
Parallel Transferable Uniform Multi-Round
Algorithm for Minimizing Makespan

著者 Yamamoto Hiroshi, Tsuru Masato, Yamazaki
Katsuyuki, Oie Yuji

journal or
publication title

IEICE Transactions on Communications

volume 95
number 5
page range 1669-1678
year 2012-05-01
URL http://hdl.handle.net/10228/00006338

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/147427562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012
1669

PAPER

Parallel Transferable Uniform Multi-Round Algorithm for
Minimizing Makespan

Hiroshi YAMAMOTO†a), Masato TSURU††, Members, Katsuyuki YAMAZAKI†, and Yuji OIE††, Fellows

SUMMARY In parallel computing systems using the master/worker
model for distributed grid computing, as the size of handling data grows,
the increase in the data transmission time degrades the performance. For
divisible workload applications, therefore, multiple-round scheduling algo-
rithms have been being developed to mitigate the adverse effect of longer
data transmission time by dividing the data into chunks to be sent out in
multiple rounds, thus overlapping the times required for computation and
transmission. However, a standard multiple-round scheduling algorithm,
Uniform Multi-Round (UMR), adopts a sequential transmission model
where the master communicates with one worker at a time, thus the trans-
mission capacity of the link attached to the master cannot be fully utilized
due to the limits of worker-side capacity. In the present study, a Parallel
Transferable Uniform Multi-Round algorithm (PTUMR) is proposed. It
efficiently utilizes the data transmission capacity of network links by al-
lowing chunks to be transmitted in parallel to workers. This algorithm
divides workers into groups in a way that fully uses the link bandwidth of
the master under some constraints and considers each group of workers as
one virtual worker. In particular, introducing a Grouping Threshold effec-
tively deals with very heterogeneous workers in both data transmission and
computation capacities. Then, the master schedules sequential data trans-
missions to the virtual workers in an optimal way like in UMR. The perfor-
mance evaluations show that the proposed algorithm achieves significantly
shorter turnaround times (i.e., makespan) compared with UMR regardless
of heterogeneity of workers, which are close to the theoretical lower limits.
key words: grid computing, Master/Worker Model, divisible workload,
Multi-Round scheduling, UMR

1. Introduction

Grid computing has recently become increasingly common
distributed applications [1], [2]. The master/worker model is
suited to grid computing environments that includes a large
number of computers that differ in resource capacities. In
this model, a master with application tasks dispatches sub-
tasks to several workers, which process the data allocated
by the master. A typical instance of applications based on
the master/worker model is a divisible workload application
[3]–[8], where the master divides the application data into an
arbitrary number of chunks and dispatches them to multiple
workers as shown in Fig. 1. For a given application, compu-
tation and transmission times for a chunk are assumed to be
roughly proportional to the size of the chunk.

The existing Uniform Multi-Round algorithm (UMR)

Manuscript received November 16, 2011.
†The authors are with the Department of Electrical Engineer-

ing, Nagaoka University of Technology, Nagaoka-shi, 940-2188
Japan.
††The authors are with Graduate School of Computer Science

and Systems Engineering, Kyushu Institute of Technology, Iizuka-
shi, 820-8502 Japan.

a) E-mail: hiroyama@nagaokaut.ac.jp
DOI: 10.1587/transcom.E95.B.1669

Fig. 1 A simple master-worker distributed computing model.

can handle a large amount of data related to an applica-
tion in a ‘multiple-round’ manner, where the data are di-
vided into arbitrarily sized chunks and processed in multi-
ple rounds in order to overlap the time required for com-
munication with that required for computation [6], [9]–[11].
However, it utilizes a sequential transmission model, i.e. the
master transmits data to one worker at a time [12], [13]. In
actual networks, while the master that plays a central role in
computing may have higher data transmission capacity than
workers, the actual data transmission capacity between the
master and each worker is limited to the worker-side capac-
ity. Therefore, UMR cannot minimize the adverse effects of
data transmission on the application turnaround time needed
for processing the whole application data.

In this study, by integrating our previous works [14],
[15], we propose a new scheduling algorithm, Parallel
Transferable Uniform Multi-Round (PTUMR), that effi-
ciently utilizes the data transmission capacity of network
links by allowing chunks of application data to be trans-
mitted in parallel to workers through simultaneously estab-
lished multiple connections of data transmission flows. By
effective grouping of workers, the proposed algorithm is
adapted to the actual environments with large heterogeneity
in data transmission and computation capacities of workers.
This work assumes the use of Transmission Control Proto-
col (TCP) for data transmission flow.

We first introduce how the PTUMR derives parameters
that determine how the master divides the application data
and when it sends the data to the workers in order to min-
imize the application turnaround time. The master divides
workers into appropriate groups on the basis of both compu-
tation and communication capacities of individual workers,
and handles the set of workers in each group as a single vir-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

1670
IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012

tual worker. The master then optimally transmits chunks
to the virtual workers sequentially as in UMR. Secondly,
we evaluate the performance of the PTUMR in various en-
vironments. The proposed algorithm reduces the adverse
effects of data transmission time on application turnaround
time to a greater extent than the conventional UMR, achiev-
ing turnaround times close to the theoretical lower limit.

This paper is organized as follows. Section 2 intro-
duces the conceptual basis for multiple-round scheduling
and the conventional UMR algorithm. Section 3 presents
the proposed PTUMR algorithm, and Sect. 4 evaluates its
performance in a homogeneous environment. Section 5 val-
idates the efficiency of the PTUMR in a realistic environ-
ment. Section 6 provides the conclusion.

