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Abstract. Rough Non-deterministic Information Analysis (RNIA)
is a framework for handling rough sets based concepts, which are defined
in not only DISs (Deterministic Information Systems) but also NISs
(Non-deterministic Information Systems), on computers. RNTA is
also recognized as a framework of data mining from uncertain tables.
This paper focuses on programs in prolog, and briefly surveys a software
tool for RNTA.

1 Introduction

Rough set theory offers a new mathematical approach to vagueness and un-
certainty, and the rough sets based concepts have been recognized to be very
useful [1,2,3,4]. This theory usually handles tables with deterministic informa-
tion, which we call Deterministic Information Systems (DISs). Many ap-
plications of this theory to information analysis, data mining, rule generation,
machine learning and knowledge discovery have been investigated [5,6,7,8,9].

Non-deterministic Information Systems (NISs) and Incomplete Infor-
mation Systems have been proposed for handling information incompleteness in
DISs [10,11,12,13,14,15,16,17]. In [10,11,12], the necessity of non-deterministic
information is shown. In [13,14], Lipski showed a question-answering system
besides an axiomatization of logic. The relation between rough logic and incom-
plete information is clarified in [15], and relational algebra with null values is
also discussed in [17].

We have also proposed a framework RNITA depending upon not only DIS's
but also NISs, and we have realized a software tool. For realizing this tool, we
developed several effective algorithms, and we employed prolog for implementa-
tion. Because, it is necessary to handle non-deterministic cases in NISs, it may
be difficult to apply a procedural language like C for realizing this tool. As far as
the author knows, very little work deals with NI1Ss nor incomplete information
on computers. Throughout this paper, we show several examples, which clarify
the role of this software tool for RNIA.



2 Basic Definitions and Information Analysis in
Deterministic Information Systems

This section surveys basic definitions on rough sets and rough sets based infor-
mation analysis according to [1,2,3,4].

2.1 Basic Definitions

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V AL 4|
A € AT}, f), where OB is a finite set whose elements are called objects, AT
is a finite set whose elements are called attributes, VAL, is a finite set whose
elements are called attribute values and f is such a mapping that f : OBx AT —
UacarV AL 4 which is called a classi fication function.

For ATR={Ay, -+, A,} C AT, we call (f(z, A1), -, f(z, A,)) a tuple (for
ATR) of x € OB. If f(x,A)=f(y, A) holds for every A € ATR C AT, we see
there is a relation between x and y for AT R. This relation is an equivalence rela-
tion over OB. Let [z]4rgr denote an equivalence class {y € OB|f(y, A)=f(z, A)
for every A € ATR}, and let eq(ATR) denote the family of all equivalence
classes for AT R. We identify an equivalence relation for AT R with eq(ATR). A
formula [4, f(z, A)] implies that f(z, A) is the value of the attribute A. This is
called a descriptor.

Now, let us show some rough sets based concepts defined in DISs [1,3].

(i) The Definability of a Set: If a set X C OB is the union of some equivalence
classes in eq(ATR), we say X is definable (for ATR) in DIS. Otherwise, we
say X is rough (for AT R) in DIS. For example, if X=[x]43 U[22]{4} holds, X
is characterized by a formula [A, f(z1, A)] V [4, f(z2, A)]. If X is not definable
for any ATR, it is impossible to characterize X by means of conditions on
descriptors.
(ii) The Consistency of an Object: Let us consider two disjoint sets CON C
AT which we call condition attributes and DEC C AT which we call decision
attributes. An object € OB is consistent (with any other object y € OB in
the relation from CON to DEC), if f(x, A)=f(y, A) holds for every A € CON
implies f(z, A)=f(y, A) holds for every A € DEC.
(iii) Dependencies among Attributes: We call a ratio deg(CON, DEC)=
|[{x € OB « is consistent in the relation from CON to DEC' }|/|OB| the degree
of dependency from CON to DEC. Clearly, deg(CON, DEC)=1 holds if and
only if every object x € OB is consistent.
(iv) Rules and Criteria (Support, Accuracy and Coverage): For any
object z € OB, let imp(z, CON, DEC) denote a formula called an implication:
AacconlA, f(z,A)] = AaeprclA, f(z, A)]. In most of work on rule generation,
a rule is defined by an implication 7 : imp(z, CON, DEC') satisfying some con-
straints. A constraint, such that deg(CON, DEC')=1, has been proposed in [1].
Another familiar constraint is defined by three values in the following;:
support(r)= |[z)con N [#]pcl/[OB];
aceuracy(r)=|[wlcon N [zlpscl/llzlcon],
coverage(r)=|[z]con N[z]pec|/|[z]pEC|-



(v) Reduction of Condition Attributes in Rules: Let us consider such an
implication imp(x, CON, DEC) that z is consistent in the relation from CON
to DEC. An attribute A € CON is dispensable in CON, if x is consistent in
the relation from CON — {4} to DEC.

Rough set theory makes use of equivalence classes for AT R. Every definition
from (i) to (v) is examined by means of applying equivalence classes. As for the
definability of a set X C OB, X is definable (for ATR) in a DIS, if and only if
Uzex [CU]ATR:X holds.

