

Systematic Study of Lattice Specific Heat of Filled Skutterudites

著者	Matsuhira Kazuyuki, Sekine Chihiro, Wakeshima Makoto, Hinatsu Yukio, Namiki Takahiro, Takeda Keiki, Shirotani Ichimin, Sugawara Hitoshi, Kikuchi Daisuke, Sato Hideyuki
journal or	Journal of the Physical Society of Japan
publication title	
volume	78
number	12
page range	124601 - 124601
year	2009-12-15
URL	http://hdl.handle.net/10228/00006392

doi: info:doi/10.1143/JPSJ.78.124601

Systematic Study of Lattice Specific Heat of Filled Skutterudites

Kazuyuki Matsuhira*, Chihiro Sekine¹, Makoto Wakeshima², Yukio Hinatsu², Takahiro Namiki^{†1,4}, Keiki Takeda¹, Ichimin Shirotani¹, Hitoshi Sugawara³, Daisuke Kikuchi⁴, and Hideyuki Sato⁴

Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

¹Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

²Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

³Faculty of the Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502,

Japan

⁴Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan (Received October 2, 2009)

The lattice specific heat $C_{\rm lat}$ of La-based filled skutterudites La T_4X_{12} ($T={\rm Fe}$, Ru and Os; $X={\rm P}$, As and Sb) has been systematically studied, and both the Debye temperature $\Theta_{\rm D}$ and the Einstein temperature $\Theta_{\rm E}$ of La T_4X_{12} were carefully estimated. We confirmed that a correlation exists between $\Theta_{\rm D}$ and the reciprocal of the square root of average atomic mass for La $T_4{\rm P}_{12}$, La $T_4{\rm As}_{12}$, and La $T_4{\rm Sb}_{12}$. The $\Theta_{\rm D}$ of filled skutterudites was found to depend mainly on the nature of the species X forming the cage. The temperature dependence of $C_{\rm lat}/T^3$ for La $T_4{\rm X}_{12}$ exhibited a large broad maximum at low temperatures (10 - 30 K), which suggests a nearly dispersionless low-energy optical mode characterized by Einstein specific heat. Since no such broad maximum exists for the unfilled skutterudite RhP₃, the low-energy optical modes are associated with vibration involving La ions in the X_{12} cage (the so-called "guest ion modes"). The $\Theta_{\rm E}$ of filled skutterudites was found to roughly correspond to the energy of low-energy guest ion optical modes. Furthermore, a good correlation was shown to exist between $\Theta_{\rm E}$ and $r_{\rm R-X}-r_{\rm R3+}$, where $r_{\rm R-X}$ is the R-X distance and $r_{\rm R3+}$ is the effective ionic radius of R^{3+} . As $r_{\rm R-X}-r_{\rm R3+}$, increased, $\Theta_{\rm E}$ was found to decrease.

KEYWORDS: skutterudite, specific heat, Debye temperature, Einstein temperature, rattling vibration, guest ion mode

1. Introduction

Recent active research on filled skutterudite compounds of the form RT_4X_{12} has revealed the wide variety of physical properties resulting from the strong c-f hybridization effect, the unique band structure, and the degree of freedom of the multipole moment due to f electrons in R sites of the cubically symmetric X_{12} cage.¹⁻¹⁷ In addition, it is well known that filled skutterudite compounds show a low glasslike thermal conductivity.^{18,19} It has been presumed

^{*}E-mail address: matuhira@elcs.kyutech.ac.jp

[†]Present address: Department of Physics, Tokyo Medical University, Tokyo, 160-8402

that this suppression of thermal conductivity comes from low-energy optical modes associated with the vibration of R ions in the X_{12} cage.²⁰ This characteristic vibration is called "rattling vibration" or the "guest ion mode". Furthermore, recently, some interesting phenomena such as ultrasonic absorption in $LnOs_4Sb_{12}$ and a novel heavy-fermion state robust against magnetic fields in $SmOs_4Sb_{12}$ have been reported.^{21–23} It has been proposed that the electron-phonon coupling between conduction electrons and guest ion modes is responsible for these interesting phenomena.^{24,25}

To clarify the above-mentioned interesting phenomena, more basic information on the phonon modes is required. In particular, it is important to reveal the chemical trend on low-energy guest-ion optical modes (LGOMs). From an analysis of the specific heat of Labased filled skutterudites, we can make a rough estimate of the phonon spectrum in the low-energy region because lattice specific heat is obtained by subtracting the contribution of the electronic specific heat γT from the total specific heat C, where γ is the electronic specific heat coefficient. We can obtain γ and the Debye temperature $\Theta_{\rm D}$ by applying the Debye T^3 law at low temperatures. However, for filled skutterudites, since significant deviations from the Debye T^3 law are caused by LGOMs, we have to carefully estimate γ and Θ_D . LGOMs characterized by Einstein specific heat lead to a broad maximum in $(C-\gamma T)/T^3$ at $\sim \Theta_E/4.92$, where $\Theta_{\rm E}$ is the Einstein temperature; the peak in $(C - \gamma T)/T^3$ cannot be described by Debye specific heat. Therefore, we can obtain $\Theta_{\rm E}$ from the maximum temperature $T_{\rm max}$ in $(C-\gamma T)/T^3$. $\Theta_{\rm E}$ roughly corresponds to the energy of LGOMs. In this paper, we report the lattice specific heat of LaT_4X_{12} and discuss the Θ_D and Θ_E of these compounds. In addition, we examine the correlations between the energy of LGOMs ($\Theta_{\rm E}$) and structural parameters in filled skutterudites.

