered	

pasture	once	a	day	consumed	10	kg	DM/cow	within	three	hours.	Limited	comparative	data	

exist	for	fodderbeet,	whereby	bulbs	must	be	removed	from	the	soil	prior	to	consumption.	

However,	Thompson	&	Stevens	(2012),	reported	a	five-hour	intake	of	4.8	kg	DM	of	swede,	

a	similar	bulb	forming	plant.		Average	FB	utilization	across	the	SOP	treatments	was	93.1%,	

or	6.52	KgDM.	This	is	comparative	to	the	6-hour	intake	rate	of	7.2	kgDM	(90%	utilization)	

observed	 by	 Jenkinson	 et	 al.	 (2014)	 in	 parallel	 work.	 As	 expected,	 the	 control	 group	

achieved	 the	greatest	utilization	 rate	 (98.6%),	 consistent	with	 the	unrestricted	 range	of	

96.25-99.6%	previously	reported	(Edwards	et	al.,	2014;	Farrell	et	al.,	2016).		No	significant	

difference	was	detected	between	treatment	groups.	This,	along	with	the	relatively	high	

utilization	rates	observed	suggests	that	6	hours	was	an	adequate	grazing	period.	Whilst	

there	 is	 some	 debate	 around	 the	 intake	 potential	 of	 cows	 grazing	winter	 forage	 crops	

(Greenwood	et	al.	2011),	these	results	suggest	that	high	DM	utilization	of	low	NDF	in	late	

pregnancy	is	achievable.	It	must	however,	be	considered	that	the	daily	crop	allocation	of	7	

kg	 FB/cow/day	 is	 relatively	 low	 by	 industry	 standards	 (Judson	 &	 Edwards,	 2008).	 An	

increase	in	allocation	may	therefore	decrease	overall	utilization	of	restricted	(SOP	groups).		

Jenkinson	et	al.,	(2014)	illustrated	this	with	differing	kale	allocations.	At	an	allocation	of	11	

kg	DM/cow/day,	6-hour	utilization	was	82%,	whilst	at	an	allocation	of	14	kg	DM/cow/day,	

utilization	declined	 to	72%.	 In	 fodderbeet	 this	effect	may	be	greater,	as	bulb	dominate	

forages	 typically	display	comparatively	 lower	 intake	 rates	 (Thompson	&	Stevens,	2012).		

Supplement	 utilization/intake,	 which	 was	 fed	 on	 a	 concrete	 feed	 pad	 prior	 to	 crop	

allocation,	 was	 unaffected	 by	 treatment,	 averaging	 95%	 or	 3.8	 KgDM/cow/day.	 This	 is	

comparatively	higher	than	typical	industry	averages	(Edwards	et	al.,	2014;	Jenkinson	et	al.,	

2014)	and	can	be	attributed	to	use	of	a	concrete	feedpad.	Lower	utilization	rates	of	83%-

86%	 and	 65%	 have	 been	 reported	 for	 grass	 silage	 and	 oat	 silage	when	 offered	 in	 situ	

(Edwards	 et	 al.,	 2014,	 Jenkinson	 et	 al.,	 2014)	 which	 is	 associated	 with	 trampling	 of	

supplement.	 The	high	 FB	utilization	 rates	observed,	 and	 relatively	high	 consumption	of	

supplement	resulted	in	an	apparent	average	DM	intake	rate	of	10.4	Kg	DM/cow/day.	Based	

on	 the	 typical	 nutritive	 values	 (FB=12.2	MJME/KgDM;	Edwards	et	 al.,	 2014	 Silage=11.1	

MJME/KgDM.	 de	Ruiter,	Dalley,	Hughes,	 Fraser,	&	Dewhurst,	 2007),	 this	 equates	 to	 an	
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estimated	average	daily	ME	intake	of	122.57	MJME/cow/day.	It	is	therefore	apparent	that	

high	FB	utilization	rates	can	be	achieved	at	an	allocation	of	7	KgDM/cow/day	when	grazing	

is	restricted	to	6	hours,	whilst	supplement	intakes	of	3.8	KgDM/cow/day	can	be	achieved	

with	an	hour-long	allocation	on	a	feedpad.	The	above	results	suggest	that	unless	high	BCS	

gains,	 and	 subsequently	 high	 DMI’s	 (>10kg	 DM/cow/day)	 are	 targeted,	 restricting	 of	

grazing	is	unlikely	to	present	issues	in	regard	to	crop	utilization	and	DMI.		

