

Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(IV) Oxide Nanorods

著者	Murakami Naoya, Katayama Satoshi, Nakamura Misa, Tsubota Toshiki, Ohno Teruhisa
journal or	Journal of Physical Chemistry C
publication title	
volume	115
number	2
page range	419-424
year	2011-01-20
URL	http://hdl.handle.net/10228/00006488

doi: info:doi/10.1021/jp109057s

Dependence of photocatalytic activity on aspect ratio of shape-controlled rutile titanium(IV) oxide nanorods

Naoya Murakami, Satoshi Katayama, Misa Nakamura, Toshiki Tsubota and Teruhisa Ohno*

Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

AUTHOR EMAIL ADRESS: murakami@che.kyutech.ac.jp

* CORRESPONDING AUTHOR: Teruhisa Ohno

TEL & FAX: +81-93-884-3318, EMAIL ADRESS: tohno@che.kyutech.ac.jp

ABSTRACT

Shape-controlled rutile titanium(IV) oxide (TiO₂) nanorods with various aspect ratios were prepared by two-step synthesis in the presence of two kinds of inorganic anions. The first synthesis step from titanium(III) chloride solution induced the formation of aggregated needle-like rutile TiO₂, the shape of which largely depended on the inorganic anion used. Moreover, shape-controlled rutile TiO₂ rods with $\{110\}$ side crystal faces and $\{111\}$ and/or $\{001\}$ edge crystal faces were obtained by hydrothermal treatment of the needle-like rutile TiO₂. Their aspect ratios were largely influenced by the starting material used in the hydrothermal treatment. The photocatalytic activity for decomposition of acetaldehyde increased with decreasing aspect ratio because the surface area ratio of $\{111\}$ and/or $\{001\}$

to {110} exposed crystal faces, which are attributed to oxidation and reduction sites respectively, became more optimal.

KEYWORDS

Photocatalyst, titanium(IV) oxide, rutile rod, separation of redox sites.

MANUSCRIPT TEXT

1. Introduction

Photocatalytic reactions over semiconductor particles have been utilized in various applications, including environmental remediation,^{1,2} water splitting,^{3–5} and reductive conversion of carbon dioxide.⁶ The photocatalytic activity over semiconductor particles is thought to depend on their physical and chemical properties, such as their crystal structure, specific surface area, particle size, and defect density.⁷ Therefore, optimizing these properties has been the conventional strategy for enhancing photocatalytic activity, though the most suitable property to optimize for a specific reaction differs depending on the reaction substrate.

Since the report on titanium(IV) oxide (TiO₂) with specific exposed crystal faces by Ohno et al. in 2002,⁸ various other groups have reported TiO₂ with a similar surface structure.^{9–23} Our group has synthesized shape-controlled anatase and rutile TiO₂ whose photocatalytic properties depend on the specific exposed crystal faces due to preferential reduction and oxidation.^{24–27} Although the mechanism for photocatalytic reactions over TiO₂ with specific exposed crystal faces is still under discussion, these results imply that the exposed crystal face is an important factor that affects photocatalytic reactions. This is reasonable since the surface energy, the chemical surface state, and the number and energy state of defective sites predominantly depend on the atomic arrangement of exposed crystal faces.^{28–30} The effect of these surface properties on photocatalytic reactions will be enhanced with increasing surface-to-bulk ratio (i.e., decreasing particle size) because photocatalytic reactions mainly occur in interfacial regions.

Decahedral anatase with {101} and {001} exposed crystal faces^{8,9,12,14–18,27} and dodecahedral rutile with {110} and {101},⁸ or {110} and {111} exposed crystal faces^{10,11,24} have been synthesized as welldefined TiO₂ particles. To form these exposed crystal faces requires using inorganic or organic compounds as shape-control reagents,^{10–12,15,24,27} specific precursors^{13,17,18} and specific preparation conditions.¹⁶ The influence of inorganic anion on the nucleation of TiO₂ has been well studied. Chloride (Cl⁻) and sulfate (SO₄²⁻) anions are reported to influence the formation of rod-like rutile, octahedral anatase, and decahedral anatase, respectively.^{10–12,19} Since Yang et al. synthesized decahedral anatase with a high percentage of {001} faces,²⁰ anatase prepared by hydrothermal treatment involving fluoride (F⁻) ions has been intensively investigated.^{14,21,22} The photocatalytic activity depends on the surface area ratio of {001} to {101} faces of decahedral anatase,^{14,23,27} which implies that controlling the surface structure (specifically, the kinds of exposed crystal faces and their ratios) can be used to control the reaction properties.