2. Experimental Procedure

Polycrystalline samples of LaT_4P_{12} , LaT_4As_{12} (T=Fe, Ru, Os), and RhP₃ were prepared at high temperatures and high pressures. A polycrystalline sample of $LaFe_4Sb_{12}$ was prepared as reported in ref. 26. Single crystals of LaT_4Sb_{12} (T=Ru, Os) were grown by the Sb-self-flux method.²⁷ Specific heat measurement was carried out by a thermal-relaxation method (PPMS, Quantum Design Inc.) from 1.8 to 300 K.

3. Results and Discussion

3.1 Analysis of specific heat

Figures 1(a) and 1(b) show the specific heat divided by the temperature C/T for LaRu₄P₁₂ and LaOs₄Sb₁₂, respectively. Both compounds show a superconducting transition at $T_{\rm SC}$ =7 K and $T_{\rm SC}$ =0.74 K, respectively.²⁸ In Fig. 1(a), the anomaly in C(T) at 7 K originates from this superconducting transition. For LaRu₄P₁₂, we obtained the specific heat in the normal state by applying a magnetic field with a strength above H_{c2} . In a magnetic field of 3 T, the

C(T) for LaRu₄P₁₂ between 2.8 and 6 K can be well fitted by $C/T = \gamma + \beta T^2$ (Debye T^3 law); $\Theta_{\rm D} = (12\pi^4 R_{\rm g} n/5\beta)^{1/3}$, where $R_{\rm g}$ is the gas constant and $n{=}17$. In this manner we obtained $\gamma = 28.8~{\rm mJ/K^2}$ mole and $\Theta_{\rm D}{=}603~{\rm K}$, as previously reported.²⁹ As the temperature range in which C(T) obeys the Debye T^3 law tends to be narrow in filled skutterudites, we have to carefully estimate γ and $\Theta_{\rm D}$; significant deviations from the Debye T^3 law are caused by LGOMs, as will be discussed later. As seen in Fig. 1(b), the C(T) of LaOs₄Sb₁₂ obeys the Debye T^3 law below 4 K, and in this region we obtained $\gamma = 54~{\rm mJ/K^2}$ mole and $\Theta_{\rm D}{=}270~{\rm K}$. γ is consistent with previous reports.^{30,31}

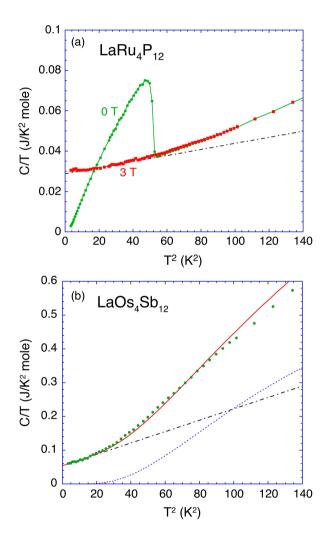


Fig. 1. (a) (Color online) Specific heat divided by temperature C/T for LaRu₄P₁₂ of magnetic fields of 0 and 3 T. The dash-dotted line represents a fit using the Debye T^3 law. (b) (Color online) Specific heat divided by temperature C/T for LaOs₄Sb₁₂. The dash-dotted line shows $C/T = \gamma + C_D(T, \Theta_D)/T$ with γ =54 mJ/K² mole, Θ_D =270 K. The dotted line represents $C_E(T, \Theta_E)/T$ whith Θ_E =60.5 K. The solid line shows the sum of these contributions.

Figure 2 shows the temperature dependence of $(C-\gamma T)/T^3$ for La T_4X_{12} . Below 10 K, $(C-\gamma T)/T^3$

 $\gamma T)/T^3$ tends to have a finite value (β) . This behavior is characterized by the Debye specific heat $C_{\rm D}(T,\Theta_{\rm D})$ at low temperatures; $C_{\rm D}(T,\Theta_{\rm D}=670~{\rm K})$ is shown in Fig. 2. Furthermore, we can easily see the contribution of LGOMs in the C/T^3 plot. It should be noted that all of the compounds exhibit a large broad maximum at around 10 - 30 K, which is a commonly observed feature in filled skutterudites. The broad maximum is characterized by the Einstein specific heat $C_{\rm E}(T,\Theta_{\rm E})$; $C_{\rm D}(T,\Theta_{\rm D})$ has no maximum in the C/T^3 plot. The maximum in the $C_{\rm E}/T^3$ plot is located at $T_{\rm max}\cong\Theta_{\rm E}/4.92$; $C_{\rm E}(T,\Theta_{\rm E}=140~{\rm K})$ is also shown in Fig. 2. Therefore, we can estimate $\Theta_{\rm E}$ from $T_{\rm max}$ in $(C-\gamma T)/T^3$. Recent Raman and inelastic X-ray scattering (IXS) studies have observed LGOMs. $^{32-34}$ In light of these results, $\Theta_{\rm E}$ can be said to roughly correspond to the energy of LGOMs. The values of γ , $\Theta_{\rm D}$, and $\Theta_{\rm E}$ of La T_4 X₁₂ are shown in Table I. The LGOMs of La T_4 X₁₂ are centered at around 60 - 140 K.