2. Related Work

As mentioned in Sect. 1, a number of scheduling methods
have been proposed in which the master dispatches data to
workers in a multiple-round manner in order to overlap com-
munication with computation and, thereby, reduce the ap-
plication turnaround time [9]–[13]. Figure 2 shows a timing
chart of a simple example of this scenario where the master
dispatches a workload of the application to a worker. In this
figure, black rectangles represent the fixed-length overhead
for one round of computation, and gray squares represent the
fixed-length overhead in one round of data transmission. In
multiple-round scheduling, the entire application data set is
divided into multiple arbitrarily sized chunks and processed
in M rounds (M = 3 in this example) to reduce the adverse
effects of longer data transmission time on the application
turnaround time. However, using a large number of rounds
increases the total overhead. Thus, optimizing the number
of rounds to minimize the application turnaround time is key
to multiple-round scheduling.

UMR is an example of a multiple-round scheduling al-
gorithm on the simple distributed computing model shown
in Fig. 1 [9], [10]. The master and N workers are connected
to a high-speed network that is free of bottlenecks. The total
amount of data to be distributed from the master to workers
is denoted by W [units], and the data transmission capacity
of the link attached to the master is denoted by b0 [units/s].
This model is heterogeneous in terms of the computation
and communication capacities of workers: each worker i is
associated with its computation speed si [units/s] and data
transmission capacity bi [units/s] of the link attached to the
worker, and overheads δi [s] and εi [s] are added to the com-
putation time and data transmission time, respectively.

Fig. 2 Timing chart of single-round and multi-round scheduling
algorithms.

UMR adopts the sequential transmission model where
the master transmits a chunk to one worker at a time. There-
fore, the actual data transmission rate b′i between the master
and worker i must be bounded above by min{bi, b0}. Fig-
ure 3 illustrates how the data are transmitted to workers and
processed under UMR, where the chunk size allocated to
the worker i in Round j is denoted by c ji [units]. The master
determines the amount of chunks allocated to each worker
in such a way that the computation time becomes identical
for all workers during a round. To reduce data transmission
time in the first round, relatively small chunks are transmit-
ted to workers. In subsequent rounds, the size of chunks
then grows exponentially.

Many types of extensions of UMR have been proposed
already. The algorithms proposed by Jia et al. [16] and Loc
and Elnaffar [17] examine and predict the resource capa-
bilities of workers, adapting to the dynamic environments
where the availability of both computation and communica-
tion resources vary with time. An optimization technique
that quickly derives the optimal number of rounds and opti-
mal chuck size to minimize the application turnaround time
has been presented by Drozdowski and Lawenda [18]. A
new scheduling algorithm described by Lin et al. [19] deter-
mines the minimum set of workers that finishes processing
the workload by the given deadline.

However, these existing algorithms have utilized the
sequential transmission model as well as UMR. In actual
networks where the master may have higher communica-
tion capacity than workers, these algorithms restrict the ac-
tual communication capacity between the master and each
worker depending on the worker-side capacity.

In this study, we, therefore, propose a novel schedul-
ing algorithm, Parallel Transferable Uniform Multi-Round
(PTUMR), which adopts a new data transmission model in
order to minimize the application turnaround time.

The challenge in this study includes how to partition
all the workers into subgroups (as a virtual worker), espe-
cially when the workers are very heterogeneous in both data
transmission and computation capacities. In a general sense,
suitably partitioning a set of heterogeneous members into
subgroups is often seen as a resource allocation problem to
be solved in order to achieve a good performance for the en-

Fig. 3 Timing chart of data transmission and worker processing under
UMR.

YAMAMOTO et al.: PARALLEL TRANSFERABLE UNIFORM MULTI-ROUND ALGORITHM FOR MINIMIZING MAKESPAN
1671

tire system. For example, problems of how to partition a set
of receivers with heterogeneous data transmission capaci-
ties into multiple multicast groups have been investigated
to maximize receiving throughput averaged over all the re-
ceivers (e.g., [20]–[22]), where the sender distributes a sin-
gle datum using multiple multicast trees, and the receivers
in each particular group receive the multicast data at each
identical flow rate. On the other hand, in addition to the
difference between unicast and multicast, our study investi-
gates a more complex scenario of partitioning the members
(the workers) with heterogeneity in both data transmission
and computation capacities in cooperation with an optimal
scheduling for data transmission and computation.

3. The PTUMR Scheduling Algorithm

The PTUMR algorithm determines how the application data
should be divided and when the data should be transmit-
ted to workers in a network environment that enables the
master to transmit data to multiple workers in parallel, as-
suming that the overhead εi can be overlapped among con-
current transmissions as shown in Fig. 4. More precisely,
the PTUMR divides workers to groups in a way to make
full use of link bandwidth of the master, and treats a set of
workers in each group as a single virtual worker. Then the
master transmits chunks to virtual workers sequentially, as
in UMR.

After grouping the workers, the PTUMR algorithm an-
alytically determines the appropriate number M+ of rounds
so that the application turnaround time for the total amount
W of application data is minimized.

We assume that the values b0 and bi(i = 1, 2, . . . ,N)
are known to the master, and also that it can control the rate
of data transmission b′i to worker i to be within the range
[0,min(b0, bi)]. Note that such control can be achieved un-
der the TCP by constraining the sending socket buffer size.

Main parameters of PTUMR are summarized in Ta-
ble 1.

3.1 Computation and Data Transmission Capacities of a
Virtual Worker

This subsection shows how to derive the resource capacity

Fig. 4 Timing chart of data transmission and worker processing under
PTUMR.

of a virtual worker based on the resource capacities of its
members. A set of workers composing the virtual worker k
is denoted by Lk and the number of workers in Lk by mk.

In order to fully utilize the computation power of each
worker in a virtual worker, the size c ji of chunk allocated
to worker i in Round j(= 0, . . . ,M − 1) should be propor-
tional to its computation speed si [6] (si [units/s] denotes
the computation speed of worker i). In addition, we take the
overhead Δk of virtual worker k to be the largest overhead δi
among all workers in Lk. Then, the computation time of the
virtual worker k in Round j is given by

Tcompjk =
C jk∑
i∈Lk

si
+max

i∈Lk

{δi} = C jk

S k
+ Δk.