Now, let us show the most important proposition, which connects two equiv-
alence classes [z]con and [z]prc with the consistency of z.

Proposition 1 [1]. For every DIS, (1) and (2) in the following are equivalent.
(1) An object € OB is consistent in the relation from CON to DEC.
(2) [z]lcon C [z]pEC-

According to Proposition 1, the degree of dependency from CON to DEC is
equal to [{z € OB|[z]con C [z]pec}|/|OB|. As for criteria support, accuracy
and coverage, they are defined by equivalence classes [z]con and [z]ppc. As
for the reduction of attributes values in rules, let us consider such an implication
imp(xz, CON,DEC) that z is consistent in the relation from CON to DEC.
Then, an attribute A € CON is dispensable, if [z]con—a3 C [z]pEc holds.

In this way, definitions from (i) to (v) are uniformly computed by means of
applying equivalence classes in DIS's.

2.2 Rough Sets Based Information Analysis in Deterministic
Information Systems

Let us see an outline of rough sets based information analysis according to Table
1, which shows a relation between attributes Head(ache), Temp(erature) and
Flu over a set Patient of objects. This table may be too small, but it will be
sufficient to know rough sets based concepts.

Table 1. A deterministic information system

Patient||Head(ache)|Temp(erature)|Flu
pl no very-high |yes
p2 yes very-high |yes
p3 no normal no

We identify a tuple with a set of implications, for example,
imp1: [Head,no] = [Flu,yes],
imp2: [Head,no] A[Temp,very_high]=[Flu,yes]
are extracted from patient pl, and
imp3: [Head,no]=[Flu,no]
is extracted from p3. Implication impl contradicts imp3, because the same con-
dition [Head, no] concludes the different decisions [Flu, yes] and [Flu, no]. How-



ever, imp2 is consistent with implications from any other tuple. Most of rough
sets based rules are defined by means of this concept of ‘consistency’ [1,2,3,4].
We usually define rules in a DIS by consistent implications.

Three measures, support, accuracy and coverage are also applied to defining
rules in DISs [1,2,4,8]. Each value of every measure is between 0 and 1. Impli-
cation impl occurs once in Table 1, so support(impl)=1/3. This means impl
represents about 33% data in Table 1. A formula [Head, no] occurs twice and
[F'lu, yes] occurs once under the condition of [Head, no], so accuracy(impl)=1/2.
This ratio 1/2 means the degree of the consistency of impl. Similarly, a for-
mula [Flu,yes] occurs twice and [Head, no] occurs once under the condition of
[Flu,yes], so coverage(impl)=1/2.

Equivalence classes in DIS's are usually employed to examine every concept
[1,2,3,4,5,6,7]. In Table 1, both pl and p3 satisty [Head, no], so pl and p3 belong
to the same class. Patient p2 only satisfies [Head, yes], so p2 belongs to another
class. In this way, we have equivalence classes h1={pl,p3} and h2={p2} on an
attribute Head. We similarly have equivalence classes t1={pl, p2} and t2={p3}
on Temp, and f1={pl,p2} and f2={p3} on Flu.

According to Proposition 1, the concept of the consistency is examined by the
inclusion of equivalence classes. The relation hl ¢ f1 implies that pl,p3 € hl
are inconsistent for attributes Head and Flu, and the relation t1 C f1 implies
pl,p2 € t1 are consistent for attributes Temp and Flu.

Data dependency between attributes is also examined by equivalence classes.
For attributes CON={Head, Temp} and DEC={Flu}, we have two families of
all equivalence classes. eq(CON)={{p1}, {p2}, {p3}} and eq(DEC)={{pl, p2},
{p3}}, respectively. For every X € eq(CON), there exists Y € eq(DEC) such
that X C Y. Therefore, every object is consistent with other object. In this case,
the degree of dependency from CON to DEC is 1.

3 Rough Non-deterministic Information Analysis

A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT, {VALy|A € AT}, g), where g : OB x AT — P(UacarV AL4) (a power set
of UaearV AL,). Every set g(x, A) is interpreted as that there is a real value in
this set but this value is not known. Especially if the real value is not known at
all, g(x, A) is equal to VAL4.

NISs were proposed by Pawlak, Ortowska and Lipski in order to handle
information incompleteness in DISs [10,11,12,13,14].

Table 2. A non-deterministic information system

Patient||Head(ache)| Temp(erature) Flu
pl {no} {very_high} {yes}
p2 {yes,no} |{high,very_high}| {yes}
p3 {no} {normal, high} |{yes,no}




In Table 2, it is possible to obtain a DIS by replacing every set with a value
in every set. There are 16 possible DIS's, which we name derived DISs. Table 1
is a derived DIS from NIS in Table 2. According to the interpretation to NIS's,
there exists a derived DIS with real information in these 16 derived DISs. Two
modalities certainty and possibility, which are defined by means of all derived
DISs, are introduced into NIS's.

(Certainty) If a formula « holds in every derived DIS from a NIS, « also
holds in the unknown real DIS.