Ohno et al. have reported shape controlled rutile rod and its photocatalytic activity depended on their surface structure, which could be controlled by using shape-control reagents or chemical etching.²⁵ These rutile rods predominantly have {110} and {111} exposed crystal faces, which were respectively attributed to reduction and oxidation sites.²⁴ The rutile rods had aspect ratios of over five due to preferential growth along the [001] direction, indicating that they had a large {110} surface area and a small {111} surface area. A surface structure with a larger surface area of reduction sites than oxidation sites may be desirable for pristine rutile TiO₂ because the bottleneck reaction for conventional organic decomposition under aerated conditions is oxygen reduction rather than oxidation because of the conduction and valence band potentials of rutile TiO₂. This tendency is possibly more pronounced for rutile than anatase since the conduction band of rutile is less negative than that of anatase. Furthermore, one plausible reason for relatively high photocatalytic activity of the rutile may be because multi-electron reduction of oxygen occurs as a result of separation of redox sites which was induced by

specific exposed crystal faces. However, it should be possible to further enhance photocatalytic reactions by optimizing the aspect ratio of the rods (Scheme 1).

In the present study, we prepared shape-controlled rutile TiO_2 rods with various aspect ratios by a twostep synthesis involving hydrolysis and hydrothermal processes in the presence of a shape-control agent (sodium chloride (NaCl) and/or sodium perchlorate (NaClO₄)). The surface structure and specific surface area of the rods were analyzed as functions of the aspect ratio of shape-controlled rutile rods, and the dependence of the photocatalytic activity of acetaldehyde decomposition on the aspect ratio was examined.

2. Experimental

2.1. Sample preparation

2.1.1. First-step growth at room temperature

Aqueous titanium(III) chloride (TiCl₃) solution (50 dm³, 0.15 mol dm⁻³) containing 0, 0.5, and 3.0 mol dm⁻³ of NaCl and/or NaClO₄ in a beaker was stirred at room temperature for one week. The residue was washed several times with Milli-Q water until the ionic conductivity was <10 μ S cm⁻¹. The particles were dried at 80 °C for 12 h. Samples were prepared with and without additives (NaClO₄ and NaCl); these samples are denoted by S(Cl-n,ClO₄-m), where n and m indicate the concentration (mol dm⁻³) of chloride and perchlorate ion in solution.

2.1.2. Second-step growth under hydrothermal conditions

A suspension of the prepared TiO₂ in section 2.1.1 (50 dm³) in a Teflon bottle was ultrasonically agitated and the bottle was then sealed with a stainless-steel jacket and heated at 200 °C for 24 h in an oven. After this hydrothermal treatment, the residue was washed several times with Milli-Q water until the ionic conductivity was <10 μ S cm⁻¹. The particles were dried at 80 °C for 12 h. The samples prepared by hydrothermal treatment of S(Cl-n,ClO₄-m) are denoted by HS(Cl-n,ClO₄-m).

2.1.3. Second-step growth under hydrothermal conditions with NaClO₄

The TiO₂ prepared with NaCl in section 2.1.1 was treated under the same hydrothermal conditions in the presence of NaClO₄, and TiO₂ was obtained by the same post treatment. The obtained samples prepared by hydrothermal treatment of $S(Cl-n,ClO_4-0)$ are denoted by $H(ClO_4-m)S(Cl-n,ClO_4-0)$, where m indicates the NaClO₄ concentration (mol dm⁻³) of the solution.

2.1.4. One-step hydrothermal condition with additives

As reference samples, TiO_2 was prepared by one-step hydrothermal treatment. Aqueous $TiCl_3$ solution (50 dm³; 0.15 mol dm⁻³) containing 1.0 mol dm⁻³ of NaCl or 0.5 mol dm⁻³ of NaClO₄ was treated under the same hydrothermal conditions, and TiO_2 was obtained by the same post treatment. The samples prepared by one-step hydrothermal treatment with 1.0 mol dm⁻³ of NaCl and 0.5 mol dm⁻³ of NaClO₄ are denoted by OH(Cl-1) and OH(ClO₄-0.5).

2.2. Characterization

The crystal structures of the TiO₂ powders were characterized by X-ray diffraction (XRD; Rigaku, MiniFlex II) with Cu K α radiation ($\lambda = 1.5405$ Å). The specific surface areas (S_{BET}) of the particles were determined using a surface area analyzer (Quantachrome, Nova 4200e) using the Brunauer–Emmett–Teller equation. The morphology of prepared TiO₂ particles was observed by transmission electron microscopy (TEM; Hitachi, H-9000NAR). Longer average lengths (L_{ave}) and shorter average widths (W_{ave}) were estimated by TEM observation on more than 80 particles (σ_L and σ_W are the standard deviations of L_{ave} and W_{ave} , respectively), and the aspect ratio (r_{asp}) is defined as $r_{asp} = L_{ave}/W_{ave}$.