⎛⎜⎜⎜⎜⎜⎜⎝S k =
∑
i∈Lk

si, C jk =
∑
i∈Lk

c ji

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

where C jk [units] is defined as the total size of chunks al-
located to all workers in Lk in Round j, and S k [units/s]
denotes the computation speed of virtual worker k.

Next, to make a multi-round scheduling efficient, we
adjust the data transmission time of worker i in a round to
be identical for all worker in Lk by limiting the data trans-
mission rate b′i of each worker i. Since the chunk size (i.e.,
the size of transmitted data) to worker i is set in proportional
to si, ratio ρ = si

b′i
for worker i should be the same among

Table 1 Main parameters of PTUMR.

si [units/s] computation capacity of worker i

bi [units/s] communication capacity of link attached to
worker i

b0 [units/s] communication capacity of link attached to mas-
ter

b′i [units/s] actual communication capacity between master
and worker i

δi [s] overhead of computation time of worker i

εi [s] overhead of communication time of worker i

S k [units/s] computation capacity of virtual worker k

Bk [units/s] communication capacity between master and vir-
tual worker k

Δk [s] overhead of computation time of virtual worker k

Ek [s] overhead of communication time of virtual
worker k

N the number of workers

Nv the number of virtual workers

mk the number of workers in virtual worker k

Lk set of workers in virtual worker k

W [units] total amount of application data

w j [units] size of chunk allocated to workers in Round j

c ji [units] size of chunk allocated to worker i in Round j

C jk [units] size of chunk allocated to virtual worker k in
Round j

M the number of rounds

1672
IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012

all workers in Lk. Therefore, in order to maximize the ac-
tual data transmission rate between the master and virtual
worker k, data transmission rate b′i of worker i is determined
by minimizing ratio ρ with the link capacity constraints as
follows.

minimize ρ, (2)

subject to

⎧⎪⎪⎨⎪⎪⎩
∀i ∈ Lk

si

ρ
≤ bi,

S k

ρ
≤ b0.

Hence ρ = max
{

S k

b0
, si

bi

∣∣∣i ∈ Lk

}
. We define Bk =

∑
i∈Lk

b′i =
S k

ρ
as the data transmission rate of virtual worker k. In addition,
we define that the overhead Ek of virtual worker k is the
largest overhead εi among all workers in Lk. Then, the data
transmission time of the virtual worker k in Round j is given
by

Tcommjk =
C jk∑
i∈Lk

b′i
+max

i∈Lk

{εi} = C jk

Bk
+ Ek. (3)

3.2 The Grouping Method

Since the resource capacity of the virtual worker depends
on those of its members, the grouping method strongly af-
fects the performance of PTUMR. The grouping method of
PTUMR consists of three steps.

1. All workers are sorted and given serial numbers in as-
cending order of ri = si/min{b0, bi}. The workers are
then divided into several groups according to the fol-
lowing equation to determine the number mk of work-
ers in the virtual worker k.

mk=max

⎧⎪⎪⎨⎪⎪⎩m
∣∣∣∣∣∣

lk+m−1∑
l=lk

bl≤b0

⎫⎪⎪⎬⎪⎪⎭+λ,
lk+1= lk+mk. (4)

where lk indicates the serial number of the first worker
composing the virtual worker k and λ indicates the
number of additional workers added to the group af-
ter the number of workers has been chosen in a way to
make full use of the master-network bandwidth. Note
that in general it is difficult to derive an optimal value
of λ analytically. Only in the homogeneous environ-
ment where all workers have the same computation
speed and communication capacity, we can find the op-
timal λ by evaluating the relationship between λ and
the turnaround time [14].

2. In highly heterogeneous environments where the work-
ers are very different in their computation power and
transmission capacity, it may be beneficial to group
workers whose resource capacities are close to each
other according to the following equation.

m′k=max

⎧⎪⎪⎨⎪⎪⎩m

∣∣∣∣∣∣rlk+m−1≤ μ

m−1

lk+m−2∑
l=lk

rl

⎫⎪⎪⎬⎪⎪⎭ ,
mk=min

{
mk in (4), m′k

}
. (5)

If ri of the next worker is μ times larger than the average
ri of all workers already selected for the group, this next
worker will not be included. We adopt μ of 1.5 in this
paper.

3. The virtual workers are sorted in ascending order of
Rk = S k/Bk, and the number Nv of virtual workers uti-
lized for application processing is chosen according to
the following equation.

Nv = max

⎧⎪⎪⎨⎪⎪⎩n

∣∣∣∣∣∣
n∑

k=1

Rk < 1

⎫⎪⎪⎬⎪⎪⎭ i f R1 < 1,

Nv = 1 otherwise. (6)

Step 1 presents a basic grouping method which at-
tempts to preferentially select workers with smaller ri, as
happens in UMR [10] to fully utilize the bandwidth b0 of the
master-network link. In other words, the grouping method
gives priority to higher transmission capacity rather than to
faster computation speed to reduce the data transmission
time for the first worker on the first round and to keep all
computation capacities fully active during the data trans-
mission even when a lot of workers are selected. The data
transmission time for the first worker on Round 0 should be
minimized because it cannot be overlapped with the com-
putation time as shown in Figs. 3 and 4. Furthermore, the
additional number λ of workers aims at reducing the num-
ber of steps required to transmit data to all workers, which
allows overlapping of the overhead for more workers.

However, in more heterogeneous environments, a vir-
tual worker determined by Step 1 may include some work-
ers with much higher ri than others, which leads to critical
degradation of the data transmission rate Bk which is de-
rived by solving Eq. (2). When heterogeneity is high, the
basic grouping in Step 1 does not always result in good per-
formance (shown later in Sect. 5.1). Therefore, Step 2 is
introduced for effective grouping where workers in a group
are restricted to have similar resource capacities. The ver-
sion solely with Step 1 is called PTUMR without Grouping
Threshold (GT), while that with Step 1 and Step 2 is called
PTUMR with GT. Hereafter, PTUMR denotes PTUMR with
GT unless otherwise noted. Step 3 then preferentially se-
lects virtual workers with smaller Rk, and limits the number
of virtual workers so as to prevent the allocation of applica-
tion tasks to a virtual worker having low capacity.