(Possibility) If a formula a holds in some derived DISs from a NIS, there
exists such a possibility that « holds in the unknown real DIS.

We have coped with several issues related to these two modalities, for ex-
ample, the definability of a set in NISs [18,19], the consistency of an object in
N1Ss, data dependency in N1S's [20], rules in N1Ss [21], reduction of attributes
in NISs [22], etc. An important problem is how to compute two modalities de-
pending upon all derived DISs from a NIS. A simple method, such that every
definition is sequentially computed in all derived DIS's from a NI, is not suit-
able, because the number of derived DISs from a NIS increases in exponential
order. We have solved this problem by means of applying either inf and sup
information or possible equivalence relations [19,20,21].

4 An Overview of a Tool for RNIA

Now, we sequentially refer to a software tool handling NI1Ss. This tool mainly
consists of the following:

(1) Programs for checking the definability of a set

(2) Programs for equivalence relations

(3) Programs for data dependency

(4) Programs for rule generation

Programs are implemented in prolog and C, and they are realized on a worksta-
tion with 450 MHz UltraSparc CPU.

4.1 An Exemplary Non-deterministic Information System

Table 3 is an artificial database, which is automatically generated by using a
random number generation program. The following is the real prolog data ex-
pressing Table 3. According to this syntax, it is possible to handle any NIS's.

% more data.pl

obm
data(1,[3,I1,3,41,3,2,5,5,[2,41,3]).
data(2,[2,[3,41,[1,3,41,4,[1,21,[2,4,51,2,2]).
data(3,[[4,5],5,[1,5]1,5,2,5,[1,2,5],1]).

data(9,[2,3,5,3,[1,3,5]1,4,2,31).
data(10,[4,2,1,5,2,[4,5],3,1]).



Table 3. An exemplary NIS. Here, OB={1,2,---,10} and AT={A,B,---,H}. For
object 1 and attribute A, the attribute value is definite, and it is 3. For object 1 and
attribute B, there exists a set {1,3,4}. We interpret that either 1, 3 or 4 is the real
attribute value, but it is impossible to decide the real value due to the information
incompleteness.

OB A | B C D E F G H
1 {3} {134} {3} | {2} | {5} | {5} | {24} {3}
2 | {2} | 34} {134} {4} | {12} {245} {2} | {2}
3 {453 {5} | {15} | {5} | {2} | {5} [{1,2,5}] {1}
4 1 {3y | {4 | 3Y {123} {1} | {25} | {12}
5 | {4} | {1} {235} {5} |{23,4} {1,5} | {4} | {1}
6 | {4y | {1} | {5} | {1} | {4} |{245} {2} |{1.23}
T{2h ] {4) | 3} | {4} | {3} {245} {4} |{1,2,3}
8 | {4} | {5} | {4} [{23,5}] {5} | {3} |{1,2,3}|{1,2,3}
9 1423 | {3} | {5} | {3} {1,3,5} {4} | {2} | {3}
10] {4y | {2y | {1} | {5} | {2} [{45}] {3} | {1}

In Table 3, there are 12(= 2% x 3) derived DISs for attributes {4, B}, and
we see there exists a DIS, which contains real information, in 12 derived DIS's.
For attributes {A,B,C, D, E, F,G, H}, there are (more than 7 billion) derived
DISs. It will be hard to enumerate 7346640384 derived DISs sequentially.

4.2 Definability of a Set in NISs

In Table 3, there are two derived DIS's for attribute A. If the attribute value is
4 in object 3, the equivalence relation (or the family of all equivalence classes)
is {{1},{2,7,9},{3,5,6,8,10}, {4}}. Otherwise, the equivalence relation is {{1},
{2,7,9},{3},{5,6,8,10},{4}}. We name such equivalence relation a possible
equivalence relation (pe-relation), and name every element in a pe-relation a
possible equivalence class (pe-class). In a DIS, there exists an equivalence rela-
tion for AT R C AT, however there may exist some possible equivalence relations
for ATRin a NIS.

In a NIS, the definability of a set depends upon every derived DIS, and two
modalities are introduced into the definability of a set. In programs, we identify
an attribute with the ordinal number of this attribute, for example, we identify
attributes B and C with 2 and 3, respectively. As for descriptors, we identify
[B,2] and [C,3] with [2,2] and [3,3], respectively. Let us show the real execution
of programs.

% more attrib_atr.pl
atr([1,2,3]).

% prolog
?-consult(tool.pl).
yes




?-translate_atr. [Operation 1]

File Name for Read Open:’data.pl’.

Attribute Definition File:’attrib_atr.pl’.

EXEC_TIME=0.076(sec)

yes

?-class([6,7]). [Operation 2]

[1]1 (EQUIVALENCE)RELATION:[[6],[7]1] for ATR=[1,2,3]
POSITIVE SELECTION: CONDITION OF 6:[4,1,5], CONDITION OF 7:[2,4,3]
NEGATIVE SELECTION: CONDITION OF 2:[2,4,3], CONDITION OF 5:[4,1,5]

Possibly definable !!