5.3 Live	weight	and	body	Condition	Score		

Body	condition	score	gain	on	winter	forage	crops	has	been	shown	to	range	from	0.05-0.8	

units	(Keogh	et	al.,	2009;	Edwards	et	al.,	2014).	Dry	matter	allocation,	and	ME	intake	have	

been	outlined	as	primary	drivers	of	BCS	gain	 (Judson	&	Edwards,	2008).	Reflecting	 this,	

Rugoho	et	al.,	(2014)	reported	a	significant	reduction	in	BCS	gain	(0.2	vs	0.3	units),	when	

kale	allocation	was	decreased	by	3	Kg	DM/day.	Edwards	et	al.,	(2014)	reported	BCS	gains	

of	0.74-0.78	units	when	cows	achieved	a	total	daily	ME	intake	of	155	MJME/cow/day	from	

fodderbeet/silage.	 Dry	 matter	 allocation	 was	 comparatively	 higher	 (13.1	 vs	 10.39	

KgDM/cow/day)	 than	 in	 this	 study,	 however	 the	 approximate	 ME	 intake	 of	 122.57	

KgDM/cow/day	 observed	 is	 above	 the	 suggested	 119	MJME	 required	 to	meet	 growing	

foetal	energy	demands	and	achieve	a	0.5	unit	gain	in	BCS	over	the	wintering	period.			It	is	

therefore	apparent	that	at	the	observed	level	of	intake,	a	BCS	gain	of	0.5	units	is	achievable	

(over	a	60-day	period).			

	

The	 lower	 average	 BCS	 gain	 observed	 (0.425	 units)	 can	 be	 attributed	 to	 the	 reduced	

wintering	period	 (41	days	 vs	60	days).	Apparent	BCS	gain	displayed	 significant	 (P<0.05)	

variability	 between	 treatment	 groups,	 with	 only	 cows	 on	 the	 stones	 and	 carpet	 SOP	

achieving	a	BCS	gain	of	0.5	units.	Cows	on	the	woodchip	SOP,	and	 in	 the	control	group	

displayed	 the	 lowest	 gains	 of	 0.258	 and	 0.259	 respectively.	 Contrastingly,	 LW	 gain	

displayed	negligible	variation	between	groups,	averaging	24	Kg,	equating	to	a	daily	gain	of	

0.58	Kg.	Assuming	a	net	energy	content	of	19	MJNE/kg	LW	gain,	and	a	conversion	efficiency	

of	0.53	for	non-lactating	cows,	the	calculated	daily	ME	requirement,	including	that	of	the	

growing	 foetus,	was	only	2.3	MJME/cow/day,	higher	 than	 the	average	observed	 intake	

across	 treatment	 groups.	 This	 disparity	 is	 negligible,	 when	 compared	 to	 the	 14-16	

MJME/cow/day	 shortfalls	 reported	 by	 Edwards	 et	 al.,	 (2014)	 in	 parallel	 work.	 It	 can	
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therefore	be	suggested	that	the	LW	gain	observed	is	directly	reflective	of	the	diet	offered,	

across	 all	 treatment	 groups.	 Holmes	 et	 al.,	 (2007)	 suggested	 the	 LW	 gain	 required	 to	

achieve	a	one	unit	 increase	in	BCS	ranges	from	17-45Kg	with	typical	values	of	15Kg	and	

30Kg	suggested	for	jersey	and	Friesian	cows	respectively.		

	

The	disparity	observed	between	actual	LW	gain,	and	apparent	BCS	gain	can	be	attributed	

to	several	factors;	It	has	been	shown	in	cows	of	comparative	liveweights,	maternal	adipose	

reserves,	and	subsequently	BCS	can	vary	by	in	excess	of	40%	(Andrews,	Waldo,	&	Erdman,	

1994),	with	only	weak-moderate	correlations	(0.46-0.64)	between	LW	and	BCS	reported	