2.3. Photocatalytic evaluation

The photocatalytic activities of the TiO₂ samples were evaluated by photocatalytic decomposition of acetaldehyde. One hundred milligrams of TiO₂ powder, which completely extinguished the incident radiation, was spread on a glass dish (5.6 cm²) and the glass dish was placed in a 125-cm³ Tedlar bag (As One). Five hundred parts per million of gaseous acetaldehyde was injected into the Tedlar bag and photoirradiation was performed at room temperature after the acetaldehyde had reached adsorption equilibrium. The gaseous composition in the Tedlar bag was 79% of N₂, 21% of O₂, <0.1 ppm of CO₂, and 500 ppm of acetaldehyde and the relative humidity was ca. 30%. A light emitting diode (Nichia, NCCU033) which emitted light at a wavelength of ca. 365 nm was used as the light source. Its light intensity (irradiance) at the photocatalyst surface of 1.0 mW cm⁻², which was measured with power meter (Ophir, Orion TH) equipped with thermal power sensor (Ophir, 3A-SH). The acetaldehyde and carbon dioxide (CO₂) concentrations were estimated by gas chromatography (Shimadzu, GC-8A, FID detector) with a TCP 20% Uniport R packed column and a methanizer (GL Sciences, MT-221), respectively.

3. Results and discussion

3.1. Crystal growth during the first step

TiO₂ formation from TiCl₃ solution was observed after one week of stirring at room temperature. All the XRD peaks of all the S(Cl-n,ClO₄-m) samples were assigned to rutile TiO₂ alone (Figure S1 in supporting information). Low-intensity, broad peaks indicate that the rutile crystallites are small. Actually, S_{BET} of all the samples was >100 m² g⁻¹, which is relatively high for rutile particles (174, 162, 109, 128, 129, and 276 m² g⁻¹ for S(Cl-0,ClO₄-0), S(Cl-0,ClO₄-0.5), S(Cl-0,ClO₄-3), S(Cl-0.5,ClO₄-0), S(Cl-3,ClO₄-0.5), and S(Cl-3,ClO₄-3), respectively). No large differences were observed between the XRD patterns of S(Cl-0,ClO₄-0), S(Cl-0,ClO₄-0.5), and S(Cl-0,ClO₄-0), S(Cl-0,ClO₄-3); however, samples with higher NaCl concentrations had less intense, wider XRD peaks, suggesting that a higher Cl⁻-ion concentration retards crystal growth. Figure 1 shows TEM images of samples prepared by stirring in the first synthesis step. All the samples consisted of needle-like TiO₂, which was composed of small aggregated crystallites. However, the shape, size, and aggregation state of the samples strongly depended on the kind and concentrations of the additives employed during crystal growth. This result reveals that these differences are a result of using Cl⁻ and ClO₄⁻ anions during crystal formation, although the influence of ClO₄⁻ is relatively small. Using ClO₄⁻ ions induced radial aggregation of narrower and longer needle-like TiO₂, whereas the sample prepared using Cl⁻ ions exhibited random aggregation of wider and shorter needle-like TiO₂. Furthermore, needle-like TiO₂ became more aggregated with increasing anion concentration, which is consistent with the observed reduction in S_{BET} . S(Cl-3,ClO₄-3) showed aggregations of shorter and narrower needle-like TiO₂, presumably due to the influences of both Cl⁻ and ClO₄⁻.

Several groups have prepared similar rutile needles with urchin-like structures by hydrolysis, hydrothermal, and microwave-assisted hydrothermal processes from TiCl₃, titanium(IV) chloride (TiCl₄), and titanium(IV) oxychloride (TiOCl₂) precursors.^{19,31–33} They concluded that using Cl⁻ ions leads to the formation of rutile TiO₂ needles due to a preferred coordinate in the TiO₆ unit. In the present study, the change in the needle-like structure (Fig. 1) and the reduction in S_{BET} may be attributed to the effect of both Cl⁻ and ClO₄⁻ anions during nucleation. Cl⁻ has a larger influence than ClO₄⁻ during hydrolysis because titanium complexes coordinated with ClO₄⁻ ions are not stable.³⁴

3.2. Crystal growth during the second step

XRD patterns of $HS(Cl-n,ClO_4-m)$ sample (Figure S2 in supporting information) shows that hydrothermal treatment did not induce formation of a different crystal structure; rather, the peaks attributed to rutile became more intense and sharper. This indicates that hydrothermal treatment induced further crystallization of the rutile phase without producing another crystal phase.