EXEC_TIME=0.002(sec)

yes

?-class([3,4]).

[1] (EQUIVALENCE)RELATION:[[3],[4]] for ATR=[1,2,3]
POSITIVE SELECTION: CONDITION OF 3:[4,5,1], CONDITION OF 4:[1,3,4]
NEGATIVE SELECTION: NO

[2] (EQUIVALENCE)RELATION:[[3],[4]] for ATR=[1,2,3]

[4] (EQUIVALENCE)RELATION:[[3],[4]] for ATR=[1,2,3]
POSITIVE SELECTION: CONDITION OF 3:[5,5,5], CONDITION OF 4:[1,3,4]
NEGATIVE SELECTION: NO

Certainly definable !!

EXEC_TIME=0.006(sec)

yes

According to this execution, a set {6, 7} is possibly definable, namely there
exist some DISs which make a set {6,7} definable. On the other hand, a set
{3,4} is certainly definable, namely this set is definable in all derived DIS's.

In Operation 1, data.pl is translated to inf and sup information according to
the attribute definition file attrib_atr.pl. Intuitively, inf is a set of objects with
certain information and sup is a set of objects with possible information, for ex-
ample, inf(6,{A, B,C}, (4,1,5))={6}, sup(6,{A, B,C}, (4,1,5))={5,6},inf(7,
{4, B,C%,(2,4,3))={7} and sup(7,{A4, B,C}, (2,4, 3))={2, 7}. For such inf and
sup, every equivalence class C'L, which depends upon an object z, attributes
ATR and its tuple, satisfies inf(x, AT R, tuple) C CL C sup(z, AT R, tuple).

In Operation 2, the definability of a set {6,7} is examined. Three lists
are initialized to EQ={}(Equivalence Relation), PLIST={}(Positive Selection
List) and NLIST={}(Negative Selection List). In {6, 7}, the first object 6 is
picked up. Here, the applicable equivalence classes of object 6 are {6}(=inf)
and {5,6}(=sup). Since {5,6} ¢ {6,7}, {6} is selected, and lists are revised
to EQ={{6}} and PLIST={[6,(4,1,5)]}. At the same time, {5,6} is rejected,
and object 5 must have the different tuple from (4,1,5). Since there exist other
tuples except (4,1,5) in object 5, [5,(4,1,5)] is added to the list of the negative
selection, namely NLIST={[5,(4,1,5)]}. The same procedure is repeated for
a new set {7}H={6,7} — {6}). Similarly, just an equivalence class {7}(=inf) is



applicable to this new set. The tuple (2,4,3) does not violate the current selec-
tions, so [7,(2,4,3)] is added to the list of the positive selection, and [2,(2,4,3)]
is added to the list of the negative selection. Namely, we have EQ={{6},{7}},
PLIST={[6,(4,1,5)],[7,(2,4,3)]}and NLIST={[5,(4,1,5)],[2, (2,4, 3)]}. Since
we have an empty set in the next step, we know a set {6, 7} is definable accord-
ing to selections. The order of the translation program depends upon |derived
DISs|x|OB|?, and the order of program class(SET) depends upon the number
of derived DIS's, which make SET definable. We show program class0, which
is the main part of program class.

classO(ATT,SET,EQ,EQ_Ans,PLIST,PLIST Ans,NLIST,NLIST_Ans)
:-SET==[],EQ_Ans=EQ,PLIST_Ans=PLIST,NLIST_Ans=NLIST.
classO(ATT, [XIX1] ,EQ,EQ_Ans,PLIST,PLIST _Ans,NLIST,NLIST_Ans)
:—candidate (ATT, [X|X1],CAN,PLIST,PLIST1,NLIST,NLIST1),
minus ([X|X1],CAN,REST),
classO(ATT,REST, [CAN|EQ] ,EQ_Ans,PLIST1,PLIST_Ans,NLIST1,NLIST_Ans).
ATT: Attributes, SET:A set of objects, EQ,PLIST,NLIST: Temporary lists,
EQ_Ans,PLIST_Ans,NLIST_Ans:Obtained lists for pe-classes, PLIST and NLIST,
CAN: A candidate of pe-class including object X, REST:REST=[X|X1]-CAN.

In program class0, candidate (ATT,SET,CAN,PLIST,PLIST1,NLIST,NLIST1) finds
a pe-class CAN which satisfies the next two conditions.
(1) CAN C SET, and inf C CAN C sup.
(2) This CAN makes no contradiction for PLIST and NLIST.
The details of this algorithm are in [18,19].

4.3 Possible Equivalence Relations in NISs

A set of all pe-classes is a kind of reduced information from databases, and these
pe-classes contain enough information to calculate most of rough set concepts.

Let us consider methods to obtain all kinds of pe-relations for any set of
attributes. The first method is as follows;

(Method 1) Because OB is definable in all derived DISs, we solve the defin-
ability of a set OB, and we pick up a pe-relation from the variable EQ.