It has been reported that the specific heat of $AT_4\mathrm{Sb}_{12}$ ($A=\mathrm{Ca}$, Sr, Ba, La; $T=\mathrm{Fe}$, Ru, Os) is roughly the sum of $C_\mathrm{E}(T,\Theta_\mathrm{E})$ and $C_\mathrm{D}(T,\Theta_\mathrm{D})$.³⁵ In the same way, we found that the specific heat of $\mathrm{La}T_4\mathrm{X}_{12}$ is roughly equal to the sum of $C_\mathrm{E}(T,\Theta_\mathrm{E})$ and $C_\mathrm{D}(T,\Theta_\mathrm{D})$ (not shown). This result suggests that the dispersion of LGOMs is weak in filled skutterudites. For example, we obtained a good fit (solid line) for the specific heat of $\mathrm{LaOs}_4\mathrm{Sb}_{12}$ below 9 K (Fig. 1 (b)). The fitting curve is described by $C/T=\gamma+C_\mathrm{D}(T,\Theta_\mathrm{D}=270~\mathrm{K})/T+C_\mathrm{E}(T,\Theta_\mathrm{E}=60.5~\mathrm{K})/T$, where γ is 54 mJ/K² mole.

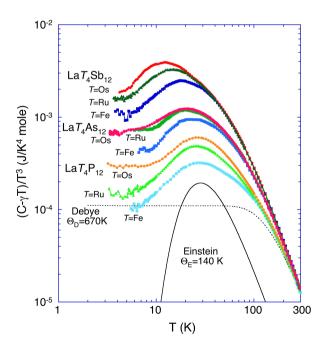


Fig. 2. (Color online) Temperature dependence of $(C - \gamma T)/T^3$ for La T_4X_{12} .

Table I. Electronic specific heat coefficients γ , Debye temperatures $\Theta_{\rm D}$, and Einstein temperatures $\Theta_{\rm E}$ for La $T_4 X_{12}$.

Compound	$\gamma \text{ (mJ/K}^2 \text{ mole)}$	Θ _D (K)	$\Theta_{\rm E}$ (K)
LaFe ₄ P ₁₂	52	670	138
$\mathrm{LaRu_4P_{12}}$	29	603	128
$\mathrm{LaOs_{4}P_{12}}$	20	482	131
$LaFe_4As_{12}$	135	421	113
$\mathrm{LaRu_{4}As_{12}}$	58	355	98.4
${\rm LaOs_4As_{12}}$	49	360	99.4
$LaFe_4Sb_{12}$	122	314	87.6
$\mathrm{LaRu_4Sb_{12}}$	47	275	72.8
${\rm LaOs_4Sb_{12}}$	54	270	60.5

3.2 Specific heat of unfilled skutterudite RhP₃

Figure 3 shows the temperature dependences of $(C-\gamma T)/T^3$ for LaRu₄P₁₂ and RhP₃. The skutterudite RhP₃ has no La ions in the P₁₂ cage, and is therefore a good reference compound for LaRu₄P₁₂ to clarify the effect of LGOM. For comparison with the lattice specific heat of LaRu₄P₁₂, the specific heat $(C-\gamma T)/T^3$ of RhP₃ is multiplied by 4 in Fig. 3. Although RhP₃ is thought of as a semiconductor,³⁶ a small contribution to the specific heat from a T-linear term was observed. The C(T) curve for RhP₃ between 5 and 30 K can be well fitted by $C/T = \gamma + \beta T^2$, from which we obtained $\gamma = 3.79$ mJ/K² mole and $\Theta_D = 498$ K using n=4; the origin of the small T-linear term is not yet clear. Although the $(C-\gamma T)/T^3$ curve for LaRu₄P₁₂ exhibits a large broad maximum at around 26 K, the curve for RhP₃ has no such feature. This is good evidence that LGOMs are due to optical modes related to the presence of La ions that fill in the P₁₂ cage. Therefore, we may conclude that the Θ_E of filled skutterudites roughly corresponds to the energy of LGOMs in the X_{12} cage.

3.3 Debye temperature

We next discuss the Debye temperature of La T_4X_{12} . According to the Debye model, Θ_D is proportional to the velocity of sound in a solid. This in turn is proportional to the reciprocal of the square root of the density of the solid. Since density roughly corresponds to the average atomic mass $M_{\rm av}$, Θ_D is ultimately linearly proportional to the reciprocal of the square root of $M_{\rm av}$. The gradient of this linear relationship is roughly proportional to the square root of a force constant. Figure 4 shows the dependence of Θ_D on average atomic mass for La T_4X_{12} . We found correlations between Θ_D and the reciprocal of the square root of $M_{\rm av}$ for La T_4P_{12} , La T_4As_{12} , and La T_4Sb_{12} . The gradient for La T_4P_{12} is 1.2 times larger than that for La T_4As_{12} and 1.4 times larger than that for La T_4Sb_{12} . Therefore, La T_4P_{12} is expected to be roughly

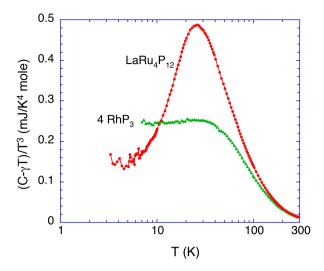


Fig. 3. (Color online) Temperature dependences of $(C - \gamma T)/T^3$ for LaRu₄P₁₂ and RhP₃. The $(C - \gamma T)/T^3$ curve for RhP₃ is multiplied by a factor of 4 for easier comparison.

