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Abstract: This paper presents a pole assignment method based on a numerical computation with guaranteed accuracy.
By using the proposed methods, it is possible to guarantee a numerical quality about design of control system. This paper
also proposes a problem which finds the best controller from a set of solutions solved by verified pole assignment method.
That problem is solved by using Genetic Algorithms.

Keywords: Design of control system, numerical computation with guaranteed accuracy, pole assignment problem, Ge-
netic Algorithms

1. INTRODUCTION
A computer is used for various areas now, but it was

devised that a real number is approximated to a float-
ing point number and computed to compute fast. So, a
numerical computation using a computer cannot solve a
mathematical strict solution because of a round error etc.
Many mathematicians and researchers took notice of this
error, but it was rarely estimated how much an error is big
correctly until recently.

But recently, Numerical Computation with Guaran-
teed Accuracy[1] which computes an error occurred by a
numerical computation using a computer, and proves how
much a computational result is correct was appeared. In
the area which is wanted to compute solutions closely,
there are great hopes that apply this computational tech-
nique to it.

A developing of a control system is divided into 5
phases which are modeling of a plant, characteristics
analysis, design of a controller, simulation, and experi-
ment. After modeling, a controller is designed by using
that model, and design of a controller is also computed
using a computer. For a reason of failing a design, it
is thought of as the model is wrong, the design method
is wrong, or there is a numerical problem like error etc.
If modeling or design methods is wrong, it may be pos-
sible to get expected results by remodeling or redesign.
Changing an algorithm etc. is thought of as an answer in
an issue of a numerical computation like an error, how-
ever design methods with guaranteed numerical quality
has not been built up.

Recently, methods are proposed which apply a numer-
ical computation with guaranteed accuracy to design of a
control system to solve this issue [2], [3]. For example,
a method which applies a computation with guaranteed
accuracy using rational numbers to design of a control
system, and solve H2 design problem for a single input
single output control plant was proposed[3]. However,
there are problems about a method using rational num-
bers shown below.

1. It cannot support irrational numbers.
2. There are impossible arithmetic operations since

the result of an arithmetic must be closed under an
arithmetic by rational numbers.

3. There is a problem about a computational speed and
a memory size since an arithmetic of rational num-
bers may explode.

The purpose of this research is apply a numerical com-
putation with guaranteed accuracy to a computation about
design of a control system, and design a control system
from the viewpoint of a guarantee of a numerical qual-
ity. We guaranteed the quality about a computation of
design of control system, especially a numerical result
about pole assignment problem.

In Section 2, the principle of a numerical computation
with guaranteed accuracy, and a creation of an interval
by the switching the CPU rounding mode to compute a
fast numerical computation with guaranteed accuracy us-
ing floating point numbers is explained. In Section 3, we
propose a pole assignment method based on a numeri-
cal computation with guaranteed accuracy. In Section 4,
JCGA(Java Computing Guaranteed Accuracy) which
is the developed Java numerical computation with guar-
anteed accuracy package is described. In Section 5, an
example of pole assignment method based on numerical
computation with guaranteed accuracy using JCGA is ex-
plained. Finally, in Section 6, conclusions are described.

2. NUMERICAL COMPUTATION WITH
GUARANTEED ACCURACY

2.1 Principle of numerical computation with guaran-
teed accuracy

A general form of the principle and the method to
solve a problem with guaranteed is explained here[4].

Now, a problem is given as

Find x which satisfies f(x) = 0

If an accuracy of an approximation is good, it is hoped
that the true solution exists near by the approximate solu-
tion of the above problem obtained by a numerical com-
putation. Then, consider a method to check whether the
set(candidate set) which contains the approximate solu-
tion contains the true solution. If this method is obtained,



it is possible to try to specify a set which contains the true
solution by the procedure like following.

1. By using some method, resolve a candidate set
which is expected that it contains the true solution
.

2. Verify if the candidate set actually contains the true
solution.

3. If it doesn’t contain the true solution, create other
candidate set and go back to the previous step.

If a set is specified, the size of the set gives the accu-
racy of the approximate solution.

The most popular mathematical tool to check whether
a set contains a solution of the problem f(x) = 0 is an
equivalent theorem about an existence of the solution of
fixed point equation x = F (x), that is fixed point theo-
rem. There are several types about fixed point theorem, so
a generic representation of fixed point theorem is shown
below.

Fixed point theorem� �
Consider a F(U) as

F (U) = {v | v = F (u), u ∈ U}

where U is a set which satisfies some condition.
Then, if set U satisfies

F (U) ∈ U

or, U satisfies a similar condition, the true solution
of fixed point equation x = F (x) exists within the
U (especially exists within the F (U)).� �

2.2 Fast creating of interval by switching CPU round-
ing mode

A method to search a candidate set by the switching
CPU rounding mode is explained here.