However, Method 1 depends upon |derived DISs|, and the number of derived
DISs increases in exponential order. So, we propose the second method.
(Method 2) Let peq(A) be a pe-relation for a set A of attributes and peq(B) be a
pe-relation for a set B of attributes. Then, {M C OB|M =CLoANCLg,CL4 €
peq(A),CLp € peq(B)} be a pe-relation for a set A U B. According to this
property, we first generate all pe-relations for each attribute, and we execute
program merge for obtaining all kinds of pe-relations.

For handling equivalence relations in C language, we introduced two arrays
head]] and succ[]. For example, we express a class {1, 2,3} by head[l]=head[2]=
head[3]=1, succ[1]=2, succ[2]=3 and succ[3]=0. Program merge generates new
arrays headayp[] and succaupgl|] from headyp]], succal], headg|] and succg]].
The order of merge is o(|OB]|) in the best case, and the order is o(|OB|?) in the



worst case [20]. In Method 2, it also seems necessary to apply program merge
|derived DISs| times. However in reality, lots of pe-relations become the same
pe-relation, and the cases of applying merge are drastically reduced.

Let us show the real execution according to Method 2.

7-translate.

File Name for Read Open:’data.pl’.

EXEC_TIME=0.242(sec)

yes

7-pe. [Operation 3]

<< Attribute 1 >>
(411 [[11,[2,7,91,[3,5,6,8,10]1,[41]1 1
(21 [[11,[2,7,91,[31,[4]1,[5,6,8,1011 1
POSSIBLE CASES 2

<< Attribute 2 >>
(11 [f1,5,61,[2,4,91,03,8],[7],[101] 1
(21 [[1,5,61,[2,7],[3,8],[4,9]1,[101] 1

<< Attribute 8 >>
(11 (01,6,7,8,91,[2,4]1,[3,5,10]]1 1
(21 [([1,6,7,8,9],[2],[3,4,5,10]]1 1

[54] [[1,9],[2],(3,4,5,6,7,8,10]1]1 1
POSSIBLE CASES 54
EXEC_TIME=1.520(sec)

yes

In Operation 3, all pe-relations of each attribute are generated, and pe-
relations are stored in files from 1.pe to 8.pe. For attribute 1 which means
attribute A, there are two pe-relations {{1},{2,7,9}, {3,5,6,8,10},{4}} and
{{1},{2,7,9}, {3},{4},{5,6,8,10}}. There are 54 derived DISs and 54 kinds
of pe-relations for attribute 8.

% more 1.rs [Operation 4]
object (10).

attrib(1).

cond(1,1,1,3).
pos(1,1,1).
cond(2,1,1,2).
pos(2,1,1).
cond(3,1,1,4).

inf([1,1,1],[1,1,11,[[1], [11]).
sup([1,1,1],[1,1,11, [[1], [11]).
inf([2,1,1],[2,1,1]1,[[2,7,9],[1,1,1]1).



inf ([7,1,11,(2,1,11,000,01).
inf ([9,1,11,[2,1,11,000,01).

inf([8,1,11,[5,1,11,[[1,011).
inf([10,1,1],05,1,1],[[1,00D).

% more 1.pe
10122102790356810040-1110279030
40568100 -11

% more merge.dat

123.pe

3

1.pe

2.pe

3.pe

% merge [Operation 5]

Merging

l.pe...

2.pe...

3.pe...

EXEC_TIME=0.010(sec)

% more 123.pe

103216 4102030405060708090100 -1 120
10203040560708090100-1601027030
4050608090100 -12410270304056080
9010 0 -1 12

In Operation 4, inf and sup information is displayed. The contents in the file
1.pe are also displayed. Every number 0 discriminates each pe-class. In Operation
5, all pe-relations for attributes {4, B,C} are generated. Program merge gen-
erates new pe-relations based on a set of pe-relations, which are defined in a file
named merge.dat. In the generated file 123.pe, there are 216 derived DIS's and 4
kinds of pe-relations, i.e., 120 pe-relations of {{1}, {2},---, {10}}, 60 pe-relations
of {{1},{2},---,{5,6},---, {10}}, 24 pe-relations of {{1},{2,7},{3},---,{10}}
and 12 pe-relations of {{1}, {2,7},{3},---,{5,6}, ---,{10}}.

Let us show execution time for other NISs in Table 4. In Table 5, N1 denotes
the number of derived DISs for ATR={A, B,C}, and N2 denotes the number
of distinct pe-relations.

4.4 Degrees of Dependency in NISs

In a DIS, the degree of dependency deg(CON,DEC) from CON to DEC is
an important criterion for measuring the relation from CON to DEC'. The con-
cept of the consistency can be characterized by the inclusion relation of equiv-
alence classes according to Proposition 1, i.e., object x is consistent if and only
if [zlcon Clzlpec for [x]lcon €eq(CON) and [z]ppc €eq(DEC). Thus, the
numerator in the degree is |U {[z]con|[z]con Clz]prc}|, which is easily calcu-



Table 4. Definitions of NIS's

NIS ||OB|||AT| Derived_DIS's
NIS:| 30 | 5 7558272(= 27 x 319)
NIS>| 50 | 5 [120932352(= 2™ x 3'0)
NISs|100| 5 [1451188224(= 2™3 x 3'1)

Table 5. Execution time (sec). M1 means Method 1 and M2 means Method 2. If there
exist lots of pe-relations, Method 2 seems more effective than Method 1.

