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Abstract. We have proposed a framework of Rough Non-deterministic

Information Analysis (RNIA) for tables with non-deterministic informa-
tion, and applied RNIA to analyzing tables with uncertainty. We have
also developed the RNIA software tool in Prolog and getRNIA in Python,
in addition to these two tools we newly consider the RNIA software tool
in SQL for handling large size data sets. This paper reports the current
state of the prototype named NIS-Apriori in SQL, which will a�ord us
more convenient environment for data analysis.

Keywords: Association rules, NIS-Apriori algorithm, SQL, Prototype,
Uncertainty.

1 Introduction

We have been coping with rough sets [7], non-deterministic information [6, 7],
the Apriori algorithm [1, 12], the software tool in Prolog [9], and getRNIA in
Python [11, 15]. Recently, we are considering a software tool in SQL in order to
handle large size data sets.

In rough sets, we usually employ Deterministic Information Systems (DISs)
with deterministic attribute values. We can see every DIS is a standard ta-
ble. For handling information incompleteness in tables [2, 4, 6, 7, 9], we employ
Non-deterministic Information Systems (NISs) with non-deterministic values
and missing values. By changing DIS to NIS, several new issues occurred, for
example the possible equivalence classes, the minimum and the maximum de-
grees of data dependency, the certain and the possible rules, and so on [9]. At
the same time, one computational problem occurred, namely the computational
complexity may increase exponentially due to the case analysis on NIS. However,
in rule generation, we proved some properties and escaped from the exponential
order problem [10, 11]. Due to this result, the rule generator in Prolog [10] and
getRNIA in Python [15] were implemented.
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In this paper, we focus on the rule generator in SQL, because SQL has the
high versatility. Furthermore, several algorithms including Apriori were inves-
tigated in [12]. For handling large size data sets, we think SQL will be more
suitable than the previous languages, Prolog and Python. Recently, the `sparse'
property of the data sets is considered [2, 14]. The density of the important part
in the data sets may not be unique, and we may ignore the meaningless part. In
the sparse matrix, we may employ the special format for reducing the data size.
The use of this sparse property will be another approach to large size data sets.

As for this work, we need to specify that this is not the �rst trial, and the �rst
trial was done in [13]. We follow the result in [13], and consider a rule generator
which we name NIS-Apriori in SQL.

This paper is organized as follows: Section 2 surveys RNIA and rule gen-
eration. Section 3 investigates NIS-Apriori in SQL and its prototype system.
Section 4 concludes this paper.

2 RNIA and Rule Generation

At �rst, we clarify the rules in DIS. For a �xed decision attribute Dec and a set
CON of attributes, we see an implication τ : ∧A∈CON [A, valA] ⇒ [Dec, val] is
(a candidate of) a rule, if τ satis�es the next two constraints.

For two threshold values 0 < α, β ≤ 1.0,
support(τ)(= N(τ)/|OB|) ≥ α,
accuracy(τ)(= N(τ)/N(∧A∈CON [A, valA])) ≥ β,
Here, N(∗) means the number of objects satisfying
the formula ∗, OB means a set of all objects.

(1)

Then, we brie�y survey rule generation in RNIA. Figure 1 shows NIS Ψ1,
where we see [high,veryhigh] and nil. Here, [high,veryhigh] is non-deterministic
information, namely either high or veryhigh is the actual value, and nil is missing
value. Each nil may take every possible value in the attribute.

In Ψ1, we replace each non-deterministic information and nil with a possible
value, and we obtain a table with deterministic information. We named it a
derived DIS from NIS. Let DD(Ψ) be a set of all derived DISs from Ψ . We
see an actual DIS ϕactual exists in DD(Ψ). For Ψ1, DD(Ψ1) consists of 4608
(=32 × 29) derived DISs. Based on DD(Ψ), we proposed the certain and the
possible rules below:

De�nition 1. [10] For NIS Ψ and the decision attribute Dec, we �x the threshold
values α and β (0 < α, β ≤ 1.0).
(1) We say τ is a certain rule, if τ satis�es support(τ) ≥ α and accuracy(τ) ≥ β
in each ϕ ∈ DD(Ψ),
(2) We say τ is a possible rule, if τ satis�es support(τ) ≥ α and accuracy(τ) ≥ β
in at least one ϕ ∈ DD(Ψ).