2 times harder than $\text{La}\,T_4\text{Sb}_{12}$. The bulk moduli of $\text{LaRu}_4\text{P}_{12}$ and $\text{LaRu}_4\text{Sb}_{12}$ are reported to be 172 and 98 GPa, respectively,³⁷ and the above results are consistent with these values. The X_{12} cage in filled skutterudites consists of X_4 rings formed by strong covalent bonds. The present result indicates that the $\Theta_{\rm D}$ of filled skutterudites depends mainly on the nature of X.

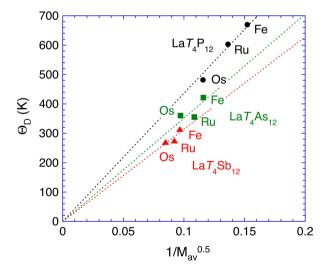


Fig. 4. (Color online) Dependence of Θ_D on average atomic mass.

3.4 Specific heats of $GdOs_4P_{12}$ and $GdRu_4P_{12}$

We next discuss the lattice specific heats of $GdOs_4P_{12}$ and $GdRu_4P_{12}$. $GdOs_4P_{12}$ exhibits a ferromagnetic transition at $T_C=5$ K, 38,39 whereas $GdRu_4P_{12}$ shows an antiferromagnetic transition at $T_N=22$ K. 7,40 Figure 5 shows the specific heats (ΔC) and entropies (ΔS) of $GdOs_4P_{12}$ and $GdRu_4P_{12}$. To obtain a 4f magnetic contribution, we estimated the ΔC values of $GdOs_4P_{12}$ and $GdRu_4P_{12}$ by subtracting the specific heats of $LaOs_4P_{12}$ and $LaRu_4P_{12}$, respectively, as nonmagnetic components. We now focus on the magnetic contribution of $GdOs_4P_{12}$. A broad peak in ΔC for $GdOs_4P_{12}$ appears at around 30 K in Fig. 5(a). The ΔS value of $GdOs_4P_{12}$ estimated using ΔC data is beyond Rln8 (14.9 J/K² mole), which is expected to be in the ground state S=7/2 multiplet of Gd^{3+} . However, in general, there is no splitting of CEF levels in the ground state of Gd^{3+} , and therefore the broad peak does not come from the Schottky anomaly.

The broad peak is best explained by a lattice contribution resulting from a significant shift of LGOMs towards a low energy. We have already reported on a similar phenomenon in $SmOs_4Sb_{12}$.³¹ The effect of the energy shift of LGOMs on lattice specific heat is evaluated using Θ_E as a fitting parameter. We estimated the change in Θ_E for $GdOs_4P_{12}$ from $\Theta_E=131$ K for $LaOs_4P_{12}$. The resulting ΔC_E curve is shown in Fig. 5(a) where $\Delta C_E(T) = C_E(T, \Theta_E) - C_E(T, \Theta_E) = 131$ K). In this manner, we obtained $\Theta_E=87$ K for $GdOs_4P_{12}$. The abovementioned Schottky-like anomaly at 80 K is well reproduced by the curve. The true magnetic contribution appears below 20 K. In addition, ΔS after correcting for the contribution from ΔC_E is close to Rln8 at 80 K. In this analysis, excess entropy can also be explained by the low-energy shift of LGOMs. In a similar manner, we estimated $\Theta_E=98$ K for $GdRu_4P_{12}$. The results for ΔC_E are shown in Fig. 5(b). The long tail in ΔC above $T_N=22$ K is mainly due to a significant energy shift of LGOMs towards a low energy. The true magnetic contribution appears below 30 K. A short-range ordering in this antiferromagnetic transition develops below this temperature.

3.5 Correlation between structure parameters and Θ_E

We will now discuss the correlations between structure parameters and Θ_E for La T_4X_{12} , Gd T_4P_{12} , and Sm T_4X_{12} . First, we define the guest free distance r_{GFD} as

$$r_{\text{GFD}} = r_{\text{R-X}} - r_{\text{R3+}} - r_{\text{X}},$$
 (1)

where r_{R-X} is the distance between R and X, r_{R3+} is the effective ionic radius of R^{3+} for a 12-coordination-number site, and r_X is the covalent radius of X.⁴¹ If the energy of LGOMs depends only on the structure parameters, we would expect to see a good correlation between r_{GFD} and Θ_E . In this estimation of r_{GFD} , we used the lattice parameters shown in Table II. In considering the effective space in the cage, we should take into account the effective ionic radius of rare-earth ions. The effective ionic radius of Sm³⁺ (1.24 Å) is smaller than

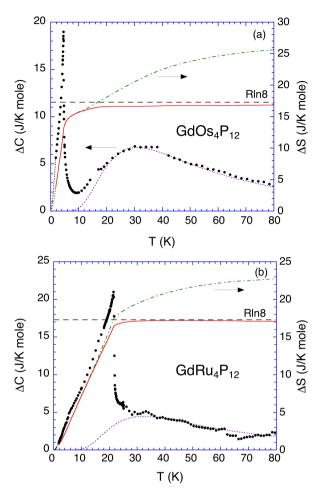


Fig. 5. (Color online) Specific heats (ΔC) and entropies (ΔS) of (a) GdOs₄P₁₂ and (b) GdRu₄P₁₂. The broken lines show $\Delta C_{\rm E}(T)$ (see text for details). The solid lines show the true magnetic entropy after correcting for the contribution of $\Delta C_{\rm E}$.