Figure 2 shows TEM images of the samples. They mainly reveal rod-like particles with exposed crystal faces that are attributable to $\{110\}$ side faces and $\{111\}$ and/or $\{001\}$ edge surfaces.^{10,11,24} The

rod length primarily depends on the starting material of the hydrothermal treatment. The HS(Cl-0,ClO₄-m) samples have relatively long rods. The HS(Cl-0,ClO₄-0.5) and HS(Cl-0,ClO₄-3) samples had similar rod lengths (Fig. 1b, c), whereas HS(Cl-n,ClO₄-0) samples have short rods whose length depends strongly on the Cl⁻ concentration used in the first step (Fig. 1d, e). These results indicate that the rod length of hydrothermally prepared samples is more dependent on the Cl⁻ ion concentration than the ClO₄⁻ concentration during the first step of needle-like TiO₂ synthesis. The rods of the HS(Cl-3,ClO₄-3) sample were shorter than those of the other samples since the starting material S(Cl-3,ClO₄-3) consisted of shorter and narrower needle-like structures than the other starting materials (Fig. 1f).

3.3. Crystal growth with ClO_4^- in the second synthesis step

Similar hydrothermal treatment was performed on the $S(Cl-n,ClO_4-m)$ sample in the presence of ClO_4^- anions. The XRD patterns of the $H(ClO_4-m)S(Cl-n,ClO_4-0)$ samples (Figure S3 in supporting information) are similar to those of the HS(Cl-n,ClO_4-m) samples (Fig. S2), and peaks attributed to rutile were more intense and narrower than those of the starting material in spite of the presence of ClO_4^- , which sometimes produces the anatase phase under hydrothermal treatment from TiCl₃ solution (the details are discussed in section 3.4).

Figure 3 shows TEM images of the H(ClO₄-m)S(Cl-n,ClO₄-0) samples. The H(ClO₄-m)S(Cl-n,ClO₄-0) samples contain smaller rods than the HCn samples; however, no appreciable influence of ClO₄⁻ concentration was observed for the H(ClO₄-0.5)S(Cl-n,ClO₄-0) and H(ClO₄-3)S(Cl-n,ClO₄-0) samples. These rod length and width are consistent with the S_{BET} values (Table 1). This indicates that using ClO_4^- ions in hydrothermal conditions retards sintering and further growth of rutile TiO₂ rods (the details are discussed in section 3.4).

3.4. One-step hydrothermal synthesis

TiO₂ was prepared by one-step hydrothermal synthesis from TiCl₃ solution in the presence of ClO₄⁻ ions. Figure 4a shows an XRD pattern of the OH(ClO₄-0.5) sample prepared using 0.5 mol dm⁻³ of NaClO₄. The presence of ClO₄⁻ resulted in the formation of anatase (anatase:rutile = 4:6 based on the integrated intensities of peaks attributed to anatase 101 and rutile 110^{35}), although a trace of brookite was observed. The anatase phase increased with increasing ClO₄⁻ concentration.

Figure 4b shows a TEM image of the OH(ClO₄-0.5) sample prepared with 0.5 mol dm⁻³ of NaClO₄. 10-nm anatase and 100-nm rutile TiO₂ particles (which were distinguished based on the half widths at half maximum of the XRD peaks attributed to anatase 101 and rutile 110) were observed. The large rutile particles had exposed crystal faces with aspect ratios of at most two. By contrast, TiO₂ obtained by hydrothermal treatment of TiCl₃ with 1.0 mol dm⁻³ of NaCl (the OH(Cl-1) sample) consisted of rutile TiO₂ rods with $W_{ave} = 34$ nm and $L_{ave} = 182$ nm, which is a similar structure to reported rutile TiO₂ rods.²⁴ Therefore, ClO₄⁻ ions induced both anatase formation and changed the shape of rutile TiO₂ particles as a result of retardation of crystal growth along the [001] direction, presumably due to the coordination of ClO₄⁻ ions with a specific site in the nucleation process.

As mentioned in section 3.3, hydrothermal treatment of the $S(Cl-n,ClO_4-0)$ sample with ClO_4^- ions did not result in the formation of anatase TiO₂. This is because the $S(Cl-n,ClO_4-m)$ samples contained almost no anatase TiO₂ precursors (e.g., residual TiCl₃ and intermediate species from TiCl₃) since they were almost completely hydrolyzed in the first step. Moreover, ClO_4^- ions retarded sintering and crystal growth along the [001] direction and ClO_4^- ions had a larger effect in the second synthesis step than in the first synthesis step. This indicates that ClO_4^- ions function efficiently under hydrothermal conditions and/or in the absence of Cl^- ions. Therefore, the first synthesis step is important in that anatase formation and crystal growth along the [001] direction is retarded under hydrothermal conditions in the presence of ClO_4^- ions in second-step synthesis.

