LECCIÓN UNO DEFINICIONES BÁSICAS Y SISTEMA DE UNIDADES BASIC DEFINITIONS AND SYSTEM OF UNITS

Hernán J. Gómez Z. 1

 Tabla de contenido
 pg.

 1 DEFINICIÓN
 1

 2 SISTEMA DE UNIDADES
 1

 3 MAGNITUDES FUNDAMENTALES (O DIMENSIONES)
 2

 4 CANTIDADES DERIVADAS
 3

 5 ABREVIATURAS
 3

 6 CIFRAS SIGNIFICATIVAS
 3

 7 PREFIJOS
 3

 8 EJEMPLOS:
 4

 9 TALLER 1: RESOLVER LOS SIGUIENTES EJERCICIOS
 4

1 DEFINICIÓN

La mecánica de fluidos, es la rama de la mecánica aplicada que estudia el comportamiento de los fluidos, ya sea en reposo o en movimiento.^{2, 3}

2 SISTEMA DE UNIDADES

2.1 Sistemas vigentes⁴

Según Duarte(2007)⁵ Los sistemas se pueden clasificar en Sistemas Métricos Físicos, Sistemas Métrico Técnicos y el Sistema Inglés.

2.2 Sistemas métricos físicos

Sistema Cegedecimal o Científico (o sistema Gausiano). Fue establecido en 1881 en Congreso de Electricidad en París. Se conoce como sistema cgs, refiriéndose a las tres unidades básicas que son centímetro(c), gramo (g), segundo(s).

¹ Hernán J. Gómez Z. Ingeniero Civil y Magíster en Recursos Hidráulicos de la Universidad Nacional de Colombia sede Bogotá. Docente de tiempo completo Universidad de Nariño. Página web: http://www3.udenar.edu.co/ingeniería/procivil/hgomez. Email: alumnoscivil1@gmail.com

² Streeter, V. "Mecánica de fluidos". 2000, Edit. McGraw Hill, ed. Novena, Santafé de Bogotá. Colombia.

³ Giles, R. "Mecánica de los Fluidos e Hidráulica"

⁴ Galán Garcia, José Luiz. "Sistema de Unidades Físicas". Edit. REVERTE S.A. Barcelona. 1987.

⁵ Duarte, Carlos A. José r. Niño. (2007). Introducción a la Mecánica de Fluidos. Edit. Unidad de Publicaciones, Facultad de Ingeniería, Universidad Nacional de Colombia. Ed. Tercera. Bogotá D.C. Septiembre 2007.

Sistema Internacional (S.I.). Creado por acuerdo internacional en la XI conferencia de pesas y Medidas, celebrada en París en el año 1960. Conocido también como el Sistema Métrico Decimal⁶. Tiene como magnitudes (o dimensiones) fundamentales la *longitud*, *masa* y *tiempo* con las unidades de metro(m), kilogramo masa(kg), segundo(s).

2.3 Sistemas métricos técnicos

Sistema Técnico o Terrestre. Es también llamado el Sistema de los Ingenieros, puede ser *gravitacional* o absoluto. Tiene como magnitudes fundamentales la *longitud, fuerza, tiempo*; y como unidades el metro(m), kilogramo(kgf) fuerza, segundo(s), respectivamente. En el gravitacional la masa se da en kilográmos masa y en el absoluto se da en UTM. Para efectos de no confundir símbolos el kilogramo fuerza (kgf) se lo denomina como kilopondio (kp), respectivamente.

El ingeniero italiano Giorgi en 1901⁷, propuso un sistema conocido como Sistema Giorgi o Práctico, el cual perdió su vigencia y dio origen al Sistema Técnico en 1960.

2.4 Sistema inglés

Adoptado con base al Sistema Gravitacional Británico. Puede ser gravitacional o absoluto. Las magnitudes (o dimensiones) fundamentales son la longitud, fuerza, tiempo. Basado en unidades inglesas, pie(ft), libra(lbf), segundo(s), para las cantidades de Longitud, Fuerza, Tiempo, respectivamente. En el gravitacional la masa se da en libra-masa y en el absoluto se da en Slug. También en vez de pie se usa la pulgada.