that of La³⁺ (1.36 Å). The effective ionic radius of Gd³⁺ for a 12-coordination-number site has not been reported so far. Therefore, we estimated it to be 1.21 Å by extrapolation from those of other rare-earth elements. To derive $r_{\rm R-X}$, we need the lattice parameters u and v. Unfortunately, these parameters, which determine the position of X atoms, have not been reported so far for LaRu₄As₁₂ or LaOs₄As₁₂. However, the relationship $u+v\sim 0.50$ is well-known for filled skutterudites. In fact, from Table II, we can see that $u+v=0.500\pm 0.005$ for the other compounds. Therefore, for the estimation of the $r_{\rm R-X}$ values of LaRu₄As₁₂ and LaOs₄As₁₂, we used the lattice parameters $u=0.350\pm 0.005$ and $v=0.150\mp 0.005$. Next, since the lattice parameters u and v for Sm T_4X_{12} and Gd T_4P_{12} have also not been reported except in the case of the compound SmOs₄Sb₁₂, we substituted the parameters of the La analogue for those of Sm T_4X_{12} and Gd T_4P_{12} . Although ambiguities in u and v lead to an error of roughly 1% in the estimation of $r_{\rm R-X}$, this is not significant in the present discussion.

Table II. Lattice parameters $(a \ (\mathring{A}) \ \text{and} \ (u, v))$ for RT_4X_{12} . nd: not determined.

Compound	a	(u, v)	Ref.
LaFe ₄ P ₁₂	7.83160	(0.3539, 0.1504)	42
$\rm SmFe_4P_{12}$	7.8029	nd	42
$\mathrm{LaRu_4P_{12}}$	8.0610	(0.3591, 0.1428)	43
$\mathrm{SmRu_4P_{12}}$	8.0397	nd	8
$GdRu_{4}P_{12} \\$	8.0375	nd	7
$\mathrm{LaOs_4P_{12}}$	8.08197	(0.35700, 0.14002)	44
$\mathrm{GdOs_4P_{12}}$	8.0657	nd	38
$\mathrm{LaFe_{4}As_{12}}$	8.3252	(0.34556, 0.15474)	45
$\rm SmFe_4As_{12}$	8.3003	nd	46
$LaRu_{4}As_{12} \\$	8.50810	nd	45
$LaOs_4As_{12}$	8.54370	nd	45
$LaFe_4Sb_{12}$	9.1395	(0.33696, 0.16042)	47
$\rm SmFe_4Sb_{12}$	9.130	nd	48
$\mathrm{LaRu_4Sb_{12}}$	9.2732	(0.34174, 0.1581)	49
$LaOs_4Sb_{12}$	9.30799	(0.34118, 0.1565)	49
$\mathrm{SmOs_{4}Sb_{12}}$	9.3085	(0.34009, 0.15589)	50

The r_X values of P, As, and Sb are 1.06, 1.19 and 1.38 Å, respectively. Actually, the average X-X distance in the X_4 ring is close to $2r_X$ and slightly larger than $2r_X$.

Figures 6(a) and 6(b) show the dependences of $\Theta_{\rm E}$ on $r_{\rm GFD}$ and $r_{\rm R-X}-r_{\rm R3+}$, respectively. For Sm T_4X_{12} , the energy of LGOMs obtained by Raman scattering and IXS is shown in the figures. $^{32-34}$ We found that the correlation between $r_{\rm GFD}$ and $\Theta_{\rm E}$ is not strong at first sight. Instead, there appears to be a better linear correlation between $r_{\rm R-X}-r_{\rm R3+}$ and $\Theta_{\rm E}$, which suggests that $r_{\rm X}$ does not affect $\Theta_{\rm E}$. One reason for the deviation may be the rigidity of the X_{12} cage. The X_4 ring has a strong covalency as mentioned above, and the X_{12} cage is formed by six such rings, each of which connects between two X_{12} cages. Associated with each X_{12} cage, there are two different X-X distances. The X-X distance in the X_4 ring is close to $2r_{\rm X}$. However, the second X-X distance is 1.4 - 1.7 times longer than $2r_{\rm X}$. Since the degree of covalency in the X_{12} cage is not so strong, the cage is not very rigid. As noted previously in the discussion on the $\Theta_{\rm D}$ of La T_4X_{12} , La T_4P_{12} is roughly 2 times harder than La $T_4{\rm Sb}_{12}$; thus, we can expect that the Sb₁₂ cage is less rigid. For a nonrigid cage, the concept of guest free distance collapses. Therefore, the deformation of the X_{12} cage may cause a significant deviation from the linear correlation between $r_{\rm GFD}$ and $\Theta_{\rm E}$. Another possibility is that, since all of these compounds are metallic, both the X_{12} cage and the simple cubic T-lattice are

conductive. Since bondings in the X_{12} cage, in the simple cubic T-lattice, and between X and T sites are the most important contributions to metallicity, the covalent radius of the X_{12} cage is not important for guest ions. Therefore, $\Theta_{\rm E}$ is unaffected by $r_{\rm X}$.