3.5. Correlation between crystal shape and photocatalytic activity

The photocatalytic activities of the prepared samples were evaluated using the decomposition of acetaldehyde. Figure 5 shows time courses of CO₂ evolution for acetaldehyde decomposition over representative TiO₂ under UV irradiation. Although all the samples showed similar time course curves for CO₂ evolution, the amount of CO₂ evolved varied greatly between the samples. To simplify the discussion, the amount of CO₂ evolved at 480 min (M_{CO2}) was used to estimate the photocatalytic activity.

Figure 6 shows the relationship between S_{BET} and M_{CO2} for the S(Cl-n,ClO₄-m), HS(Cl-n,ClO₄-m), and H(ClO₄-m)S(Cl-n,ClO₄-0) samples (n and m = 0, 0.5, and 3). There is a clear correlation between S_{BET} and M_{CO2} . M_{CO2} of the HS(Cl-n,ClO₄-m) and H(ClO₄-m)S(Cl-n,ClO₄-0) samples increased and M_{CO2} of the S(Cl-n,ClO₄-m) samples decreased with increasing S_{BET} . It is difficult to discuss the relationship between M_{CO2} and the particle shape of all the samples including the S(Cl-n,ClO₄-m) samples, whose structure differed greatly from those of the HS(Cl-n,ClO₄-m) and H(ClO₄-m)S(Cln,ClO₄-0) samples. However, the increase in M_{CO2} with S_{BET} in the HS(Cl-n,ClO₄-m) and H(ClO₄m)S(Cl-n,ClO₄-0) samples can be explained by one or both of the following two hypotheses: (1) a reduction in the aspect ratio induced by an increase in S_{BET} , increasing the number of adsorption sites and/or (2) optimization of the surface area ratio of oxidation to reduction sites due to an increase in the number of oxidation sites.

Figure 7a shows experimentally measured S_{BET} values for the HS(Cl-n,ClO₄-m), H(ClO₄-m)S(Cl-n,ClO₄-0), and OH(Cl-1) samples together with theoretical S_{BET} curves for rutile rods with {110} and {111} (dashed line) and {110} and {001} (solid line) exposed crystal faces as functions of r_{asp} . The theoretical S_{BET} curves were calculated using a density of 4.25 g cm⁻³ and a contact angle of 132.3° between the {110} and {111} planes for dodecahedral rutile. The aspect ratio was defined as the ratio of the maximum length along the [001] direction (d_{001}) to that along the [110] direction (d_{110}). The experimentally measured S_{BET} agreed with the theoretical S_{BET} curves calculated using $d_{110} = 30$ nm and assuming that rutile has {110} and {001} exposed crystal faces. The reason for d_{110} (30 nm) being larger than W_{ave} (17–24 nm) may be because of a reduction in S_{BET} due to sintering of the rutile particles.

Figure 7b shows M_{CO2} and theoretical values of S_{BET} as a function of the aspect ratio of the rutile rods. Some deviated plots of M_{CO2} form theoretical S_{BET} curves in the small r_{asp} region (dotted line). This indicates that the increase in photocatalytic activity cannot be explained only by an increase in S_{BET} if it is assumed that M_{CO2} increases linearly with S_{BET} . Therefore, rutile TiO₂ rods with a small r_{asp} are thought to exhibit higher photocatalytic activities because their surface area ratio of oxidation to reduction sites is more optimal.

4. Conclusions

Two-step synthesis from TiCl₃ solution induced formation of shape-controlled rutile rods with smaller aspect ratios ($r_{asp} \sim 2.0-3.2$) than those of rutile rods prepared by the one-step hydrothermal method ($r_{asp} \sim 5.4$). Cl⁻ ions in the first step and ClO₄⁻ ions in the second step restricted crystal growth along the [001] direction, presumably due to retardation of end-by-end attachment growth. The photocatalytic activity for decomposition of acetaldehyde increased with decreasing aspect ratio (i.e., increasing number of oxidation sites) due not to an increase in the number of adsorption sites but rather to a more optimal ratio of the surface areas of oxidation to reduction sites.

ACKNOWLEDGMENT

This work was supported by a grant of the Knowledge Cluster Initiative implemented by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Supporting Information Available: Figure S1, S2, S3, S4, S5 and S6, showing the XRD patterns and photocatalytic evaluation results of the prepared samples. This material is available free of charge via the Internet at http://pubs.acs.org.