NIS | translate(in_prolog) pe(in_prolog) merge(in_C) N1 |N2
NIS{|M1:0.134/M2 :0.308| M1 :13.351/M2:1.415 |M1:0/M2:0.690| 5832 {120
NIS5|M1:0.200/M2 :0.548| M1 :7.489/M2 :8.157 |M1:0/M2:0.110| 5184 | 2
NIS3|M1:0.483/M2 :1.032|M1 :56.300/M2 : 16.950|{M1: 0/M2 : 2.270|20736| 8

lated by using eq(CON) and eq(DEC). The order of this calculation depends
upon the size of object |OB|.

In a NIS, there exist some derived DISs, so there exist the minimum and
the maximum degree of dependency. Predicate depratio means ‘dependency with
consistent ratio for every object’.

% depratio [Operation 6]
File Name for Condition:123.pe
File Name for Decision:8.pe

—————— Dependency Check -—------—---——————————-—-—-—-
CRITERION 1(Num_of _Consistent_DISs/Num_of_A11 DISs)
Number of Derived DISs:11664
Number of Derived Consistent DISs:8064
Degree of Consistent DISs:0.691
CRITERION 2(Total Min_and Max Degree)
Minimum Degree of Dependency:0.600
Maximum Degree of Dependency:1.000
—————— Consistency Ratio for Every Object ---------
Object 1:1.000(=11664/11664)
Object 2:0.889(=10368/11664)
Object 3:1.000(=11664/11664)

Object 9:1.000(=11664/11664)
Object 10:1.000(=11664/11664)
EXEC_TIME=0.040(sec)
yes

In Operation 6, the degree of dependency from attributes {4, B,C} to {H}
is examined. For a set of attributes {4, B, C, H}, there are 11664 derived DISs.
Therefore, it is necessary to obtain each degree of dependency in 11664 derived



DISs. For solving this problem, we apply pe-relations. In reality, there exist only
4 pe-relations for a set of attributes {4, B, C'}. and 54 pe-relations for {H}. It is
possible to know all degree of dependency by means of checking the combinations
of 4 and 54 pe-relations. The number of combinations is 216(=4x54).

Table 6. Execution time(sec). N3 denotes the number of derived DISs for
{A, B, C, E}, and N4 denotes the number of combined pairs of pe-relations in {A, B, C'}
and {E}.

NIS |depratio] N3 | N4
NIS:| 0.080 |104976 |2160
NIS>| 0.060 |279936 | 108
NISs| 0.130 (4478976|1728

According to these two criterion values, we define the data dependency from
CON to DEC in NISs. In Operation 6, 69% of all derived DIS's are consistent,
and the minimum degree of dependency is 0.6. We may agree the dependency
from {4, B,C} to {H}. In Table 6, let us show execution time of depratio from
{4, B,C} to {E} in other NISs.

4.5 Support, Accuracy and Coverage of Rules in NISs

Three measures support, accuracy and coverage in DIS's are extended to mini-
mum and mazimum of them, for example, minacc and mazxacc.

Let us consider an implication imp4:[2,5]A[5,2]=>[8,1] from object 3 in Ta-
ble 3. This implication imp4 appears in all 17946 derived DIS's for attributes
{B,E,H}, so the minimum and the maximum values of three measures are
definable for attributes {B, E, H}. The calculation of values depends upon all
17946 derived DISs, however it is possible to obtain these values due to the
following results.

For a NIS, let us consider an implication 7:[CON, (] = [DEC,n)]. Let INA
denote a set [sup(xz, CON, ) —inf(x, CON,({)|Nsup(x, DEC,n), and let OUT A
denote a set [sup(x, CON,() —inf(z, CON,()] —inf(z, DEC,n). Let INC de-
note a set [sup(x, DEC,n) —inf(x, DEC,n)] N sup(z, CON,(), and let OUTC
denote a set [sup(z, DEC,n)—inf(x, DEC,n)] —inf(x, CON,(). Then, the fol-
lowing holds [21]. Including the definitions of in f(object, attributes, tuple) and
sup(object, attributes, tuple), some definitions are in [21].

(1) minsup(t)=|inf(x, CON,{) Ninf(x, DEC,n)|/|OB].

2) mazsup(T )—|sup(a: CON, ) N sup(x, DEC,n)|/|OB].
\znf(w CON C)ﬂznf(w DEC,n)|)
(linf(z,CON,C)[+|OUTAJ)
(Jinf(z,CON,()Nsup(z, DEC,T/)H—UNAD
(linf(z,CON,Q)[+[IN A])
(linf(z,CON,Q)Ninf(z,DECn)|)
(ind (&, DECFI0TTC])
(sup(z,CON O)Ninf (2, DEC.) |+ INC|)
(Jinf(z,DEC,n)|+|INC|)

3) minace(T)

5) mincov(T)

(2)
(3)
(4) mazace(r)=
(5)
(6)

6) mazcov(T)=




In this way, it is possible to obtain these values by using in f and sup information.