De�nition 1 seems natural, but we have the computational complexity prob-
lem, because the number of elements in DD(Ψ) increases exponentially. In Ψ1,
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Fig. 1. An exemplary NIS Ψ1. Fig. 2. A part of Ψ1 in NRDF format.

the number is 4608, and the number is more than 10100 in Mammographic data
set in UCI machine learning repository [3]. For this computational problem, we
de�ned two sets for a descriptor [A, val] below:

inf([A, val])={x : object | the value of x for A is a singleton set {val}},
sup([A, val])={x : object | the value of x for A is a set including val},
inf(∧A∈CON [A, valA])=∩A∈CON inf([A, valA]),
sup(∧A∈CON [A, valA])=∩A∈CONsup([A, valA]).

For example, inf([head, yes])={x2, x4, x6, x8} and sup([head, yes])=inf([head,
yes]) ∪ {x1, x5} hold in Ψ1. The actual equivalence class is between two set-
s. For NIS Ψ , an implication τ , and minsupp(τ) and minacc(τ) de�ned by
minϕ∈DD(Ψ){support(τ) by ϕ} andminϕ∈DD(Ψ){accuracy(τ) by ϕ}, we have the
following which do not depend upon the number of DD(Ψ).

τ : ∧A∈CON [A, valA] ⇒ [Dec, val],
minsupp(τ) = |inf(∧A∈CON [A, valA]) ∩ inf([Dec, val])|/|OB|,
minacc(τ) = |inf(∧A∈CON [A,valA])∩inf([Dec,val])|

|inf(∧A∈CON [A,valA])|+|OUTACC| ,

OUTACC = {sup(∧A∈CON [A, valA]) \ inf(∧A∈CON [A, valA])}
\inf([Dec, val]).

(2)

The OUTACC means a set of objects, from which we can obtain an implica-
tion τ ′ : ∧A∈CON [A, valA] ⇒ [Dec, val′] (val ̸= val′). Similarly, we can calcu-
late maxsupp(τ) and maxacc(τ). We can also prove that there exists ϕmin ∈
DD(Ψ) which makes both support(τ) and accuracy(τ) the minimum. There
exists ϕmax ∈ DD(Ψ) which makes both support(τ) and accuracy(τ) the maxi-
mum. Based on these results, we have the chart in Figure 3 and Theorem 1.

Theorem 1. For an implication τ , we have the following.
(1) τ is a certain rule, if and only if minsupp(τ) ≥ α and minacc(τ) ≥ β.
(2) τ is a possible rule, if and only if maxsupp(τ) ≥ α and maxacc(τ) ≥ β.
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Fig. 3. The distribution of each point (support(τ), accuracy(τ)) by ϕ ∈ DD(Ψ).

(3) Even though the certain rules and the possible rules depend upon DD(Ψ),
the conditions to check them do not depend upon DD(Ψ).

Based on Theorem 1, we can escape from the exponential order problem.
Without Theorem 1, it will be hard to handle Mammographic data set, which
has more than 10100 derived DISs.

3 NIS-Apriori in SQL

3.1 NIS-Apriori Algorithm

The Apriori algorithm was proposed by Agrawal, and this is the representative
algorithm in data mining [1, 12]. This algorithm handles transaction data, and
each transaction is given as a set of items. We identify each descriptor in table
data with an item, then we can consider the Apriori algorithm in tables [10,
11]. In certain rule generation, we compare the minimum point in Figure 3 with
the threshold values α and β. On the other hand, we compare the maximum
point in Figure 3 with the threshold values α and β. Since the management of
the implications is almost the same as in case of the Apriori algorithm and the
calculation does not depend upon |DD(Ψ)|, we �gure out that the computational
complexity of the NIS-Apriori algorithm is about twice the complexity of the
Apriori algorithm.

3.2 The NRDF Format

In data sets, we usually have the csv format. This is very familiar, however the
name of the attribute and the number of all attributes may be di�erent in each
data set. For handling various types of data sets, it is useful to employ another
uni�ed format. Otherwise, the program is depending upon the number of the
attributes and the name of the attribute.

Based on [13], we employ the NRDF format, which is the extended RDF
(resource description framework) format, for any data set. This RDF format
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Fig. 4. SQL query execution, where Japanese characters were
erased.

Fig. 5. All created
tables.

may be called as the EAV (entity-attribute-value) format [5, 14]. In [5], the KDD-
related tasks of attribute selection and decision tree induction were implemented
based on the EAV format.

The NRDF format employs 4 attributes, object, attrib, value, and det. Figure
2 shows a part of the NRDF format of Ψ1. In order to specify non-deterministic
information, we added the 4th column det. The value of det means the number of
possible values. If det=1, this means that the value is deterministic. Otherwise,
we know the value is non-deterministic and the number of values by det.