3 MAGNITUDES FUNDAMENTALES (O DIMENSIONES)

Hay nueve cantidades que se consideran dimensiones fundamentales, Longitud, masa, tiempo, temperatura, cantidad de sustancia, corriente eléctrica, intensidad luminosa, ángulo plano y ángulo sólido; de las cuales las más usadas en mecánica de fluidos son la longitud, masa, tiempo y temperatura. Ver definiciones en el anexo A1. En la tabla 1, se indica las cantidades o magnitudes básicas y las unidades respectivas en los diferentes sistemas de unidades.

CANTIDAD	SISTEMAS DE UNIDADES			
	S.I.	S. INGLES (abs)	MKS(abs)	cgs
LONGITUD (I)	metro(m)	Pie(ft)	metro(m)	centímetro(cm)
MASA(m)	kilogramo(kg)	slug	U.T.M.	gramo(gr)
TIEMPO(t)	segundo(s)	segundo(s)	segundo(s)	segundo(s)
TEMPERATURA(°)	Kelvin(K)	Grados	Kelvin(K)	Kelvin(K)
· ·		Rankine(°R)	, ,	

Tabla 1.- Unidades de las dimensiones básicas

No es correcto decir 20 grados Kelvin sino 20 Kelvin, pero si es correcto decir 20 Grados Rankine.

U.T.M se conoce como Unidad Técnica de Masa, se establece a partir de las unidades de fuerza y aceleración. Para un cuerpo que cae en el vació la aceleración a que está sometido es la gravedad (g=9.81 m/s²al nivel del mar) y la única fuerza que actúa es su peso. La UTM es la masa a la cual una fuerza de un kgf (kilo-fuerza) le imprime una aceleración de 1 m/s². Esta unidad se utiliza para medir la masa, cuando la fuerza se mide en kilogramos-fuerza.⁸

Algunas conversiones comunes son:

http://es.wikipedia.org/wiki/Unidad T%C3%A9cnica de Masa

⁶ Potter, Meyer. "Mecánica de Fluidos".

⁷ Galán García, José Luis. (1987). Sistemas de unidades físicas. Edit. Reverte S.A. Universidad de Murcia. Madrid. España. https://digitum.um.es/jspui/bitstream/10201/4713/1/Sistemas%20de%20Unidades%20F%C3%ADsicas.pdf. [Accedido 2 de febrero de 2018].

1 Slug = 1.4881639 UTM; 1 Slug = 14.6 kg; 1kg=0.1019 UTM; 1N=1kg*m/s².=100.000 dinas; 1pie=0.3048m; 1slug=14600gr; (1 Kelvin)K=°C+273.15. (Rankine)°R=°F+459.67. Otras unidades que son de utilidad son la hectárea (ha)= 10.000 m². La tonelada métrica (t) = 1000 kg. El litro (L) = 0.001m³. 1galón (gl) = 3.785 Litros. Además la densidad se puede expresar en gramos/litro (g/L). El caballo de potencia HP=76kp*m/s. El caballo de vapor Cv=75kp*m/s.

4 CANTIDADES DERIVADAS

En la tabla 2, se indican algunas unidades derivadas de uso frecuente en la mecánica de fluidos.

Tabla No 2.- Unidades derivadas

CANTIDAD	SISTEMAS DE UNIDADES			
	S.I.	S. INGLES	MKS	cgs
FUERZA (F)	Newton(N)	lb _f (slug-ft/s ²)	kilopondio(Kp)	Dinas
PRESION (p)	Pa=N/m ²	lb _f /ft ²	m.c.a	Baria ⁹ =dina/cm ² = 0.1 Pa
VISCOSIDAD	Pa*s	lb _f *s/ft ² ó slug/(ft*s)	Kp*s/m ²	Poise=g _m /cm/s
DINAMICA (μ)				
VISCOSIDAD	m²/s	ft ² /s	M ² /s	Stoke=cm ² /s
CINEMATICA (v)				
ENERGIA (E)	Julio(J=N*m)	lb _f *ft	Kp*m (cal ¹⁰)	Ergio= $g_m^* cm^2/s^2 = 10^{-7} J$
POTENCIA (P)	Vatio(W=J/s)	Hp= 76kp*m/s	CV ¹¹ =75kp*m/s	$g_m^* cm^2/s^3 = 10^{-7} \underline{W}$

g_m= gramo masa.