The CPU rounding mode which is called round to
nearest(rounds to the floating point number that is the
nearest to the real number r) is traditionally used when
we compute using a computer. Other rounding modes are
round downward(round towards the floating point num-
ber that is the biggest number fewer than the real number
r), and round upward(round towards the floating point
number that is the smallest number larger than the real
number r) etc[5].

In general, it is impossible to solve the true solution it-
self in a numerical computation using floating point num-
bers. Then, a numerical computation with guaranteed ac-
curacy switches the CPU rounding mode, computes the
infimum and the supremum of the true solution, and cre-
ates the interval[6][1] as shown in Fig. 1. And, it wraps
around the true solution by the interval which has the
floating point number as both ends. By using this method,
it is possible to search the interval which contains the true
solution. Numerical computation with guaranteed accu-
racy is executed by the simple idea that an interval wraps
around a true solution of a problem using an interval.

Fig. 1 Difference between traditional computation and
numerical computation with guaranteed accuracy

3. POLE ASSIGNMENT METHOD
BASED ON NUMERICAL

COMPUTATION WITH GUARANTEED
ACCURACY

3.1 Verified Pole Assignment method
Whether poles of a closed loop which use an obtained

feedback gain correspond with specified poles is the most
important for pole assignment problem[7]. Some prob-
lems assign poles far from specified poles, so the ver-
ifying where poles are assigned is needed. Then, we
apply guaranteed accuracy of eigen value[8] to pole as-
signment problem and propose verified pole assignment
method which verifies the solution obtained by pole as-
signment method. This method computes the eigen value
of A−BF with guaranteed accuracy about obtained feed-
back gain F . At this time, eigen values are solved as an
circular complex interval. If specified poles exist within
that guaranteed accuracy of eigen value, that is to say,
specified poles exist within the circular disk which con-
sists of the radius and the center about eigen value of
A − BF shown like Fig. 2(a). Then eigen values with
guaranteed accuracy obtained by that feedback gain con-
tain specified poles. And it is possible to solve the feed-
back gain with guaranteed the existence area of specified
poles. This feedback gain is called feedback gain with
guarantee of quality. And if it doesn’t contain shown
like Fig. 2(b), it is impossible to specify the existence
area, so that solution is the solution which doesn’t verify
the existence area. That feedback gain is called feedback
gain without guarantee.

P

Center

 Radius

(a)
P

Center

Radius

(b)
Fig. 2 Condition with guaranteed existence area of spec-

ified pole and Condition without guarantee

3.2 Verified Best Pole Assignment Problem
In the previous section, the method that verifies the

existence area of specified poles about the obtained feed-
back gain was shown. After executing verified pole as-



signment method, if the obtained feedback gain is a feed-
back gain without guarantee, how to find a feedback gain
with guarantee of quality? In this section, a method to
find feedback gain with guarantee of quality, verified
best pole assignment problem is described. Verified
best pole assignment problem is the problem that pulls
out a set of feedback gain with guarantee of quality(it has
n feedback gains) from the interval which contains the
true value of the feedback gain, and finds the feedback
gain which makes a value of evaluation formula

errorn = max
1≦i≦l

(
|Pi −Mid(E)i|+Rad(E)i

|Pi|
) (1)

the smallest. Where, P is a specified pole,
Mid(E),Rad(E) is the center and the radius of the eigen
value. Also, here are l specified poles. The part of the
numerator of this evaluation formula computes the sum
of the distance from the center of the eigen value to the
specified pole, and the radius. The ideal state of pole as-
signment problem that the pole assigned by the obtained
feedback gain completely correspond with the specified
pole, so if parts of the numerator is small, it is thought
of as the good solution is obtained. And, the denomina-
tor is the specified pole. The case that a pole is far from
the imaginary axis, the pole which is near the imaginary
axis is important since the convergence of the state is fast.
Then, it makes a weighting by normalization at the origin.
The biggest value from the obtained value is the evaluated
value of the feedback gain. And, the feedback gain which
makes the supremum of this evaluated value the smallest
is the best feedback gain with guarantee of quality.

Mid(E)

Rad(E)

P

| P – Mid(E) |

Fig. 3 Schematic of numerator of evaluation formula for
verified best pole assignment problem

A solve procedures of verified best pole assignment
problem is shown below.