3.3 Derivation of Parameters that Result in Almost Mini-
mal Turnaround Time

After grouping the workers into the virtual workers as de-
scribed in Sect. 3.2, the PTUMR determines the number M+

of rounds that is nearly optimal in terms of minimizing ap-
plication turnaround time. The application turnaround time
Treal is determined by given parameters (the number M of
rounds and the size C jk of chunk allocated to virtual worker
k in Round j). Treal under PTUMR can be obtained as pre-
sented in Appendix A. However, since Treal is difficult to
express analytically, we instead derive the ideal application

YAMAMOTO et al.: PARALLEL TRANSFERABLE UNIFORM MULTI-ROUND ALGORITHM FOR MINIMIZING MAKESPAN
1673

turnaround time Tideal under the (ideal) assumption that no
virtual worker ever enters the idle computation state once it
has received its first chunk of data. In addition, we also as-
sume that the time required to compute chunks received in
each round is identical for all virtual workers.

We denote w j(=
∑Nv

k=1 C jk) by the total amount of chunk
to be allocated to virtual workers in Round j. From Eq. (1),
the relation between w j and the size C jk of chunk allocated
to the virtual worker k is given by

C jk = αk × w j + βk,⎛⎜⎜⎜⎜⎜⎝αk =
S k∑Nv

k=1 S k

,

βk =
S k ×∑Nv

k=1{S k × Δk}∑Nv
k=1 S k

− S k × Δk.

⎞⎟⎟⎟⎟⎟⎠ (7)

In addition, from Eqs. (1) and (3), the total amount of
chunk w j for Round j can be determined by the total chunk
size w0 in the first round as follows.

w j=θ
j(w0 − γ) + γ,

⎛⎜⎜⎜⎜⎜⎝θ= 1/
∑Nv

k=1 S k∑Nv
k=1{αk/Bk}

,

γ=

∑Nv
k=1{S k×Δk}∑Nv

k=1 S k
+

∑Nv
k=1

{
Ek − βk

Bk

}
∑Nv

k=1{αk/Bk} − 1/
∑Nv

k=1 S k

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

The application turnaround time Tideal under the ideal
assumption can be derived as a function of the number M of
rounds, as follows.

Tideal =
1∑Nv

k=1 S k

⎧⎪⎪⎨⎪⎪⎩ W+M×
Nv∑

k=1

(S k×Δk)

+

Nv∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣S k×
k∑

t=1

⎛⎜⎜⎜⎜⎜⎜⎝
αt×

(
1−θ

1−θM ×(W−Mγ)+γ
)
+ βt

Bt
+Et

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(9)

The derivation of the application turnaround time Tideal is
presented in Appendix B.

Let M∗ denote the real value minimizing Tideal in
Eq. (9), which can be obtained by solving ∂Tideal

∂M = 0. Then,
it is necessary to determine an appropriate number M+ of
rounds as an integer expected to nearly minimize Treal.
There are four possible integers to consider: �M∗	−1, �M∗	,

M∗� and
M∗� + 1. We can choose one among them so as
to minimize Treal.

4. Performance Evaluation in Homogeneous Environ-
ment

In this section, we show the performance of our proposed
scheduling algorithm, PTUMR, in the homogeneous envi-
ronment where the set of workers is homogeneous in terms
of the computational power (s1 = · · · = sN = s), the worker-
side transmission capacity (b1 = · · · = bN = b) and over-
heads (δ1 = · · · = δN = δ, ε1 = · · · = εN = ε) added to the

computation and data transmission time, respectively.
Note that in the homogeneous environment, PTUMR

with GT and that without GT are identical.
Here, every virtual worker consists of m workers, so

that, the computation speed (S 1 = · · · = S Nv = m × s) and
the transmission capacity (B1 = · · · = BNv = min{m× b, b0})
are identical for all virtual workers. However, when the
number N of all workers is not divisible by the number m
of parallel data transmissions, the last virtual worker in-
cludes N mod m workers, and has the computation speed
of (S Nv = (N mod m) × s) and the transmission speed of
(BNv = min{(N mod m) × b, b0}).

Tbound denotes the best possible turnaround time in an
environment where the network resources are sufficient to
ensure negligible data transmission times and any latency
corresponding to related overheads is ignored. From Eq. (9),
Tbound is obtained as follows.

Tbound =
W∑N
i=1 si

. (10)

4.1 Impact of Parallelism on Application Turnaround
Time

As mentioned in Sect. 3.2, in the homogeneous environment
where the parameters s, b, δ, and ε are identical for all work-
ers, we can find the optimal number m∗ of workers compos-
ing each virtual worker achieving the application turnaround
time Treal close to the minimum value by evaluating the re-
lationship between m and Treal. To find the optimal m∗, the
impact of the number of workers composing each virtual
worker m on Treal is examined in Fig. 5. Here, the parame-
ters W = 1000 [units/s], N = 100, b0 = 120, 600 [units/s],
and ε = 0.1, 0.01, 0.001 [s] are used. All other parameters
are set according to Table 2.

Fig. 5 Impact of m on application turnaround time.

Table 2 Model parameters and their values examined in homogeneous
environment.

s 1 [units/s]
b 120 [units/s]
δ 0.5 [s]

1674
IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012

The case of b0 = 120 represents a symmetric network,
in which the transmission capacity b0 of the master-side
link is equal to that b of the worker-side, which is the case
considered in UMR. Figure 5 surprisingly indicates, how-
ever, that even in a symmetric network, the transmission
to multiple workers in parallel yields better performance
than UMR (m = 1). For a wide range of ε, increasing m
can reduce the adverse effects of overhead on the applica-
tion turnaround time by overlapping ε for multiple work-
ers. On the other hand, increasing m also reduces the actual
transmission speeds b′ for each worker due to sharing of
the transmission capacity of the master-side link by multi-
ple data transmissions as shown in Eq. (2), which increases
the data transmission time for each worker. Therefore, there
exists an optimal number m∗ of parallel transmissions that
minimizes the application turnaround time Treal.