3.3 Step 1: Rule Generation in the Form of P1 ⇒ Dec

In Step 1, the procedure step1 generates the certain and the possible rules in
the form of P1 ⇒ Dec. This procedure consists of the following:

1. create table condi (the condition of the rules),

2. create table con_des (the descriptors for the condition),

3. create table dec_des (the descriptors for the decision),

4. create table impli1 (the implications with inf, sup, inacc, outacc),

5. create table crule1 (the certain rules),

6. create table prule1 (the possible rules),

7. create table crest1 (the candidates of Step 2),

8. create table prest1 (the candidates of Step 2).

At �rst, a �le nrdf in the NRDF format in Figure 2 is stored in the system
(Figure 4). In Figure 4, we execute `call step1(′flu′, 8, 0.1, 0.8)', which means
the decision attribute is ′flu′, the number of the objects is 8, the support value
is 0.1, and the accuracy value is 0.8. It took about 0.33 (sec) for executing the
procedure step1 in windows PC, and all tables in Figure 5 were generated.

In Figure 5, two tables con_des and dec_des store the set of descriptors on
the condition part and the set of descriptors on the decision part, respectively.
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Fig. 6. A part of impli1. Fig. 7. Total contents in crest1.

The procedure step1 generates the Cartesian Products by using con_des and
dec_des, and adds inf , sup, inacc and outacc to the table impli1 (Figure 6).

Based on impli1, the procedure step1 calculates minsupp and minacc for
each tuple and compares them with the threshold values α and β. Ifminsupp ≥ α
and minacc ≥ β, the procedure step1 adds this tuple to the table crule1. If
minsupp ≥ α and minacc < β, the procedure adds this tuple to the table
crest1 (Figure 7). On the other hand, the procedure calculates maxsupp and
maxacc for each tuple and compares them with the threshold values α and β.
If maxsupp ≥ α and maxacc ≥ β, the procedure adds this tuple to the table
prule1 (Figure 8). If maxsupp ≥ α and maxacc < β, the procedure adds this
tuple to the table prest1. The following is the SQL procedure for generating the
table prule1.

The procedure for prule1 in Step 1:
create table prule1 (att1 varchar,val1 varchar,deci varchar,

deci_value varchar,maxsupp decimal,maxacc decimal)

select impli1.att1,impli1.val1,impli1.deci,impli1.deci_value,

impli1.sup/ob as maxsupp,impli1.sup/(con_des.inf+inacc) as maxacc

from impli1,con_des

where impli1.att1=con_des.attrib and impli1.val1=con_des.value

having maxsupp >=alpha and maxacc >=beta;

In Step 1, the most complicated part is to generate the table impli1. After
obtaining the Cartesian Products imp1, step1 sequentially adds inf , sup, inacc,
and outacc to impli1. If inf([A, valA] ∧ [Dec, val]) is an empty set, this tuple
is not stored in the temporary table data set. Even though it is necessary to
add inf=0 to the table impli1, the value NULL is added to impli1 in this case.
Therefore, step1 replaces NULL with 0 after adding inf information to impli1.
The same occurs for sup, inacc, and outacc. In the current implementation, we
faithfully simulated the NIS-Apriori algorithm, and there are ine�ective proce-
dures including the above case. It is necessary to reduce such ine�ective part.
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Fig. 8. Total contents in prule1.

Fig. 9. Total contents in crule2.

Fig. 10. All created ta-
bles.

3.4 Step 2: Rule Generation in the Form of P1 ∧ P2 ⇒ Dec

In Step 2, the procedure step2 generates the certain and the possible rules in the
form of P1 ∧ P2 ⇒ Dec. Since support(P1 ∧ P2 ⇒ Dec) ≤ support(P1 ⇒ Dec)
holds, it is enough to consider the implications P1 ∧P2 ⇒ Dec satisfying (P1 ⇒
Dec), (P2 ⇒ Dec) ∈ crest1 in certain rule generation.

We execute `call step2(′flu′, 8, 0.1, 0.8)' again, and it took about 0.39 (sec)
for executing the procedure step2. Then, all tables in Figure 10 were generated.
In Figure 10, two tables cimpli2 and pimpli2 store the tuples with inf , sup,
inacc and outacc, respectively. Tables crule2 and prule2 store the certain rules
and the possible rules in the form of P1 ∧ P2 ⇒ Dec. Similarly to the tables
crest1 and prest1, crest2 and prest2 are generated for Step 3. In Step 2, we
obtained a certain rule in Figure 9 and 12 possible rules in prule2.