FIGURE CAPTIONS

Figure 1. TEM images of TiO_2 prepared by stirring of aqueous solution of $TiCl_3$ containing NaCl and NaClO₄ for one week. (a) S(Cl-0,ClO₄-0), (b) S(Cl-0,ClO₄-0.5), (c) S(Cl-0,ClO₄-3), (d) S(Cl-0.5,ClO₄-0), (e) S(Cl-3,ClO₄-0), and (f) S(Cl-3,ClO₄-3).

Figure 2. TEM images of TiO₂ prepared by hydrothermal treatment of S(Cl-n,ClO₄-m) (n and m = 0, 0.5, 3) samples. (a) HS(Cl-0,ClO₄-0), (b) HS(Cl-0,ClO₄-0.5), (c) HS(Cl-0,ClO₄-3), (d) HS(Cl-0.5,ClO₄-0), (e) HS(Cl-3,ClO₄-0), and (f) HS(Cl-3,ClO₄-3).

Figure 3. TEM images of TiO₂ prepared by hydrothermal treatment of $S(Cl-n,ClO_4-0)$ (n = 0.5, 3) samples in the presence of NaClO₄. (a) $H(ClO_4-0.5)S(Cl-0.5,ClO_4-0)$, (b) $H(ClO_4-3)S(Cl-0.5,ClO_4-0)$, (c) $H(ClO_4-0.5)S(Cl-3,ClO_4-0)$, and (d) $H(ClO_4-3)S(Cl-3,ClO_4-0)$.

Figure 4. (a) XRD pattern and (b) TEM image of OH(ClO₄-0.5).

Figure 5. Time courses of CO₂ evolution for acetaldehyde decomposition over representative TiO₂ samples. (a) S(Cl-3,ClO₄-0), (b) HS(Cl-3,ClO₄-0), and (c) H(ClO₄-0.5)S(Cl-3,ClO₄-0).

Figure 6. Relationship between S_{BET} and M_{CO2} of S(Cl-n,ClO₄-m) (\blacktriangle), HS(Cl-n,ClO₄-m) (\circ), and H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box) samples.

Figure 7. (a) Experimental S_{BET} of HS(Cl-n,ClO₄-m) (\circ), H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box), and OH(Cl-1) (**•**) samples, and theoretical S_{BET} curves for rutile TiO₂ rods with {110} and {111} (dashed line) and {110} and {001} (solid line) exposed crystal faces as a function of r_{asp} . (b) Theoretical S_{BET} curve (solid lines) and M_{CO2} of HS(Cl-n,ClO₄-m) (\circ), H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box), and OH(Cl-1) (**•**) samples as a function of r_{asp} .

SCHEME TITLES

Scheme 1. Dependence of aspect ratio of shape-controlled rutile rods on surface area ratio of oxidation to reduction sites, which possibly affects the photocatalytic properties.

TABLES

Table 1. Structural properties and S_{BET} of rod-like particles prepared by hydrothermal treatment with and without additives.