Next, it should be noted that the deviation from the linear relationship between $r_{R-X} - r_{R3+}$ and Θ_E for Os skutterudites with f electrons can be seen in Fig. 6(b). This suggests that some other factors affect LGOMs. One such factor is a strong electron-lattice interaction, which can lead to anharmonic vibration.⁵¹ When LGOM exhibits strong anharmonic vibration, the energy of LGOM decreases upon cooling.⁵² In fact, the energy of LGOMs for LaOs₄Sb₁₂ is decreased by 5% from 300 down to 4 K; it is suggested that LGOMs for LaOs₄Sb₁₂ are anharmonic.³³ Although in these calculations we used Θ_E estimated at low temperatures, the structure parameters used were determined at room temperature. At low temperatures, these differences are expected to become larger. The present result suggests a strong anharmonic vibration of LGOMs in Os skutterudites. Another possible origin is a strong c-f hybridization effect, which may lead to a strong interaction between the R-filler with 4f electrons and the X_{12} cage and the T lattice with conduction electrons. Actually, novel types of behavior resulting from a strong c-f hybridization have been reported in many Os skutterudites with f electrons.^{9,22,23,53-57} Further study is needed to clarify how the interaction between the guest ions and the host cage due to c-f hybridization affects LGOM.

Now, we discuss the significant deviation from the linear relationship between $r_{R-X}-r_{R3+}$ and Θ_E for SmOs₄Sb₁₂ in Fig. 6(b). This compound is known to be an intermediate-valence heavy-fermion compound; the average valence of Sm ions is 2.83 at room temperature.⁵⁴ From a recent result on the temperature dependence of structure parameters for SmOs₄Sb₁₂, the Sm-Sb distance has been found to decrease by 0.016 Å as the temperature changes from 300 to 20 K.⁵⁶ Thus, the guest free distance of SmOs₄Sb₁₂ decreases with a decrease in temperature. The deviation from the linear correlation between $r_{R-X}-r_{R3+}$ and Θ_E becomes much greater at low temperatures. Furthermore, the average effective ionic radius of Sm ions in SmOs₄Sb₁₂ is larger than r_{R3+} for Sm³⁺ because of the existence of Sm²⁺ with a larger effective ionic radius. Since the difference between the Sm-Sb distance and the average effective ionic radius of Sm is much smaller than $r_{R-X}-r_{R3+}$, the deviation seen in Fig. 6(b) becomes clear. This means that the energy of LGOMs in SmOs₄Sb₁₂ is not determined by only the structure parameters. The above results strongly suggest that the guest-host interaction due to c-f hybridization plays an important role in determining the LGOMs of SmOs₄Sb₁₂.

4. Conclusions

We have systematically studied the lattice specific heat of La-based filled skutterudites $\text{La}\,T_4X_{12}$ (T=Fe, Ru and Os; X=P, As and Sb), and their $\Theta_{\rm D}$ and $\Theta_{\rm E}$ were carefully determined. The $\Theta_{\rm D}$ of filled skutterudites was found to depend mainly on the nature of the X species forming the cage; $\text{La}\,T_4\text{P}_{12}$ was shown to be roughly 2 times harder than $\text{La}\,T_4\text{Sb}_{12}$.

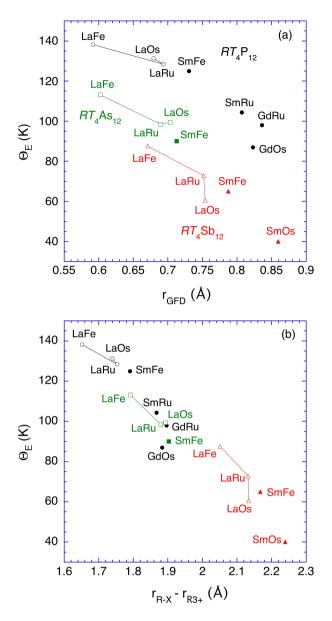


Fig. 6. (Color online) Dependences of $\Theta_{\rm E}$ on (a) guest free distance $r_{\rm GFD}$ and (b) $r_{\rm R-X} - r_{\rm R3+}$ for $RT_4{\rm P}_{12}$ (open circles: $R={\rm La}$, closed circles: $R={\rm Sm}$ and Gd), $RT_4{\rm As}_{12}$ (open squares: $R={\rm La}$, closed squares: $R={\rm Sm}$), and $RT_4{\rm Sb}_{12}$ (open triangles: $R={\rm La}$, closed triangles: $R={\rm Sm}$ and Gd).

The $\Theta_{\rm E}$ of filled skutterudites was found to correspond roughly to the energy of LGOMs. We found a good linear correlation between $r_{\rm R-X}-r_{\rm R3+}$ and $\Theta_{\rm E}$, with $\Theta_{\rm E}$ decreasing as $r_{\rm R-X}-r_{\rm R3+}$ increases. However, we found a deviation from the linear relationship between $r_{\rm R-X}-r_{\rm R3+}$ and $\Theta_{\rm E}$ for Os compounds with f electrons. This was discussed in terms of the effects of both anharmonic vibration due to a strong electron-lattice interaction and guest-host interaction due to c-f hybridization in these compounds. In particular, for SmOs₄Sb₁₂, the present results suggest that the guest-host interaction due to c-f hybridization has the

most critical effect on LGOMs.