Solve procedures of verified best pole assignment problem� �
Step1 Compute the interval which contains the

true value of a feedback gain, and pull out from
a candidate set of the feedback gain with guar-
antee of quality

Step2 Execute verified pole assignment method
Step3 If it is a feedback gain with guarantee of

quality in Step 2, compute the evaluated value
by the evaluation formula(Eq.(1)).

Step4 Make the feedback gain that supremum of
the evaluated value the smallest is the verified
best feedback gain.� �

3.3 Creating a candidate set by using GA
This paper searches the set which contains the best

feedback gain from the interval which contains the
true value of the feedback gain by using genetic algo-
rithm(GA)[9].

Since an interval feedback gain is an interval matrix, it
is necessary to select a floating point from an interval of
all elements of a matrix to create an element of a candi-
date set. So, there is a difficult case to full search because
of the width of an interval or element counts of an matrix.
Then, this paper proposes that searching a candidate set
by using GA which is a one of heuristic.

This paper proposes that make a floating point in the
interval feedback gain as individual, use the Eq.(1) for
the computation of fitness, use UNDX method for the
crossover, and use a method by uniform random number
for mutation. It is possible to search a candidate set from
an interval feedback gain in a systematic way by using
GA.

4. IMPLEMENTATION OF THE
PROPOSED METHOD

4.1 Numerical computation with Guaranteed Accu-
racy package JCGA

We developed JCGA(Java Computing Guaranteed Ac-
curacy) as a Java package of a numerical computa-
tion with guaranteed accuracy. JCGA is able to com-
pute interval arithmetic, interval matrix arithmetic[1][6],
linear equation[10][6], eigen value problem[8], poly-
nomial[10], differential[1][10][11], and nonlinear equa-
tion[1][6][11] of numerical computation with guaranteed
accuracy. And, JCGA use NFC[12] which is a Java nu-
merical computation package for basic operations like
matrix operation, or complex number operation etc. Java
only use round to nearest mode[13], and cannot control
the CPU rounding mode directly. So, JCGA controls the
CPU rounding mode by the calling code of the rounding
control written in C language by using JNI[14].

4.2 Architecture of JCGA
Figure 4 shows the architecture of JCGA. The archi-

tecture of JCGA consists of JCGA component which
is the main component and executes a computation
with guaranteed accuracy, NFC component which com-
putes internal basic operations of JCGA, and libFPUNa-
tive.so(for Linux, or FPUNative.dll for Windows) com-
ponent which controls the CPU rounding mode.

JCGA has round package to switch the CPU rounding
mode, interval package to carry out interval arithmetic
and interval matrix arithmetic, linear, eigen, polynomial,
derivative, nonlinear package to compute each problem
with guaranteed accuracy, and pset[15], [16] package to
manage a processor on a multiprocessor environment.
pset package is used to restrain a switch of CPU rounding
mode by other process during a computation with guar-
anteed accuracy.

Classes shown in Table 1 are prepared as main classes
to compute with guaranteed accuracy.
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Fig. 4 Architecture of JCGA

Table 1 Classes of numerical computation with guaran-
teed accuracy

Numerical computation with
guaranteed accuracy

Class

Interval arithmetic Interval
Interval matrix arithmetic IntervalMatrix
Linear equation LinearVerifier
Eigen value problem EigenVerifier
Polynomial HornerVerifier
Differential value IntervalDerivative
Nonlinear equation NonLinearVerifier

4.3 Numerical example using JCGA

This section shows a numerical computation with
guaranteed accuracy of eigen value as a numerical ex-
ample using JCGA.

JCGA provides EigenVerifier class to execute a nu-
merical computation with guaranteed accuracy of eigen
value. By using this class, computes guaranteed accuracy
of eingen value of the following matrix.

A =

 −4 17 60
1 0 0
0 1 0


The true value of eigen value is λ = 4,−3,−5.
The program and the computation result are shown be-

low.
Example program of eigen value with guaranteed accuracy� �
public class EigenVerifierSample {

public static void main(String[] args) {
//Matrix A
Matrix A = new RealMatrix(new double[][]{

{-4, 17, 60},
{ 1, 0, 0},
{ 0, 1, 0}});

//Creates a numerical computation with
//guaranteed accuracy object
//of eigen value
EigenVerifier ev = new EigenVerifier();
//Computes eigen value
//with guaranteed accuracy
IntervalMatrix ans = ev.solve(A)[0];
//Display of the center and the radius
ans.printMidRad("Eigen value");

}
}� �

Result of eigen value with guaranteed accuracy� �
=== Center of eigen value(3 x 1) CoMatrix ===

[ ( 1)-Real ]
( 1) 4.000000000000000000E+00
( 2)-3.000000000000000400E+00
( 3)-5.000000000000000000E+00

[ ( 1)-Imag ]
( 1) 0.000000000000000000E+00
( 2) 0.000000000000000000E+00
( 3) 0.000000000000000000E+00
=== Radius of eigen value(3 x 1) Matrix ===

( 1)
( 1)2.329383478607396300E-16
( 2)1.437330003186217900E-15
( 3)1.258978188088645200E-15� �

The above result shows that true solution exist within the
circular disk which consists of the radius and the center.
And, the existence interval of the solution is computed by
using the above result.