The case of b0 = 600 represents an asymmetric net-
work in which the master-side link has a larger capacity than
the worker-side links, as often occurs in real network envi-
ronments. In such an asymmetric network, as also indicated
in Fig. 5, increasing m dramatically reduces the application
turnaround time Treal regardless of ε. This occurs because
an increase in m (up to m = 5) does not reduce the transmis-
sion speed for each worker.

In both cases, symmetric or asymmetric networks, the
application turnaround time Treal rapidly decreases as m in-
creases above 1, but then becomes constant or increases
slightly with increasing m after reaching a nearly-minimum
value of Treal.

4.2 Impact of the Number of Workers on Application
Turnaround Time

The impact of the number N of workers on the applica-
tion turnaround time Treal is examined in Fig. 6 by assum-
ing a total size W of 1000. As N increases, the applica-
tion turnaround times under both the PTUMR and UMR
algorithms remarkably decrease, but particularly PTUMR
achieves Treal close to the lower bound Tbound for any N by
increasing the parallelism m to utilize the network resources
at the master-side to their maximum, while the difference
between Treal of UMR and Tbound increases with N.

Figure 6 shows that the application turnaround time of
PTUMR is almost the same as that of UMR which trans-
mits chunks to one worker at a time when the number N of
workers is small. However, in order to achieve the optimal
performance, we should select the appropriate parallelism as
described in Sect. 3.2. Figures 7(a) and 7(b) show the low-
est m and the highest m achieving Treal within 101% of the
minimum one as a function of N, respectively. In these Figs,
the lowest m for good performance increases very gradu-
ally as N increases, while any parallelism achieves nearly-
optimal performance during the small N. In addition, when
the master-side transmission capacity b0 is low, the high-
est m for good performance decreases with the increase in
N. Therefore, when N is large, m should be selected from
an appropriate range of parallelism to achieve the good per-

Fig. 6 Impact of number of workers on application turnaround time.

Fig. 7 Impact of number of workers on a range of parallelism which
achieves application turnaround time within 101% of minimum one.

formance. However, in general, the relatively small m can
achieves nearly optimal turnaround time for all N.

Furthermore, this implies that it is possible to deter-
mine a nearly-optimal parallelism m∗ through the use of bi-
nary search-like methods which repeatedly divide the search
range of m in half without examining Treal for all m, and
that PTUMR can utilize a wide range of nearly-optimal par-
allelism m∗ due to the insensitivity of Treal to large m, al-
lowing other performance-related factors to be considered.
For example, in order to reduce a consumption of worker-
side transmission capacity, the master can increase the par-

YAMAMOTO et al.: PARALLEL TRANSFERABLE UNIFORM MULTI-ROUND ALGORITHM FOR MINIMIZING MAKESPAN
1675

allelism m.

5. Performance Evaluation in Heterogeneous Environ-
ment

In this section, we evaluate the performance of PTUMR in
the heterogeneous environment where the workers are dif-
ferent in their computational and communication capacity.
In this evaluation, we assume, as was the case in the study
proposing UMR [10], that the computation speed si, the
worker-network link capacity bi, and the latency parameters
εi and δi corresponding to the related overheads of workers,
are distributed uniformly within the following range.(

(1 − √3 × het) × mean, (1 +
√

3 × het) × mean
)
. (11)

where het represents the heterogeneity of each resource ca-
pacity in the environment. We employ a coefficient of varia-
tion of each resource capacity as het. In addition, mean can
be set to the average capacity over all workers, namely s̄, b̄,
δ̄, and ε̄ listed in Table 3.

The effectiveness of PTUMR is evaluated by com-
paring the achievable turnaround time Treal with the lower
bound Tbound defined in Eq. (10). For a given parameter set
(heterogeneity het and average resource capacities s̄, b̄, δ̄
and ε̄), 100 experiments were conducted. The average and
maximum application turnaround time Treal in the 100 ex-
periments was then used as a measure of performance of the
scheduling algorithms.

5.1 The Impact of Heterogeneous Resource Capacities

First, we investigated the effect of the heterogeneity het
on the performance of the scheduling algorithms, UMR
and PTUMR. In our evaluation model, we assumed a to-
tal amount W of application data of 1000, a master-network
transmission capacity b0 of 1000, an average overhead ε̄ at
the start of the data transmission of 0.01, and 100 workers
(N). When we evaluated the impact of the heterogeneity het
of each resource capacity, all resource capacities si, bi, δi
and εi of each worker were randomly chosen according to
Eq. (11).

Figure 8 shows the average and maximum normalized
turnaround times Treal/Tbound for 100 experiments as a func-
tion of the heterogeneity het, where the number λ of addi-
tional workers under PTUMR with and without GT was set
to 10. As shown in Fig. 8, regardless of het, PTUMR with-
out GT is superior to conventional UMR in terms of aver-

Table 3 Model parameters and their values examined in performance
evaluation.

W 100, 500, 1000, 5000, 10000 [units]

s̄ 1 [units/s]

b0 200, 400, · · · , 2000 [units/s]

b̄ 200 [units/s]

ε̄ 0.001, 0.01 [s]

δ̄ 0.1 [s]

age normalized turnaround time. However, when the hetero-
geneity is high, the application turnaround time of PTUMR
without GT in the worst case becomes larger than that of
UMR. In contrast, PTUMR with GT can achieve an appli-
cation turnaround time close to the lower bound even in the
worst case. It is apparent from these results that PTUMR
with GT can achieve an excellent turnaround time by group-
ing workers in an appropriate way.