(Berry,	Macdonal,	Penno,	&	Roche,	2006).		Furthermore,	it	has	been	suggested	that	parity	

influences	the	LW/BCS	interaction,	with	greater	LW	gains	associated	with	comparative	BCS	

gain	 in	 multiparous	 cows	 (Berry	 et	 al.,	 2006).	 The	 differences	 in	 BCS	 observed	 may	

therefore	be	due	to	inherent	variability	in	cow	frame,	physiology	and	parity	between	and	

within	treatment	groups	(Andrew	et	al.,	1994).	Lack	of	consistency	in	the	body	condition	

scoring	 process	 may	 also	 have	 contributed.	 Despite	 reported	 moderate-high	 classifier	

repeatability	estimates,	it	has	been	suggested	that	the	inherently	subjective	nature	of	BCS	

allows	for	substantial	error	(Bowden,	1982;	Verkamp,	Koenen,	&	De	Jong,	2001).	The	lack	

of	difference	in	LW	gain	between	treatment	groups	suggests	that	there	was	no	impact	of	

the	SOP	treatment	on	production.	It	was	postulated	that	decreased	comfort	of	a	given	SOP	

surface	may	reduce	lying	time	on	the	SOP,	and	as	such	cows	might	favor	lying,	rather	than	

foraging	in	the	paddock	(Bryant,	pers	comm,	2017).	This	can	be	disregarded,	as	apparent	

DMI	was	unaffected	by	treatment	(P>0.1).	The	effect	of	lying	time,	can	however	be	two-

fold;	Reduced	lying	time	increases	energy	expenditure	and	negates	anabolic	metabolism	

via	excess	release	of	stress	hormones	(Fisher	et	al.,	2002).	Fisher	et	al.,	(2003)	reported	

lying	times	below	7	hours/day	in	cows	held	on	various	standoff	surfaces,	accompanied	by	

significant	reductions	in	LW/BCS	gain.	Similar	observations	were	made	by	Webster	et	al.,	

(2007).		In	this	scenario,	any	impact	of	the	SOP	treatments	on	lying	time	had	a	negligible	

impact	on	 LW	gain.	 It	 is	 therefore	apparent	 that	 cows	 can	be	held	on	a	 variety	of	 SOP	

surfaces	for	18	hour/day	with	no	significant	effect	on	wintering	performance.		
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5.4 Urination	Behavior			

The	results	from	the	present	study	confirm	the	large	inter-cow	variability	in	urination	

behavior	previously	noted	(Betteridge	et	al.,	2013;	Ravera	et	al.,	2015;	Shepherd	et	al.,	

2017).	Aland	et	al.,	(2002)	reported	an	inter-cow	range	in	urination	frequency	of	5-18	

events/day,	whilst	typical	averages	in	pastoral	studies	vary	from	6.8-14	events/day	

(Castle	et	al.,	1950;	Fuller,	1928;	Selbie	et	al.,	2015).	Farrel	et	al.,	(2014)	observed	a	

comparative	average	urination	frequency	(9.4	events/day)	of	cows	wintered	on	

fodderbeet.	It	is	therefore	apparent	that	significant	variability	in	individual	cow	urination	

frequency	exists,	however	the	urination	frequency’s	observed	(8.73+/-		range)	supports	

the	conclusion	of	Ravera	et	al.,	(2015),	that	the	typical	dairy	cow	urinates	7-13	times	per	

day.		Average	event	volume	(1.8	l)	and	total	daily	volume	(15.12	l/cow)	were	comparative	

to	the	2.31	l/event	(17.97	l/cow/day)	reported	by	Ravera	et	al.,	(2015)	in	fodderbeet	fed	

cows	in	Canterbury.	Event	volumes	were	typically	within	the	extreme	range	of	0.3-7.8	l	

previously	outlined	(Betteridge	et	al.,	2013;	Haynes	&	Williams,	1993).		Total	daily	

urination	volume	(l/cow/day)	was	comparatively	lower	than	the	27.2-54.7	l/cow/day	

reported	in	pasture	fed	cows	(Betteridge	et	al.,	1986;	Shepherd	et	al.,	2017).	Urinary	

volume	is	ultimately	reflective	of	the	need	to	expel	minerals	and	water	from	the	body.	

Subsequently,	total	water	intake	and	N	ingested	have	been	shown	to	be	key	drivers	of	

urination	volume	(Bannink	et	al.,	1999;	Khelil-Arfa	et	al.,	2012).	It	was	therefore	expected	

that	the	average	urination	volume	observed	in	this	trial	would	be	lower	than	that	

reported	by	Betteridge	et	al.,	(2013)	and	Shepherd	et	al.,	(2017),	as	fodderbeet	is	

inherently	low	in	CP	when	compared	to	pasture	(<2%	vs	2-4%.	de	Klein	et	al.,	2010;	

Edwards	et	al.,	2014).	The	cows	in	this	trial	were	also	non-lactating,	and	as	such	had	a	

lower	daily	water	requirement	(Bannink	et	al.,	199).	Farrell	et	al.,	(2016)	observed	higher	

average	daily	urination	volumes	(27.5	l/cow/day,	3.48	l/event)	of	fodderbeet	fed	cows.	