Acknowledgments

We would like to thank to M. Udagawa, T. Takabatake, N. Ogita, T. Hasegawa, S. Tsutsui, and K. Hattori for their helpful discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Skutterudite" (No. 18027002) and Grants-in-Aid for Scientific Research on Innovation Areas "Heavy Electrons" (Nos. 21102518 and 20102004) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and a Grant-in-Aid for Scientific Research (C) (No. 20540339) from the Japan Society for the Promotion of Science.

References

- 1) G. P. Meisner: Physica B 108 (1981) 763.
- G. P. Meisner, M. S. Torikachvili, K. N. Yang, M. B. Maple, and R. P. Guertin: J. Appl. Phys. 57 (1985) 3073.
- 3) I. Shirotani, T. Adachi, K. Tachi, S. Todo, K. Nozawa, T. Yagi, and M. Kinoshita: J. Chem. Solids 57 (1996) 211.
- I. Shirotani, T. Uchiumi, K. Ohno, C. Sekine, Y. Nakazawa, K. Kanoda, S. Todo, and T. Yagi: Phys. Rev. B 56 (1997) 7866.
- 5) C. Sekine, T. Uchiumi, I. Shirotani, and T. Yagi: Phys. Rev. Lett. 79 (1997) 3218.
- H. Sato, Y. Abe, H. Okada, T. D. Matsuda, K. Abe, H. Sugawara, and Y. Aoki: Phys. Rev. B 62 (2000) 15125.
- 7) C. Sekine, T. Uchiumi, I. Shirotani, K. Matsuhira, T. Sakakibara, T. Goto, and T. Yagi: Phys. Rev. B **62** (2000) 11581.
- C. Sekine, T. Uchiumi, I. Shirotani and T. Yagi: in Science and Technology of High Pressure, ed. M. H. Manghnant and M. F. Nicol (Universities Press, Hyderabad, India, 2000) p. 826.
- E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B. Maple: Phys. Rev. B 65 (2002) 100506.
- 10) H. Sugawara, T. D. Matsuda, K. Abe, Y. Aoki, H. Sato, S. Nojiri, Y. Inada, R. Settai, and Y Onuki: Phys. Rev. B 66 (2002) 134411.
- 11) K. Matsuhira, Y. Hinatsu, C. Sekine, T. Togashi, H. Maki, I. Shirotani, H. Kitazawa, T. Takamasu and G. Kido: J. Phys. Soc. Jpn. **71** (2002) Suppl. p. 237.
- M. Kohgi, K. Iwasa, M. Nakajima, N. Metoki, S. Araki, N. Bernhoeft, J.-M. Mignot, A. Gukasov, H. Sato, Y. Aoki, H. Sugawara: J. Phys. Soc. Jpn. 72 (2003) 1002.
- 13) C. H. Lee, H. Matsuhata, H. Yamaguchi, C. Sekine, K. Kihou, T. Suzuki, T. Noro, and I. Shirotani: Phys. Rev. B **70** (2004) 153105.
- 14) M. Yoshizawa, Y. Nakanishi, M. Oikawa, C. Sekine, I. Shirotani, S. R. Saha, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. **74** (2005) 2141.
- I. Shirotani, S. Sato, C. Sekine, K. Takeda, I. Inagawa, and T. Yagi: J. Phys.: Condens. Matter 17 (2005) 7353.
- 16) T. Takimoto: Physica B 378-380 (2006) 252.
- 17) Y. Kuramoto and A. Kiss: J. Phys. Soc. Jpn. 77 (2008) Suppl. A 187.
- 18) B. C. Sales, D. Mandrus, and R. K. Williams: Science 272 (1996) 1325.
- G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich: J. Appl. Phys. 79 (1996) 4002.
- 20) V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos. P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington: Nature 395 (1998) 876.
- 21) T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama, K. Onuki, H. Sugawara, and H. Sato: Phys. Rev. B 69 (2004) 180511R.
- 22) T. Yanagisawa, W. M. Yuhasz, P.-C. Ho, M. B. Maple, H. Watanabe, Y. Yasumoto, Y. Nemoto, and T. Goto: Physica B 403 (2008) 735.
- 23) S. Sanada, Y. Aoki, H. Aoki, A. Tsuchiya, D. Kikuchi, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. 74 (2005) 246.