In the following section, we will consider only PTUMR
with GT with the number λ of addition workers of 10. In ad-
dition we will investigate the performance of the scheduling
algorithms in highly heterogeneous environment, namely

het =
√

3
4 . Furthermore, the number N of workers is set

to 100.

5.2 The Impact of Network Resources

The impact of network resources is examined here by as-
suming a total workload W of 1000. Figure 9 shows the av-
erage normalized turnaround time Treal/Tbound, as a function
of the master-network link capacity b0. Even if b0 increases,
the UMR algorithm cannot effectively utilize the additional
network capacity. By contrast, the application turnaround
time under PTUMR decreases with increasing b0 because

Fig. 8 Impact of heterogeneity on the normalized application turnaround
time.

Fig. 9 Impact of network resources on the normalized application
turnaround time with different communication setup overhead.

1676
IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012

Fig. 10 Impact of total workload on the normalized application
turnaround time with different communication setup overhead.

the algorithm can utilize the full capacity of b0 by transmit-
ting chunks to multiple workers in parallel. Furthermore,
PTUMR achieves Treal close to its lower bound Tbound across
a wide range of overhead ε̄. This is because PTUMR can re-
duce the impact of the overhead by aggressively overlapping
the overhead εi for multiple workers.

This evaluation demonstrates that the PTUMR algo-
rithm can achieve application turnaround time quite close to
the lower bound through effective utilization of the transmis-
sion capacity of the master-network link and the overlapping
of overheads for multiple workers.

5.3 The Impact of Total Workload

Finally, the effect of the total amount W of application data
is evaluated assuming a master-network transmission capac-
ity b0 of 1000. Figure 10 shows the average normalized
turnaround time Treal/Tbound , as a function of the application
data size W. PTUMR provides excellent performance quite
close to the lower bound for any W and any ε̄, that is, the
PTUMR algorithm effectively eliminates the performance
degradation associated with these factors. Under UMR, the
normalized turnaround time becomes quite poor as the to-
tal data size W decreases, although good performance is
achieved for large W. The degradation of performance for
low values of W under UMR can be attributed to the in-
crease of the overhead ratio which comes about as a result
of decreasing the chunk size. This increase in the overhead
ratio can be neutralized by PTUMR. These results therefore
show that the PTUMR algorithm can effectively schedule
applications of any size by minimizing the adverse effect of
overheads on the application turnaround time.

6. Conclusion Remarks

As the size of handling data grows, the increase in the
data transmission time degrades the performance. The ad-
verse effects of data transmission time on the application
turnaround time can be mitigated to a certain extent by us-
ing a multiple-round scheduling algorithm such as UMR

to overlap the data transmission time with the computation
time. However, as UMR adopts the sequential transmission
model, it cannot minimize the application turnaround time
effectively, especially in asymmetric networks where the
master-side link capacity is greater than that of the worker-
side.

This study introduces, PTUMR, a new multiple-round
scheduling algorithm that adopts a multiple transmission
model. In contrast to UMR, PTUMR enables application
data to be transmitted to multiple workers in parallel. The
proposed algorithm divides workers into groups to fully uti-
lize communication capacity of master-side and computa-
tion capacities of individual workers by considering het-
erogeneity in both computation and communication capac-
ities of individual workers. After that, the algorithm deter-
mines the appropriate number of rounds so that the appli-
cation turnaround time is minimized. The performance of
PTUMR has been evaluated in various environments, and
the PTUMR algorithm has been found to mitigate the ad-
verse effects of data transmission time significantly, achiev-
ing turnaround times close to the lower bound over a wide
range of application data sizes and network conditions.

Note that PTUMR has two tuning parameters λ and
μ. For λ, in our experimental evaluation, numerically de-
rived semi-optimal values as λ were used in the homoge-
neous cases (Sect. 4), while a heuristically selected constant
value 10 as λ was used throughout the heterogeneous case
(Sect. 5). For μ, it is needed only in heterogeneous cases
and decided in a heuristic manner as well. A constant value
of 1.5 as μ was used throughout the heterogeneous cases.
Although our method with heuristic constant (fixed) param-
eters exhibited considerably good performance in a variety
of conditions of the experiments, we will investigate more
on selecting those parameters in future work.

Acknowledgments

This study was supported in part by the Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research
(B) (21300024).

References

[1] I. Foster and C. Kesselman, The GRID Blueprint for a New Com-
puting Infrastructure, Morgan Kaufmann Publishers, 1998.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid,”
Int. J. Supercomputer Applications, vol.15, no.3, pp.200–222, 2001.

[3] D.A.L. Piriyakumar and C.S.R. Murthy, “Distributed computation
for a hypercube network of sensor-driven processors with communi-
cation delays including setup time,” IEEE Trans. Syst. Man. Cybern.
A, Syst. Humans, vol.28, no.2, pp.245–251, March 1998.

[4] J.T. Hung, H.J. Kim, and T.G. Robertazzi, “Scalable scheduling
in parallel processors,” Proc. 2002 Conference on Information Sci-
ences and Systems, Princeton University, March 2002.

[5] J.T. Hung and T.G. Robertazzi, “Scalable scheduling for clusters and
grids using cut through switching,” Int. J. Comput. Appl., vol.26,
no.3, pp.147–156, 2004.

[6] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems, IEEE Computer
Society Press, 1996.

YAMAMOTO et al.: PARALLEL TRANSFERABLE UNIFORM MULTI-ROUND ALGORITHM FOR MINIMIZING MAKESPAN
1677

[7] T.G. Robertazzi, “Ten reasons to use divisible load theory,” J. Com-
puter, vol.36, no.5, pp.63–68, May 2003.

[8] D. Gerogiannis and S.C. Orphanoudakis, “Load balancing require-
ments in parallel implementations of image feature extraction tasks,”
IEEE Trans. Parallel Distrib. Syst., vol.4, no.9, pp.994–1013, 1993.