name	synthesis types	starting materials	$S_{\rm BET}$ $/{\rm m}^2~{\rm g}^{-1}$	<i>r</i> _{asp}	L _{ave} /nm	σ_L /nm	W _{ave} /nm	σ_W /nm	M _{CO2} /ppm
S(Cl-0,ClO ₄ -0)	first-step	TiCl ₃	174	_	_	_	_	_	446
S(Cl-0.5,ClO ₄ -0)	first-step	$TiCl_3 + 0.5 mol dm^{-3} of NaCl$	128	_	_	_	-	_	582
S(Cl-3,ClO ₄ -0)	first-step	$TiCl_3 + 3.0 \text{ mol } dm^{-3} \text{ of}$ NaCl	129	_	_	_	_	_	633
S(Cl-0,ClO ₄ -0.5)	first-step	$TiCl_3 + 0.5 mol dm^{-3} of NaClO_4$	162	_	_	_	-	_	598
S(Cl-0,ClO ₄ -3)	first-step	$TiCl_3 + 3.0 \text{ mol } dm^{-3} \text{ of } NaClO_4$	109	_	_	_	-	_	758
S(Cl-3,ClO ₄ -3)	first-step	$TiCl_3 + 3.0 \text{ mol } dm^{-3} \text{ of}$ NaCl and NaClO ₄	276	_	_	_	_	_	267
HS(Cl-0,ClO ₄ -0)	second- step	S(Cl-0,ClO ₄ -0)	46	3.1	71	33	23	6	501
HS(Cl-0.5,ClO ₄ -0)	second- step	S(Cl-0.5,ClO ₄ -0)	54	2.4	55	23	23	6	386
HS(Cl-3,ClO ₄ -0)	second- step	S(Cl-3,ClO ₄ -0)	45	2.5	58	21	23	7	383
HS(Cl-0,ClO ₄ -0.5)	second- step	S(Cl-0,ClO ₄ -0.5)	37	3.2	74	38	24	7	405
HS(Cl-0,ClO ₄ -3)	second- step	S(Cl-0,ClO ₄ -3)	46	2.3	45	22	20	5	382
HS(Cl-3,ClO ₄ -3)	second- step	S(Cl-3,ClO ₄ -3)	56	2.0	37	15	18	4	578
H(ClO ₄ -0.5)S(Cl- 0.5,ClO ₄ -0)	second- step	$HS(Cl-0.5,ClO_4-0) + 0.5$ mol dm ⁻³ of NaClO ₄	45	2.7	51	24	19	5	412
H(ClO ₄ -3)S(Cl- 0.5,ClO ₄ -0)	second- step	$HS(C1-0.5,C1O_4-0) + 3.0$ mol dm ⁻³ of NaClO ₄	42	2.8	60	25	21	6	527
H(ClO ₄ -0.5)S(Cl- 3,ClO ₄ -0)	second- step	$HS(Cl-3,ClO_4-0) + 0.5$ mol dm ⁻³ of NaClO ₄	63	2.0	34	14	17	4	798
H(ClO ₄ -3)S(Cl- 3,ClO ₄ -0)	second- step	$HS(C1-3,C1O_4-0) + 3.0$ mol dm ⁻³ of NaClO ₄	61	2.0	37	15	19	4	537
OH(Cl-1)	single- pot	$TiCl_3 + 1.0 \text{ mol } dm^{-3} \text{ of}$ NaCl	21	5.4	182	88	34	14	377
OH(ClO ₄ -0.5)	single- pot	$TiCl_3 + 0.5 mol dm^{-3} of NaClO_4$	_	_	_	_	_	_	_

REFERENCES

- (1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. Reviews 2000, 1,
 1.
 - (2) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.
 - (3) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851.
 - (4) Osterloh, F.E. Chem. Mater. 2008, 20, 35.
 - (5) Maeda, K.; Domen, K. Chem. Mater. 2010, 22, 612.
 - (6) Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. ACS NANO 2010, 4, 1259.
 - (7) Mahaney, O.O.P.; Murakami, N.; Abe, R.; Ohtani, B. Chem. Lett. 2009, 38, 238.
 - (8) Ohno, T.; Sarukawa, K.; Matsumura, M. New. J. Chem. 2002, 26, 1167.
 - (9) Yoshinaga, K.; Yamauchi, M.; Maruyama, D.; Mouri, E.; Koyanagi, T. Chem. Lett. 2005, 34, 1094.
 - (10) Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, K. J. Am. Chem. Soc. 2004, 126, 7790.
 - (11) Kakiuchi, K.; Hosono, E.; Imai, H.; Kimura, T.; Fujihara, S. J. Cryst. Growth 2006, 293, 541.
- (12) Wang, D.; Liu, J.; Huo, Q.; Nie, Z.; Lu, W.; Williford, R. E.; Jiang, Y. J. Am. Chem. Soc. 2006, 128, 13670.
- (13) Amano, F.; Yasumoto, T.; Mahaney, O.O.P.; Uchida, S.; Shibayama, T.; Ohtani, B. *Chem. Comm.* **2009**, 2311.
 - (14) Zhang, D.; Li, G.; Wang, H.; Chan, K.M.; Yu, J.C. Crystal Growth & Design 2010, 10, 1130.
 - (15) Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y.; Xia, Y. Nano Lett. 2009, 9, 6.

(16) Amano, F.; Mahaney, O.O.P.; Terada, Y.; Yasumoto, T.; Shibayama T.; Ohtani, B. *Chem. Mater.* **2009**, 21, 2601.

(17) Li, J.; Xu, D. Chem. Commun. 2010, 46, 2301.

(18) Li, J.; Yu, Y.; Chen, Q.; Li, J.; Xu, D. Cryst. Growth Des. 2010, 10, 2111.

(19) Li, Y.; Lee, N.; Hwang, D.; Song, J. S.; Lee, E. G.; Kim, S. Langmuir 2004, 20, 10838.

(20) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G. ; Smith, S. C.; Cheng H. M.; Lu, G. Q. *Nature* **2008**, *453*, 638.

(21) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009, 131, 4078.