Una forma práctica de recordar la conversión de unidades es tomar como base la presión atmosférica en diferentes sistemas de unidades. Por lo tanto: 1atmosfera = 10.33 m.c.a.=14.7 psi = 760mm Hg = 10330 kgf/m²=101337.3 N/m² = 101.3 KPa = 1.013373 bares. La aceleración en el sistema C.G.S. se da en 1gal (1galileo) = 1cm/s².

5 ABREVIATURAS

Se escriben en minúscula las abreviaturas cuyos nombres de una unidad sea común, como por ejemplo, segundo(s), hora(h), metro(m), kilogramo masa(kg), kilogramo fuerza(kf), kilopondio(kp), libra fuerza(lbf), pie(ft), metro de columna de agua(m.c.a.). Si es nombre propio se escribe la primera letra con mayúscula y la segunda con minúscula, por ej. Newton(N), Pascal(Pa), Watts(W), a excepción del litro que con mayúscula(L).

6 CIFRAS SIGNIFICATIVAS

En los cálculos de ingeniería, por lo general no es común basarse en un cálculo más allá de tres números significativos. El espesor de una lámina puede enunciarse como 1 centímetro, lo cual, en general, no es tan preciso como lo que implicaría decir 1.000 centímetros. No es correcto expresar los resultados de un problema con más cifras significativas que los datos del enunciado.

7 PREFIJOS

⁹ La baria, abreviada b, es la unidad de presión del sistema cegesimal (CGS). Se define como la presión ejercida por una fuerza de una dina sobre una superficie de un centímetro cuadrado.

¹⁰ Una caloría es una unidad de energía del Sistema técnico. Es la cantidad de energía necesaria para elevar la temperatura de un gramo de agua de 14,5 a 15,5 Grado Celsius

¹¹ El **Caballo de vapor**, símbolo **CV**, es una unidad de <u>potencia</u> en el sistema MKS. Se define como la potencia necesaria para elevar verticalmente un <u>peso</u> de 75 <u>kg-fuerza</u> (o <u>kilopondio</u>) a la velocidad de 1 <u>m/s</u>.

Los múltiplos o submúltiplos de 10³ se indican mediante prefijos. Los cuales no se pueden repetir, la forma correcta para 10⁻⁹ es nano, pero no se puede decir un milimicro. Los prefijos más usados se indican en la tabla 3.

Tabla No 3.- Prefijos del Sistema Internacional

PREFIJO	MULTIPLO	ABREVIATURA
Tera	10 ¹²	Т
Giga	10 ⁹	G
Mega	10 ⁶	M
Kilo	10 ³	K
Centi	10 ⁻²	(c)
Mili	10 ⁻³	(m)
Micro	10 ⁻⁶	μ (nu)
Nano	10 ⁻⁹	(n)
Pico	10 ⁻¹²	(p)

8 EJEMPLOS:

1. Demostrar que una presión de 10⁵ N/m²=1 bar

Como 1 Pascal= 10^{-5} bares y 1 N/m²=1 pascal, se tiene que: 10^5 N/m²= 10^5 Pa= 10^5 (10^{-5} bar) = 1bar

2. Demostrar que un kg(masa) es igual 0.1019 UTM

Por la segunda ley de newton se tiene: F=ma, remplazando las unidades de cada cantidad obtenemos: $[Kp] = [UTM]^*[m/s^2]$, como [1Kp]=[9.81N], como $[1N]=[kg^*m/s^2]$, remplazando $[9.81\ kg^*m/s^2]=[UTM][m/s^2]$, despejando kg, tenemos $1kg=[UTM][m/s^2]/[9.81m/s^2]=0.1019\ UTM$.