[9] Y. Yang and H. Casanova, “UMR: A multi-round algorithm for
scheduling divisible workloads,” Proc. International Parallel and
Distributed Processing Symposium (IPDPS’03), Nice, France, April
2003.

[10] Y. Yang and H. Casanova, “A multi-round algorithm for scheduling
divisible workload applications: Analysis and experimental evalua-
tion,” Technical Report of Dept. of Computer Science and Engineer-
ing, University of California CS20020721, 2002.

[11] O. Beaumont, A. Legrand, and Y. Robert, “Optimal algorithms
for scheduling divisible workloads on heterogeneous systems,”
Proc. International Parallel and Distributed Processing Symposium
(IPDPS’03), Nice, France, April 2003.

[12] C. Cyril, O. Beaumont, A. Legrand, and Y. Robert, “Schedul-
ing strategies for master-slave tasking on heterogeneous processor
grids,” Technical Report 2002-12, LIP, March 2002.

[13] A.L. Rosenberg, “Sharing partitionable workloads in heterogeneous
NOWs: Greedier is not better,” Proc. 3rd IEEE International Confer-
ence on Cluster Computing (Cluster 2001), pp.124–131, California,
USA, Oct. 2001.

[14] H. Yamamoto, M. Tsuru, and Y. Oie, “Parallel transferable uni-
form multi-round algorithm for achieving minimum application
turnaround times for divisible workload,” Proc. 2005 International
Conference on High Performance Computing and Communications
(HPCC-05), LNCS 3726, pp.817–828, Capri-Sorrento Penisular,
Italy, Sept. 2005.

[15] H. Yamamoto, M. Tsuru, and Y. Oie, “A parallel transferable uni-
form multi-round algorithm in heterogeneous distributed computing
environment,” Proc. 2006 International Conference on High Perfor-
mance Computing and Communications (HPCC-06), LNCS 4208,
pp.51–60, Munich, Germany, Sept. 2006.

[16] J. Jia, B. Veeravalli, and D. Ghose, “Adaptive load distribution
strategies for divisible load processing on resource unaware mul-
tilevel tree networks,” IEEE Trans. Comput., vol.56, no.7, pp.999–
1005, 2007.

[17] N.T. Loc and S. Elnaffar, “A dynamic scheduling algorithm for divis-
ible loads in grid environments,” J. Commun., vol.2, no.4, pp.57–64,
2007.

[18] M. Drozdowski and M. Lawenda, “Multi-installment divisible load
processing in heterogeneous distributed systems,” Concurrency and
Computation: Practice & Experience, vol.19, no.17, pp.2237–2253,
2007.

[19] X. Lin, Y. Lu, J. Deogun, and S. Goddard, “Multi-round real-time
divisible load scheduling for clusters,” Proc. 15th International Con-
ference on High Performance Computing, LNCS 5374 Bangalore,
India, Dec. 2008.

[20] S. Bhattacharyya, J.F. Kurose, D. Towsley, and R. Nagarajan, “Ef-
ficient rate-controlled bulk data transfer using multiple multicast
groups,” IEEE/ACM Trans. Netw., vol.11, no.6, pp.895–907, 2003.

[21] R.-H. Gau, Z.J. Haas, and B. Krishnamachari, “On multicast flow
control for heterogeneous receivers,” IEEE/ACM Trans. Netw.,
vol.10, no.1, pp.86–101, 2002.

[22] Z. Fei, M. Yang, M.H. Ammar, and E.W. Zegura, “A framework for
allocating clients to rate-constrained multicast servers,” J. Comput.
Commun., vol.26, no.12, pp.1255–1262, 2003.

Appendix A: Derivation of Application Turnaround
Time Treal

Derivation process of the application turnaround time Treal

under PTUMR is illustrated in Fig. A· 1. In this figure,

1. comm−1,Nv = 0;
2. FOR (k = 1; k ≤ Nv; k + +)
3. comp−1,k = 0;
4. }
5.
6. FOR (j = 0; j < M − 1; j + +){
7. commj,1 = commj−1,Nv +

(C j,1

B1
+ E1

)
;

8. FOR (k = 2; k ≤ Nv; k + +){
9. commj,k = commj,k−1 +

(C j,k

Bk
+ Ek

)
;

10. }
11. FOR (k = 1; k ≤ Nv; k + +){
12. compj,k = max{compj−1,k, commj,k} +

(C j,k

S k
+ Δk

)
;

13. }
14. }
15.
16. commM−1,1 = commM−2,Nv +

(
Clast,1

B1
+ E1

)
;

17. FOR (k = 2; k ≤ Nv; k + +){
18. commM−1,k = commM−1,k−1 +

(
Clast,k

Bk
+ Ek

)
;

19. }
20. FOR (k = 1; k ≤ Nv; k + +){
21. compM−1,k = max{compM−2,k, commM−1,k} +

(
Clast,k

S k
+ Δk

)
;

22. }
23.
24. Treal = max

k
{compM−1,k};

Fig. A· 1 Derivation process of application turnaround time Treal.

compj,k and commj,k are defined as the time when the virtual
worker k completes processing chunks received in Round j,
and when the master finishes transmitting the chunk to the
virtual worker k in Round j, respectively.

The derivation process of Treal consists of three phases.
In the first phase, we recursively derive the time at which
each virtual worker completes processing chunks received
in each round. This is shown in Fig. A· 1, line 6–14. Ex-
cept for the last round (Round M-1), the size C j,k of the
chunk transmitted to the virtual worker k in Round j is de-
rived according to Eqs. (7) and (8). In the second phase,
the time when each virtual worker completes processing
the last chunks is given on line 16–22. Note that the size
of the last chunk, which is denoted by Clast,k, for the vir-
tual worker k, should be chosen in a way that every virtual
worker completes the processing of its last chunk with one
accord, thereby preventing any virtual worker from enter-
ing the idle state before the entire workload has been finally
processed. We call it the last-chunk alignment. The need for
the last-chunk alignment arises from the difference in time at
which each virtual worker began to process its initial chunk.
Finally, Treal can be obtained on line 24.