Existence interval of eigen value� �
=== Infimum (3 x 1) Matrix ===

( 1)
( 1) 3.999999999999999600E+00
( 2) -3.000000000000002000E+00
( 3) -5.000000000000002000E+00
=== Supremum (3 x 1) Matrix ===

( 1)
( 1) 4.000000000000001000E+00
( 2) -2.999999999999998700E+00
( 3) -4.999999999999998000E+00� �

It is confirmed that the true solution is wrapped around
between the infimum and the supremum by this result, so
the guaranteed accuracy result is validate.

5. NUMERICAL EXAMPLE OF
VERIFIED POLE ASSIGNMENT

PROBLEM

Consider a following system, and specified poles are
P = −1,−3.

A =

[
4 −3
2 −1

]
, B =

[
0
1

]
And, verify the approximate value of the feedback gain

about this problem.
The approximate value of the feedback gain is� �
=== F ( 1 x 2) Matrix ===

( 1)
( 1)-9.666666666666666000E+00

( 2)
( 1) 7.000000000000000000E+00� �

Then, computes the eigen value of A−BF with guaran-
teed accuracy.� �

=== Center of eigen value(2 x 1) CoMatrix ===
[ ( 1)-Real ]

( 1)-9.999999999999987000E-01
( 2)-2.999999999999999600E+00

[ ( 1)-Imag ]
( 1) 0.000000000000000000E+00
( 2) 0.000000000000000000E+00
=== Radius of eigen value(2 x 1) Matrix ===

( 1)
( 1) 1.093957329412127000E-14
( 2) 1.209323584016177600E-14� �

And, shows the result by the interval of the infimum and
the supremum.



� �
=== Infimum ( 2 x 1) Matrix ===

( 1)
( 1) -1.000000000000009800E+00
( 2) -3.000000000000012000E+00
=== Supremum ( 2 x 1) Matrix ===

( 1)
( 1) -9.999999999999877000E-01
( 2) -2.999999999999987000E+00� �

The above result shows that specified poles are
wrapped around the area of the guaranteed accuracy of
eigen value of A− BF by pole assignment by this feed-
back gain.

Thus, this feedback gain verifies the existence area of
specified poles, and it is a feedback gain with guarantee
of quality.

Next, consider a following system, and specified poles
are P = −1,−5,−10,−15,−20,−25.

A =


1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 50000

 , B =


1
1
1
1
1
1


Find a high-quality feedback gain of this problem.

This problem is a very sensitive problem since the con-
dition number of A is 50000.

First, computes the feedback gain by the usual approx-
imate computation1.� �

===Approximate solution of F(1 x 6) Matrix===
( 1)

( 1)-9.639806218498292000E-01
( 2)

( 1) 8.509152983176330000E+00
( 3)

( 1)-2.418811769229065300E+01
( 4)

( 1) 2.785936334204669000E+01
( 5)

( 1)-1.128626546904882800E+01
( 6)

( 1) 5.060212104148602000E+04� �
The eigen value of A − BF using this approximate

feedback gain is shown below.� �
=== Eigen value (6 x 1) CoMatrix ===

[ ( 1)-Real ]
( 1) 5.556514690020053500E+00
( 2) 5.556514690020053500E+00
( 3)-4.736678870134883000E-01
( 4)-6.430407250185999000E-01
( 5)-6.430407250185999000E-01
( 6)-5.964044740710399000E+02

[ ( 1)-Imag ]
( 1) 1.015862498610436800E+01
( 2)-1.015862498610436800E+01
( 3) 0.000000000000000000E+00
( 4) 2.810712219574160300E+00
( 5)-2.810712219574160300E+00
( 6) 0.000000000000000000E+00� �

The above result doesn’t correspond to specified poles at
all. So, we cannot use this feedback gain computed ap-
proximately.

Then, solve the verified best pole assignment problem
about this problem.
1It uses a method from controllability companion form shown in [7]
etc. And, it doesn’t use any special optimization.