?-threevalues(3,[[2,5],[5,2]]). [Operation 7]
[(0.1,0.1),(1.0,1.0),(0.142,0.333)]
EXEC_TIME=0.001(sec)

yes

In Operation 7, the minimum and the maximum values of support, accuracy
and coverage for imp4 are sequentially (0.1,0.1), (1.0,1.0) and (0.142,0.333). Since
the minimum value of accuracy is 1.0, imp4 is consistent in all derived DIS's.

4.6 Certain and Possible Rules in NISs

In Table 3, let us consider imp4 in the previous subsection and imp5:[1,4]A[2,5]=
[8,1] from object 3. Implication imp4 is definite, and imp4 is consistent in all
derived DISs. In this case, we say imp4 is globally consistent (GC). On the
other hand imp5 is indefinite, since [1,4] is selected from [1,4]V[1,5]. Implication
imp} is consistent in some derived DISs, and we say imp5 is marginal (M A).
According to this consideration, we define 6 classes of implications in Table 7.

Table 7. Six classes of implications in NISs

GC(Globally_Consistent)| M A(Marginal)|GI(Globally_Inconsistent)
Definite DGC DMA DGI
Indefinite IGC IMA IGI

In DISs, there exist only two classes DGC and DGI. These two classes are
extended to 6 classes in NISs. In Table 7, implications in DGC class are not
influenced by the information incompleteness, therefore we name implications in
DGC class certain rules. We also name implications in either IGC, DM A or
IM A classes possible rules.

For an implication ¢mp, we may sequentially examine the consistency of ¢mp
and we know the class which ¢mp belongs to. However, this method depends
upon all derived DISs. There exists another method, which depends upon inf
and sup information, to examine the class [21].

For imp4, sup(3,{B, E}, (5,2))=sup(3,{B}, (5)) N sup(3, {E}, (2))={3,8} N
{2,3,4,5,10}={3},and inf(3,{H}, (1))={3, 5,10} holds. In this case, the inclu-
sion relation sup(3, {B, E}, (5,2)) Cinf(3,{H}, (1)) also holds, and this implies
imp4 is GC. Similarly for imp5, sup(3, {A, B}, (4,5))={3,8} holds. In this case,
the inclusion relation sup(3,{A,B},(4,5)) C inf(3,{H},(1)) does not hold,
and this implies imp5 is not GC. However, inf(3,{A4, B}, (4,5))={3,8} and
sup(3,{H}, (1))={3,4,5,6,7,8,10} holds, and the inclusion relation inf(3, {4,
B}, (4,5)) C sup(3,{H}, (1)) holds. This implies imp5 is M A.



4.7 Minimal Certain Rules in NISs

Let us consider two implications imp6:[2,2]=>[8,1] and imp7: [2,2]A[3,1]=[8,1]
from object 10. Both implications are certain rules, and imp6 is simpler than
imp7, because [3,1] is added to the condition part of imp6. A minimal certain
rule is a certain rule whose condition part is simpler than any other certain rules.
Now, we focus on minimal certain rule generation. Implication ¢mp7 from
object 10 belongs to DGC' class, so it is possible to generate minimal cer-
tain rules from object 10. In this case, we employ a discernibility function
DFpac(10) of object 10. We have extended a discernibility function in DISs [23]
to a discernibility function in NISs. For the decision attribute {H}, we employ
inf(10,{H}, (1))={3,5,10}. In DGC class, it is necessary to discriminate each
objectin {1,2,4,6,7,8,9}={1,---,10}—inf(10,{H}, (1)) from in f(10,{H}, (1)).
Since sup(10,{A}, (4))={3,5,6,8,10} and 1 ¢ sup(10,{A}, (4)), the condition
[A,4] can discriminate object 1 from object 10. Similarly, each condition [B,2],
[C 1], [D,5], [E,2] and [G,3] can discriminate object 1 from object 10. In this
way, a disjunction ([A4,4]V[B,2]V[C,1]V[D,5]V [E,2]V[G,3]) becomes a condition,
which discriminate object 1 from object 10. Let DISC(10,1) denote this dis-
junction. A discernibility function DFpac(10) is Aj=1,2.4,6,7,80DI1SC(10,1).
Theorem 2. [22] Let us suppose that an implication [CON,(] = [DEC,n]
from object z belongs to DGC class. For a minimal solution SOL of DFpgc(z),
AacalesorLlA,Ca]l = [DEC,n] is a minimal certain rule from .

4.8 Minimal Certain Rule Generation in NISs

We have proposed some algorithms to obtain a minimal solution of DFpgc ().
The details are in [22]. Let us show real execution.

% more attrib_rule.pl
decision([8]).

decval ([1]).
condition([1,2,3,4,5,6,71).

File attrib_rule.pl defines the implication: condition = [8,1].

?-translate_rule. [Operation 8]

File Name for Read Open:’data.pl’.
Attribute Definition File:’attrib_rule.pl’.
EXEC_TIME=0.076 (sec)

yes

?-init.