Again,	this	can	be	attributed	to	increased	dietary	N,	associated	with	a	greater	DMI	(13.3	

vs	10.39	KgDM/cow/day).	Furthermore,	the	osmotic	influence	of	high	K	and	Na	relative	to	

N	in	fodderbeet	on	urination	will	be	increased	at	greater	intakes	(Bannink	et	al.,	1999;	

Farrel	et	al.,	2016).		Whilst	it	is	apparent	that	significant	inter-cow	variability	exists,	no	

difference	(P>0.1)	in	any	parameters	of	urination	behavior	was	observed	between	SOP	

and	control	cows.	Reflecting	this,	Al	Marshadesh	et	al.,	(2017),	reported	no	effect	of	a	
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SOP	treatment	on	7-hour	event	frequency	(P=0.19),	whilst	Shepherd	et	al.,		(2017)		

detected	no	difference	in	urination	behavior,	beyond	an	8%	increase	in	event	frequency	

when	cows	were	subjected	to	an	18	hour	standoff	period.	It	is	therefore	apparent	that	

holding	cows	on	a	standoff	pad	for	18	hours/day	does	not	influence	urination	behavior.		

As	such,	the	SOP	and	control	cows	displayed	the	same	temporal	distribution	of	urine	

excretion,	with	82%	and	18%	of	total	urine	excreted	from	1600-1000h,	and	1000-1600h	

respectively.	We	can	therefore	predict	with	95%	confidence	that	65%-99%	of	total	urine	

will	be	captured	under	the	proposed	standoff	pad	system.		This	indicates,	regardless	of	

diurnal	variations	in	event	volume	and	frequency	(Betteridge	et	al.	2013;	MisselBrook	et	

al.	2016),	that	on	a	total	volume	basis,	the	portion	of	urine	excreted	is	reflective	of	time.	

Shepherd	et	al.,	(2017)	supported	this	conclusion,	stating	that	75%	of	urine	would	be	

captured	with	an	18	hour	standoff	period.	It	is	therefore	apparent	that	significant	

reductions	in	the	volume	of	urine	deposited	on	soil	can	be	achieved	with	a	standoff	pad	

system.	Whilst	conclusive,	these	results	come	from	a	small	data	set	of	8	cows,	with	67	

total	urination	events	recorded.	Improvement	of	the	urine	harness	system	to	improve	

durability,	and	an	extended	trial	period	would	allow	for	collection	of	a	larger,	more	

robust	data	set	to	further	validate	the	conclusions	drawn	from	this	trial	

 

5.4.1 Paddock	Urine	Coverage	and	Nitrogen	leaching		
Paddock	urine	coverage,	has	been	 identified	as	a	primary	determinant	of	 in	situ	nitrate	

leaching	(Moir	et	al.,	2010).	 In	rotational	grazing	systems,	annual	urine	coverage	ranges	

from	10-29%,	averaging	23%	(Moir	et	al.,	2010;	Macklusky,	1960;	Williams,	1998;	White	et	

al.,	2001;	Whitehead,	2000;	Vellinga	et	al.,	2001).		Paddock	urine	patch	coverage	was	54.1%	

assuming	a	24	hour	 in	situ	system.	Under	intensively	stocked	wintering	systems,	slightly	

higher	urine	patch	coverage	rates	of	58%	and	61%	of	grazed	area	have	been	estimated	

(Ravera	et	al.	2015).		In	this	trial,	calculated	average	urine	patch	area	(0.197	m2)	and	total	

per	cow	urine	patch	areas	(1.65	m2/cow/day)	were	reflective	of	previous	findings	(Aland	et	

al.,	2002;	Betteridge	et	al.,	1986;	Castle	et	al.,	1950;	Haynes	&	Williams,	1993;	Misselbrook	

et	al.,	2016;	Selbie	et	al.,	2015).	The	stocking	density	of	3278	cows/ha	is	at	the	upper	end	

of	the	typical	range	(300-3000	cows/ha)	reported	by	Cichota	&	Snow,	(2009),	and	equates	

to	>78,000	grazing	hours/ha/year.	When	grazing	was	restricted	to	six	hours/day,	or	19,700	
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grazing	h/ha/year,	urine	deposited	in	the	paddock	accounted	for	only	9.67%	of	total	grazed	

area.	This	supports	the	conclusion	of	Moir	et	al.,	(2010)	that	a	10,000	h/ha	reduction	in	

annual	grazing	time	would	reduce	the	portion	of	a	paddock	covered	in	urine	by	7%.		It	must	

however	 be	 considered	 that	 overlap	 of	 urine	 patches	 may	 occur	 (Moir	 et	 al.,	 2010).	