3. deducir las Unidades de potencia.

Energía = fuerza*longitud= [N-m]= 1 [Julio]

Potencia = Energía/tiempo= 1 [Julio]/s=1 Vatio (1Watts)

4. Calculo de tarifa de energía. Si los siguientes electrodomésticos se usan, calcular el valor de la energía que gastan en un día. En la tabla 4, se presenta el procedimiento de cálculo.

Tabla No 4.- Datos y cálculos del problema

1	2	3	4
Electrodoméstico	Potencia	Tiempo en horas por día	Energía
Calentador	2000 W	2.0 h	4 kw-h
Bombilla	100 W	4.0 h	0.4 kw-h
Estufa	6000 W	1.0 h	6 kw-h
Plancha	750 W	0.5 h	0.375 kw-h
			10.775 kw-h

Si el costo de energía es de 270\$/ kw-h, entonces el costo total es de 10.775kw-h* 270\$/ kw-h = 2909 \$/día

9 TALLER 1: RESOLVER LOS SIGUIENTES EJERCICIOS

- 1. Demostrar que un HP = 0.7456 Kw
- 2. Demostrar que 1slug=14600 g.
- 3. Demostrar que 10.33mca=14.7 psi
- 4. Si el peso específico del agua es 1000kp/m³. Demostrar que en el sistema inglés es de 62.4 lbf/pie³.

5. Teniendo en cuenta que todos los términos de una ecuación deben tener las mismas dimensiones. Determine las dimensiones de la cantidad (n) en la siguiente ecuación: $Q = \frac{AR_H^{2/3}S^{1/2}}{n}$, donde Q(m³/s), A(m²), R_H(m), S(m/m).

Anexo A1: Definiciones de Magnitudes Básicas 12

Unidad de longitud	El metro (m) es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo	
	de 1/299 792 458 de segundo.	
Unidad de masa	•	
	El kilogramo (kg) es igual a la masa del prototipo internacional del kilogramo	
Unidad de tiempo	El segundo (s) es la duración de 9 192 631 770 periodos de la radiación correspondiente a la	
	transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.	
Unidad de intensidad de	El ampere (A) es la intensidad de una corriente constante que manteniéndose en dos	
corriente eléctrica	conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y	
	situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a	
	2·10 ⁻⁷ newton por metro de longitud.	
Unidad de temperatura	El kelvin (K), unidad de temperatura termodinámica, es la fracción 1/273,16 de la	
termodinámica	temperatura termodinámica del punto triple del agua. bservación: Además de la	
	temperatura termodinámica (símbolo T) expresada en kelvins, se utiliza también la	
	temperatura Celsius (símbolo t) definida por la ecuación $t = T - T_0$ donde $T_0 = 273,15$ K	
	por definición.	
Unidad de cantidad de sustancia	El mol (mol) es la cantidad de sustancia de un sistema que contiene tantas entidades	
	elementales como átomos hay en 0,012 kilogramos de carbono 12. Cuando se emplee el	
	mol, deben especificarse las unidades elementales, que pueden ser átomos, moléculas,	
	iones, electrones u otras partículas o grupos especificados de tales partículas.	
Unidad de intensidad luminosa	La candela (cd) es la unidad luminosa, en una dirección dada, de una fuente que emite una	
	radiación monocromática de frecuencia 540·10 ¹² hertz y cuya intensidad energética en dicha	
	dirección es 1/683 watt por estereorradián.	
Unidad de ángulo plano		
	El radián (rad) es el ángulo plano comprendido entre dos radios de un círculo que, sobre la	
	circunferencia de dicho círculo, interceptan un arco de longitud igual a la del radio.	
Unidad de ángulo sólido	El estereorradián (sr) es el ángulo sólido que, teniendo su vértice en el centro de una	
	esfera, intercepta sobre la superficie de dicha esfera un área igual a la de un cuadrado que	
	tenga por lado el radio de la esfera.	

5

 $^{^{12}\} http://www.sc.ehu.es/sbweb/fisica/unidades/unidades/unidades.htm$