- 24) K. Hattori and K. Miyake: J. Phys. Soc. Jpn. 76 (2007) 094603.
- 25) T. Hotta: J. Phys. Soc. Jpn. 77 (2008) 103711.
- 26) D. T. Morelli and G. P. Meisner: J. Appl. Phys. 77 (1995) 3777.
- 27) H. Sugawara, S. Osaki, S. R. Saha, Y. Aoki, H. Sato, Y. Inada, H. Shishido, R. Settai, Y. Onuki, H. Harima, and K. Oikawa: Phys. Rev. B 66 (2002) 220504.
- 28) L. E. DeLong and G. P. Meisner: Soild State Commun. 53 (1985) 119.
- 29) K. Matsuhira, Y. Doi, M. Wakeshima, Y. Hinatsu, H. Amitsuka, Y. Shimaya, R. Giri, C.Sekine, and I. Shirotani: J. Phys. Soc. Jpn. **74** (2005) 1030.
- 30) Y. Aoki, W. Higemoto, S. Sanada, K. Ohishi, S.R. Saha, A. Koda, K. Nishiyama, R. Kadono, H. Sugawara, and H. Sato: Physica B **359-361** (2005) 895.
- 31) K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, I. Shirotani, D. Kikuchi, H. Sugawara, and H. Sato: J. Magn. Magn. Mater. **310** (2007) 226.
- 32) N. Ogita, T. Kondo, T. Hasegawa, Y. Takasu, M. Udagawa, N. Takeda, K. Ishikawa, H. Sugawara, D. Kukuchi, H. Sato, C. Sekine, I. Shirotani: Physica B 383 (2006) 128.
- 33) S. Tsutsui, H. Kobayashi, J. P. Sutter, H. Uchiyama, A. Q. R. Baron, Y. Yoda, D. Kikuchi, H. Sugawara, C. Sekine, I. Shirotani, A. Ochiai, and H. Sato: J. Phys. Soc. Jpn. 77 (2008) Suppl. A 257.
- 34) S. Tsutsui, Y. Yoda, and H. Kobayashi: J. Phys. Soc. Jpn. 76 (2007) 065003.
- 35) T. Takabatake, E. Matsuoka, S. Narazu, K. Hayashi, S. Morimoto, T. Sasakawa, K. Umeo, and M. Sera: Physica B 383 (2006) 93.
- 36) A. Watcharapasorn, R. C. DeMattei, R.S. Feigelson, T. Caillat, A. Borshchevsky, G. J. Snyder, and J.-P. Fleurial: J. Appl. Phys. 86 (1999) 6213.
- 37) I. Shirotani, T. Noro, J. Hayashi, C. Sekine, R. Giri, and T. Kikegawa: J. Phys.: Condens. Matter 16 (2004) 7853.
- 38) K. Kihou, I. Shirotani, C. Sekine, and T. Yagi: Mater. Res. Bull. 39 (2004) 317.
- 39) C. Sekine, H. Ando, Y. Sugiuchi, I. Shirotani, K. Matsuhira, and M. Wakeshima: J. Phys. Soc. Jpn. 77 (2008) Suppl. A 135.
- 40) K. Matsuhira, C. Sekine, K. Kihou, I. Shirotani, M. Wakeshima, Y. Hinatsu, Y. Sei, A. Nakamura, and S. Takagi: Physica B 378-380 (2006) 235.
- 41) R. Shannon: Acta Cryst. A32 (1976) 751.
- 42) W. Jeitschko and D. Braun: Acta Crystallogr., Sect. B 33 (1977) 3401.
- 43) I. Shirotani, T. Uchiumi, C. Sekine, M. Hori, S. Kimura, and N. Hamaya: J. Solid State Chem. **142** (1999) 146.
- 44) C. Sekine and K. Takeda: private communication.
- 45) D. J. Braun and W. Jeitschko: J. Solid State Chem. **32** (1980) 357.
- 46) T. Namiki and C. Sekine: private communication.
- 47) D. J. Braun and W. Jeitschko: J. Less-Common Metals 72 (1980) 147.
- 48) C. B. H. Evers, W. Jeitschko, L. Boonk, D. J. Braun, T. Ebel, and U. D. Scholz: J. Alloys and Compounds 224 (1995) 184.
- 49) K. Oikawa: in Skutterudite News Letter, ed. H. Sato and H. Harima, (2004) No. 2, p. 8 [in Japanese]
- 50) W. M. Yuhasz, N. A. Frederick, P.-C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles, M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl, and G. Giester: Phys. Rev. B 71 (2005) 104402.

- 51) C. C. Yu and P. W. Anderson: Phys. Rev. B 29 (1984) 6165.
- 52) M. Udagawa, T. Hasegawa, Y. Takasu, N. Ogita, K. Suekuni, M. A. Avila, T. Takabatake, Y. Ishikawa, N. Takeda, Y. Nemoto, T. Goto, H. Sugawara, D. Kikuchi, H. Sato, C. Sekine, I. Shirotani, J. Yamaura, Y. Nagao, and Z. Hiroi: J. Phys. Soc. Jpn. 77 (2008) Suppl. A 142.
- 53) H. Sugawara, S. Osaki, M. Kobayashi, T. Namiki, S. R. Saha, Y. Aoki, and H. Sato: Phys. Rev. B 71 (2005) 125127.
- 54) M. Mizumaki, S. Tsutsui, H. Tanida, T. Uruga, D. Kikuchi, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. **76** (2007) 053706.
- 55) A. Yamasaki, S. Imada, H. Higashimichi, H. Fujiwara, T. Saita, T. Miyamachi, A. Sekiyama, H. Sugawara, H. Sato, A. Higashiya, M. Yabashi, K. Tamasaku, D. Miwa, T. Ishikawa, and S. Suga: Phys. Rev. Lett. **98** (2007) 156402.
- 56) M. Tsubota, S. Tsutsui, D. Kikuchi, H. Sugawara, H. Sato, and Y. Murakami: J. Phys. Soc. Jpn. 77 (2008) 073601.
- 57) S. Tsutsui, M. Mizumaki, M. Tsubota, H. Tanida, T. Uruga, Y. Murakami, D. Kikuchi, H. Sugawara, and H. Sato: J. Phys.: Conf. Ser. **150** (2009) 042220.