Appendix B: Derivation of Application Turnaround
Time Tideal under Ideal Assumption

First we derive T ′ideal, which is the ideal application
turnaround time in case without the last-chunk alignment,
as follows.

T ′ideal =

Nv∑
k=1

(
C0,k

Bk
+ Ek

)
+

M−1∑
j=0

(
C j,Nv

S Nv
+ ΔNv

)
. (A· 1)

1678
IEICE TRANS. COMMUN., VOL.E95–B, NO.5 MAY 2012

which indicates the time at which the virtual worker Nv com-
pletes processing the chunk received in the last round.

Next we consider the last-chunk alignment to reduce
the application turnaround time. In order to have all virtual
workers to complete processing the last round chunk with
one accord, the master modifies the size of chunks allocated
to virtual workers in the last round. Here, the difference
Dk in the time required for the virtual worker k to perform
computation of the last chunk and that for the virtual worker
Nv is expressed as follows.

Dk=

Nv∑
K=k+1

dk=

(
Clast,k

S k
+Δk

)
−
(
Clast,Nv

S Nv
+ΔNv

)
. (A· 2)

where dk indicates the difference in time at which the virtual
worker k − 1 starts computing the last chunk and the time at
which the virtual worker k starts computing the last chunk.
In our method, it is assumed that the amount of all chunks
received by all virtual workers in the last round in case with
the last-chunk alignment is equal to that in case without the
last-chunk alignment. For this assumption, from Eq. (A· 2),
the relation between the total size wM−1 of the last chunks
and the size Clast,Nv of the last chunk allocated to the virtual
worker k can be formulated as follows.

Clast,Nv =
S Nv∑Nv
k=1 S k

⎧⎪⎪⎨⎪⎪⎩wM−1+

Nv∑
k=1

S k

⎛⎜⎜⎜⎜⎜⎜⎝Δk−
Nv∑

K=k+1

dK

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

− S Nv×ΔNv . (A· 3)

In PTUMR, the difference in the time at which the master
starts allocating the initial chunk to the virtual worker k − 1
and that to the virtual worker k becomes dk, because the
computation time in each round is assumed to be identical
for all virtual workers. Therefore, dk is given by

dk =
C0,k

Bk
+ Ek. (A· 4)

Under the last-chunk alignment, the application
turnaround time Tideal is smaller than that T ′ideal in case with-
out the alignment by the difference in the computation time
of the chunk of CM−1,Nv and that of Clast,Nv . Therefore, from
Eqs. (A· 2), (A· 3) and (A· 4), Tideal is formulated as follows.

Tideal = T ′ideal−
{(

CM−1,Nv

S Nv
+ΔNv

)
−
(
Clast,Nv

S Nv
+ΔNv

)}
,

=
1∑Nv

k=1 S k

⎧⎪⎪⎨⎪⎪⎩W + M ×
Nv∑

k=1

(S k × Δk)

+

Nv∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣S k ×
k∑

t=1

⎛⎜⎜⎜⎜⎜⎜⎝
αt×

(
1−θ

1−θM ×(W−Mγ)+γ
)
+βt

Bt
+Et

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(A· 5)

Hiroshi Yamamoto received M.E. and D.E.
degrees from Kyushu Institute of Technology,
Iizuka, Japan in 2003 and 2006, respectively.
From April 2006 to March 2010, he worked at
FUJITSU LABORATORIES LTD., Kawasaki,
Japan. Since April 2010, he has been an As-
sistant Professor in the Department of Electri-
cal Engineering, Nagaoka University of Tech-
nology. His research interests include com-
puter networks, distributed applications, and
networked services. He is a member of the

IEEE.

Masato Tsuru received B.E. and M.E.
degrees from Kyoto University, Japan in 1983
and 1985, respectively, and then received his
D.E. degree from Kyushu Institute of Technol-
ogy, Japan in 2002. He worked at Oki Electric
Industry Co., Ltd., Information Science Center,
Nagasaki University, and Japan Telecom Infor-
mation Service Co., Ltd. In 2003, he moved to
the Department of Computer Science and Elec-
tronics, Kyushu Institute of Technology as an
Associate Professor, and then has been a Profes-

sor in the same department since April 2006. His research interests include
performance measurement, modeling, and management of computer com-
munication networks. He is a member of the ACM, IPSJ, and JSSST.

Katsuyuki Yamazaki received B.E. and
D.E. degrees from the University of Electro-
communications and Kyushu Institute of Tech-
nology in ’80 and ’01, respectively. At KDD Co.
Ltd., he had been engaged in R&D and interna-
tional standardization of ISDN, S.S. No.7, ATM
networks, L2 networks, IP networks, mobile and
ubiquitous networks, etc., and was responsible
for R&D strategy of KDDI R&D Labs. He is
currently a Professor of Nagaoka University of
Technology.

Yuji Oie received B.E., M.E. and D.E. de-
grees from Kyoto University, Kyoto, Japan in
1978, 1980 and 1987, respectively. From 1980
to 1983, he worked at Nippon Denso Company
Ltd., Kariya. From 1983 to 1990, he was with
the Department of Electrical Engineering, Sa-
sebo College of Technology, Sasebo. From 1990
to 1995, he was an Associate Professor in the
Department of Computer Science and Electron-
ics, Faculty of Computer Science and Systems
Engineering, Kyushu Institute of Technology, Ii-

zuka. From 1995 to 1997, he was a Professor in the Information Technol-
ogy Center, Nara Institute of Science and Technology. Since April 1997,
he has been a Professor in the Department of Computer Science and Elec-
tronics, Faculty of Computer Science and Systems Engineering, Kyushu
Institute of Technology. His research interests include performance eval-
uation of computer communication networks, high speed networks, and
queueing systems. He is a fellow of the IPSJ and a member of the IEEE.