Pleasants,	 Shorten,	 &	 Wake,	 (2007)	 estimated	 that	 under	 a	 stocking	 density	 of	 180	

cows/ha,	1378	m2	of	urine	patches,	60m2	of	‘double’	urine	patches,	and	1.6m2	of	‘triple’	

urine	 patches	 would	 be	 produce	 in	 a	 24-hour	 period.	 This	 supports	 previous	 work	

suggesting	that	at	typical	stocking	density’s,	little	urine	patch	overlap	will	occur	(Richards	

&	 Wolton,	 1976).	 However,	 further	 research	 quantifying	 the	 potential	 of	 urine	 patch	

overlap	on	paddock	urine	coverage	of	forage	crops	at	high	stocking	density’s	is	required.	N	

leaching	 rates	 increase	 exponentially	with	 the	 quantity	 of	N	 deposited	 (de	 Klein	et	 al.,	

2010),	and	urine	patch	overlap	would	therefore	influence	N	leaching.		Calculated	N	leaching	

rate	was	41	Kg	N/ha	for	a	24	hour	in	situ	system.	This	is	at	the	lower	end	of	the	51-173	Kg	

N/ha	previously	reported	across	a	range	of	crop	types	(Shepherd	et	al.,	2012;	McDowell	&	

Houlbrooke,	2009;	Monaghan	et	al.,	2013;	Smith	et	al.,	2012),	and	reflects	the	range	of	55-

60	Kg	N/ha	 reported	by	Wheeler	et	al.,	 (2003).	Malcolm	et	al.,	 (2016)	 reported	 slightly	

higher	 rates	of	64-79	Kg	N/ha	 in	 lysimetric	 studies	using	a	 typical	Canterbury	 soil	 type.	

Restricting	grazing	to	six	hours	per	day	effectively	reduced	estimated	N	leaching	by	61.1%,	

to	9.68	Kg	N/ha.	This	 is	within	 the	 reduction	 range	of	30-65%	previously	 reported	with	

various	 restrictions	 on	 grazing	 period	 (16-20	 hours/day)	 (Christensen et al., 2011; 

Environment Waikato, 2008; Lindsay et al., 2011).  It	is	therefore	apparent	that	paddock	

urine	coverage	is	ultimately	reflective	of	stocking	density	and	annual	grazing	hours.		The	

incorporation	of	 a	 standoff	pad	 into	an	 in	 situ	wintering	 system	can	achieve	 significant	

reductions	 (>60%)	 in	 N	 leaching	 of	 fodderbeet	 wintering	 systems	 in	 Canterbury,	 and	

nationwide	by	effectively	reducing	stocking	intensity,	and	subsequently	excretion	of	urine	

onto	soil.				

5.5 Conclusions		

It	is	therefore	apparent	that	restricting	grazing	under	a	standoff	pad	wintering	system	does	

not	reduce	DMI	and/or	dairy	cow	performance	when	an	appropriate	surface	is	used	on	the	

stand-off.	As	such,	BCS	targets	will	be	achievable	at	sufficient	energy	allocations.		Holding	

cows	 on	 a	 standoff	 pad	 for	 18	 hours/day	 does	 not	 influence	 urination	 behavior	 or	 the	
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temporal	distribution	of	urination	excretion.	The	volume	of	urine	captured	on	a	standoff	

pad	 will	 be	 reflective	 of	 the	 standoff	 duration.	 Reduced	 stocking	 intensity	 results	 in	

reductions	in	paddock	urine	patch	coverage	of	utpo	45%.	Based	on	established	parameters	

of	nitrate	leaching	in	Canterbury,	the	proposed	standoff	pad	wintering	system	can	reduce	

N	leaching	by	>60%.		It	can	therefore	be	concluded,	from	these	results	that	standoff	pads	

represent	a	viable	‘Next	Generation	Wintering	System’	that	could	aid	farmers	in	reaching	

N	leaching	baseline	targets.	Further	research	to	develop	a	more	robust	dataset	of	urination	

behavior,	 and	 quantification	 of	 potential	 urine	 patch	 overlap	 at	 high	 stocking	 densities	

would	 provide	 further	 validation	 of	 standoff	 pad	 efficacy.	 Systems	 research	 it	 to	 the	

economic	viability	of	standoff	systems	would	aid	in	driving	farmer	adoption.			
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