DECLIST:<inf=[3,5,10]>

Certain Rules come from [3,5,10]
EXEC_TIME=0.003(sec)

yes



In Operation 8, inf and sup information is created. Then, program init
examines objects, which a certain rule can be generated from. In this case, we
know that certain rules are generated from objects 3, 5 and 10.

?-minimal. [Operation 9]
<<Minimal Certain Rules from object 3>>
DF:[[1,[2,5],[4,5],[5,211, ---,[9,[2,5],[4,5],[5,2],[6,5]1]1]
<<Minimal Certain Rules from object 5>>
DF:[[1,[1,4],[4,511, ---,[8,[2,1],[7,41],[9,[1,4]1,[2,1]1,[4,51,[7,411]
<<Minimal Certain Rules from object 10>>
[2,21=>[8,1]1[324/324(=6/6,54/54) ,DGC: Common]
Rule covers objects [10], [(0.1,0.1),(1.0,1.0),(0.142,0.333)]
EXEC_TIME=0.015(sec)
yes

In Operation 9, program minimal tries to generate minimal certain rules,
whose condition part consists of only core or common descriptors. As for objects
3 and 5, there is no such minimal certain rule, and every discernibility function
in each object is displayed. For object 10, there exists such a minimal certain
rule, which is imp6. For objects 3 and 5, we apply interactive method.

7-solall(5). [Operation 10]
Input Descriptors to Start Exhaustive Search:5.
Exhaustive Search for less than 32 Cases !!
<<Minimal Certain Rules from object 5>>
Core Descriptors:[]
DF without Core:[[1,[1,4],[4,5]],[2,[1,4],[2,1],[4,5]1,[7,4]1],
(4,01,41,02,11,[4,5]1,([7,411,[6,[4,51,[7,411,[7,[1,4]1,[2,1]1,[4,51],
(8,02,11,[7,411,[9,[1,41,[2,11,[4,5]1,[7,411]
Currently Selected Descriptors:[]
[Loop:1]
Descriptors in DF:[[1,4],[2,1],[4,5],[7,4]1]
Exhaustive Search for [[1,4]1,[2,1]1,[4,5]1,[7,4]1]
Finally Selected Descriptors:[]
[4,51&[7,4]1=>[8,1][5832/5832(=108/108,54/54) ,DGC]
This rule covers objects [5],Coverage=0.333
[(0.1,0.1),(1.0,1.0),(0.142),(0.333)]
[2,11&[4,5]1=>[8,1]1[972/972(=18/18,54/54) ,DGC]
This rule covers objects [5],Coverage=0.333
[(0.1,0.1),(1.0,1.0),(0.142),(0.333)]
[1,4]&[7,4]1=>[8,1][3888/3888(=72/72,54/54) ,DGC]
This rule covers objects [5],Coverage=0.333
[¢0.1,0.1),(1.0,1.0),(0.142,0.333)]
EXEC_TIME (for Exhaustive Search)=0.014(sec)
yes



Table 8. Definitions of NISs

NIS ||OBI|||AT|||V AL s||derived_DIS's
NIS4| 50 | 10 10 1.57 x 108
NISs| 100 | 10 10 7.01 x 10°°
NISg| 300 | 10 10 6.74 x 10%°

Table 9. Execution time(sec) of programs. The object column implies the number
of objects, in which some minimal certain rules are generated. The execution time of
minimal depends upon the number of objects.

NIS |translate_rule|minimal|object|solall
NIS, 0.896 0.723 7 10.764
NISs 6.503 3.589 16 |1.370
NISs 49.892 35.345 21 |2.943

In Operation 10, minimal certain rules from object 5 are handled. Predicate
solall(z) means ‘Solve all solutions from object z’. In Loop 1, there are four
descriptors in this discernibility function, and this value is less than 5. Therefore,
exhaustive search begins for all subsets of four descriptors. Three minimal certain
rules are generated, and these rules are all minimal certain rules from object 5. If
the condition of the threshold value is not satisfied, we select another descriptor
and the absorption law is applied to reducing the discernibility function. Then,
the next loop is invoked.

Let us show execution time for other NISs in Table 8. In Table 9, the
object column implies the number of objects, in which some minimal certain
rules are generated. The execution time of minimal depends upon the number
of objects. Program solall are also applied to an object in each NIS. In this
execution, the threshold value was fixed to 10. Since |AT|=10, this program
began to enumerate 1024(= 2'°) subsets without specifying any descriptors, and
generated all minimal certain rules. According to Table 9, we may employ a
threshold value 10 for NIS's, which consists of more than 10 attributes.

5 Concluding Remarks

An overview of a tool in prolog and a framework of Rough Non-deterministic
Information Analysis (RNIA) are surveyed according to [19,20,21,22]. We follow
rough sets based concepts in DISs and propose a framework of RNTA. NISs,
which were proposed by Pawlak, Ortowska and Lipski, have been recognized to
be one of the most important framework for handling incomplete information.
Therefore, RNITA will also be an important framework for rough sets based
information analysis under incomplete information.
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