(22) Zhu, J.; Wang, S.; Bian, Z.; Xie, S.; Cai, C.; Wang, J.; Yang, H.; Li, H. *CrystEngComm* **2010**, *12*, 2219.

(23) Amano, F.; Yasumoto, T.; Mahaney, O.O.P.; Uchida, S.; Shibayama, T. *Top. Catal.* **2010**, *53*, 455.

- (24) Bae, E.; Murakami, N.; Ohno, T. J. Molec. Catal. A: Chem. 2009, 300, 72.
- (25) Bae, E.; Ohno, T. Appl. Catal. B: Environ. 2009, 91, 634.
- (26) Bae, E.; Murakami, N.; Nakamura, M.; Ohno, T. Appl. Catal. A: Gen. 2010, 380, 48.
- (27) Murakami, N.; Kurihara, Y.; Tsubota, T.; Ohno, T. J. Phys. Chem. C 2009, 113, 3062.
- (28) Oliver, P. M.; Watson, G. W.; Kelsey, E. T.; Parker, S. C. J. Mater. Chem. 1997, 7, 563.
- (29) Barnard, A.S.; Zapol, P. J. Phys. Chem. B 2004, 108, 18435.
- (30) Barnard, A. S.; Curtiss, L. A. Nano Lett. 2005, 5, 1261.

(31) Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakata, T.; Yanagida, S. J. *Mater. Chem.* **2001**, *11*, 1694.

(32) Li, Y.; Fan, Y.; Chena, Y. J. Mater. Chem. 2002, 12, 1387.

(33) Zhang, Q.; Gao, L. Langmuir 2003, 19, 967.

(34) Pottier, A.; Chanéac, C.; Tronc, E.; Mazerolles L.; Jolivet, J. J. Mater. Chem. 2001, 11, 1116.

(35) Zang, H.; Banfield, J. J. Phys. Chem. B 2000, 104, 3481.

Scheme 1. Dependence of aspect ratio of shape-controlled rutile rods on surface area ratio of oxidation to reduction sites, which possibly affects the photocatalytic properties.

Figure 1. TEM images of TiO_2 prepared by stirring of aqueous solution of $TiCl_3$ containing NaCl and NaClO₄ for one week. (a) S(Cl-0,ClO₄-0), (b) S(Cl-0,ClO₄-0.5), (c) S(Cl-0,ClO₄-3), (d) S(Cl-0.5,ClO₄-0), (e) S(Cl-3,ClO₄-0), and (f) S(Cl-3,ClO₄-3).

Figure 2. TEM images of TiO₂ prepared by hydrothermal treatment of S(Cl-n,ClO₄-m) (n and m = 0, 0.5, 3) samples. (a) HS(Cl-0,ClO₄-0), (b) HS(Cl-0,ClO₄-0.5), (c) HS(Cl-0,ClO₄-3), (d) HS(Cl-0.5,ClO₄-0), (e) HS(Cl-3,ClO₄-0), and (f) HS(Cl-3,ClO₄-3).

Figure 3. TEM images of TiO_2 prepared by hydrothermal treatment of $S(Cl-n,ClO_4-0)$ (n = 0.5, 3) samples in the presence of NaClO₄. (a) H(ClO₄-0.5)S(Cl-0.5,ClO₄-0), (b) H(ClO₄-3)S(Cl-0.5,ClO₄-0), (c) H(ClO₄-0.5)S(Cl-3,ClO₄-0), and (d) H(ClO₄-3)S(Cl-3,ClO₄-0).

Figure 4. (a) XRD pattern and (b) TEM image of OH(ClO₄-0.5).

Figure 5. Time courses of CO₂ evolution for acetaldehyde decomposition over representative TiO₂ samples. (a) S(Cl-3,ClO₄-0), (b) HS(Cl-3,ClO₄-0), and (c) H(ClO₄-0.5)S(Cl-3,ClO₄-0).

Figure 6. Relationship between S_{BET} and M_{CO2} of S(Cl-n,ClO₄-m) (\blacktriangle), HS(Cl-n,ClO₄-m) (\circ), and H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box) samples.

Figure 7. (a) Experimental S_{BET} of HS(Cl-n,ClO₄-m) (\circ), H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box), and OH(Cl-1) (\blacksquare) samples, and theoretical S_{BET} curves for rutile TiO₂ rods with {110} and {111} (dashed line) and {110} and {001} (solid line) exposed crystal faces as a function of r_{asp} . (b) Theoretical S_{BET} curve (solid lines) and M_{CO2} of HS(Cl-n,ClO₄-m) (\circ), H(ClO₄-m)S(Cl-n,ClO₄-0) (\Box), and OH(Cl-1) (\blacksquare) samples as a function of r_{asp} .