The rule generation in Step 3 is the same as in case of Step2. Like Step 2, we
execute `call step3(′flu′, 8, 0.1, 0.8)', then the procedure step3 generates rules.

3.5 An Implementation of NIS-Apriori in SQL

This prototype system is implemented on desktop PC and note PC by using the
phpMyAdmin tool [8]. Currently, we made three procedures step1, step2, and
step3 by using SQL command procedures. The data size of this �le including all
procedures is about 40KB in the text format. Since SQL command procedure
is familiar, we will be able to use this prototype in the most of PC with SQL.
Actually, we employed both desktop PC and note PC simultaneously for this
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Fig. 11. The execution log by RNIA in Prolog.

implementation. We can also handle any DIS as a special case of NIS. In the
NRDF format, we specify det=1 in each tuple, then we have the same rules in
certain rule generation and possible rule generation.

3.6 The Di�erence between Two Software Tools RNIA in Prolog

and NIS-Apriori in SQL

Figure 11 is the execution log for NIS Ψ1 by RNIA in Prolog. Except the redun-
dant case of the rules, we examined the result by RNIA in Prolog is equal to the
result by NIS-Apriori in SQL. This will be an assurance that two software tools
were implemented correctly.

Now, we have to remark the di�erence between the data structures of two
software tools. RNIA in Prolog employs two blocks inf and sup, and internally
manages them for each calculation. On the other hand, NIS-Apriori in SQL does
not employ them directly, and employs the total search of the data set. These
two points are the big di�erence between two software tools. We explain these
two points below.

RNIA in Prolog generates inf([A, valA]) and sup([A, valA]) information for
each descriptor [A, valA], and inf(τ) and sup(τ) are generated for each τ .
For example, the set inf([A, valA] ∧ [Dec, val]) is de�ned by inf([A, valA]) ∩
inf([Dec, val]), and it is stored as a temporary set. RNIA in Prolog makes use
of inf(τ) and sup(τ), and generates rules. However, the use of inf(τ) and sup(τ)
for each τ may be a heavy load. Figure 12 is the beginning of the log data for
Mammographic data set [3]. In Figure 12, we see that 427 objects support this
rule, and every number of the object, i.e., 3, 5, · · ·, 960, is stored in the list. Even
though Prolog has a list processing functionality, the manipulation of such large
size lists will be a heavy load.

On the other hand, NIS-Apriori in SQL does not store every number of the
object, but stores the amount of objects (Figure 13). For obtaining inf(τ) and
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Fig. 12. The list of the objects supporting an implication.

Fig. 13. Total contents in cimpli2 for Mammographic data set.

sup(τ), NIS-Apriori in SQL executes the total search in the NRDF data set.
As we have described, the most complicated part is to add inf , sup, inacc, and
outacc information to the Cartesian Products. For this part, we need to em-
ploy the total search of the NRDF data set instead of manipulating inf(τ) and
sup(τ), but we can escape from the manipulation on the large size lists. In the
application of NIS-Apriori in SQL to Mammographic data set, we obtained the
same result by RNIA in Prolog. However, the execution time by the implement-
ed NIS-Apriori in SQL was not good. It took about 1 (min) for Step 1. It is
necessary to revise the current procedure, especially the generation of impli1,
cimpli2, and plimpli2.

4 Concluding Remarks

This paper brie�y described the background of RNIA for handling information
incompleteness in table data, and we newly focused on SQL system for handling
large size data sets. As for this prototype, we have the following consideration.
(1) Since SQL has the high versatility, NIS-Apriori in SQL will o�er the useful
environment for analyzing tables with non-deterministic values.
(2) Both RNIA in Prolog and getRNIA in Python internally store a list for each
implication. For large size data sets, the manipulation of these lists will be a
heavy load. On the other hand, NIS-Apriori in SQL does not employ such lists,
but it employs the total search of the data sets. In two strategies, i.e., the list
manipulation strategy and the total search strategy, we �gure out that the list
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manipulation strategy will be suitable to rule generation for small size data sets,
and the total search strategy will be suitable to rule generation for large size
data sets.
(3) In the prototype, we faithfully simulated the NIS-Apriori algorithm, so the
procedures in SQL might generate the meaningless tables. It is necessary to
revise this point.
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the Promotion of Science) KAKENHI Grant Number 26330277.
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