Step1：Computes the feedback gain of this problem,
and the interval of the feed back gain is

Interval of feedback gain� �
=== Infimum ( 1 x 6) Matrix ===

( 1)
( 1) -9.609792195860576000E-01

( 2)
( 1) 8.482659306355298000E+00

( 3)
( 1) -2.411280676849047200E+01

( 4)
( 1) 2.777262180964545400E+01

( 5)
( 1) -1.125112511255948200E+01

( 6)
( 1) 5.009106962998430000E+04
=== supremum ( 1 x 6) Matrix ===

( 1)
( 1) -9.609792195827667000E-01

( 2)
( 1) 8.482659306389033000E+00

( 3)
( 1) -2.411280676832195300E+01

( 4)
( 1) 2.777262180984378800E+01

( 5)
( 1) -1.125112511246289800E+01

( 6)
( 1) 5.009106962998450000E+04� �

And, create a candidate set by using GA. We set pa-
rameters as population size is 60, number of generation is
100, number of elite is 10, crossover rate is 100%, value
of SD is 0.5, mutation rate is 25%, value of M is 1

10 of
numbers of pieces of point within interval. Then, com-
pute the eigen value of A−BF with guaranteed accuracy
using that feedback gain.

Step2：There are 7 feedback gains with guaranteed
accuracy.

Step3：We compute the evaluated value about 7 feed-
back gains based on the evaluation formula.

Step4：The below feedback gain makes the evaluated
value the smallest.

Best feedback gain with guarantee of quality� �
=== F ( 1 x 6) Matrix ===

( 1)
( 1) -9.609792195844106000E-01

( 2)
( 1) 8.482659306372607000E+00

( 3)
( 1) -2.411280676840988600E+01

( 4)
( 1) 2.777262180975247000E+01

( 5)
( 1) -1.125112511251553000E+01

( 6)
( 1) 5.009106962998439000E+04� �

And, the smallest evaluated value is

error = [5.432948863478505E−10, 5.432948863478507E−10]

The eigen value of the best feedback gain with guar-
antee of quality is



� �
=== Center of eigen value(6 x 1) CoMatrix ===

[ ( 1)-Real ]
( 1)-1.000000000002854600E+00
( 2)-5.000000000033347000E+00
( 3)-9.999999999778545000E+00
( 4)-1.500000000168764200E+01
( 5)-1.999999999991897000E+01
( 6)-2.499999999954850000E+01

[( 1)-Imag ]
( 1) 0.000000000000000000E+00
( 2) 0.000000000000000000E+00
( 3) 0.000000000000000000E+00
( 4) 0.000000000000000000E+00
( 5) 0.000000000000000000E+00
( 6) 0.000000000000000000E+00
=== Radius of eigen value (6 x 1) Matrix ===

( 1)
( 1) 7.627531467764463000E-12
( 2) 3.508607539019007000E-10
( 3) 3.432007441453436400E-09
( 4) 6.461781269090835500E-09
( 5) 1.066656583505956800E-08
( 6) 4.605143259111369500E-09� �
The infimum and the supuremum of the interval is� �
=== Infimum of eigen value(6 x 1) Matrix ===

( 1)
( 1) -1.000000000010482300E+00
( 2) -5.000000000384208000E+00
( 3) -1.000000000321055400E+01
( 4) -1.500000000814942400E+01
( 5) -2.000000001058553800E+01
( 6) -2.500000000415364500E+01
=== Supremum of eigen value(6 x 1) Matrix ===

( 1)
( 1) -9.999999999952270000E-01
( 2) -4.999999999682485000E+00
( 3) -9.999999996346537000E+00
( 4) -1.499999999522586000E+01
( 5) -1.999999998925240000E+01
( 6) -2.499999999494335500E+01� �

The above result shows that interval of the eigen value
of A − BF contains specified poles. The time to solve
this problem is shown as Table 2. Computation environ-
ment is OS: Windows XP Professional, CPU: Pentium D
945(3.4GHz), Memory: 1024MB.
Table 2 Time to compute example

Step Time(ms)
Step1(Computation of inter-
val F + select candidate of
best F)

151273(156+151117)

Step2(Verified pole assign-
ment method)

1070

Step3(Evaluation of best
feedback gain with guaran-
tee of quality F)

32

Total 152375

6. CONCLUSIONS
This paper developed JCGA which is a Java numeri-

cal computation with guaranteed accuracy package, and
applied numerical computation with guaranteed accuracy
to computational problems about design of control sys-
tem, especially guarantee a quality about pole assignment
problem. It is possible to compute the computational re-
sult with the significantly-improved numerical quality by
applied numerical computation with guaranteed accuracy
to a sensitive problem which is difficult to solve by an
approximate computation. We would like to go on to

propose design methods for another design problems like
LQR control[7] etc. from the viewpoint of the guarantee
of numerical quality.
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