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Abstract Recently, we have presented a method of prob-

abilistic prediction of chaotic time series. The method

employs learning machines involving strong learners cap-

able of making predictions with desirably long pre-

dictable horizons, where, however, usual ensemble mean

for making representative prediction is not effective when

there are predictions with shorter predictable horizons.

Thus, the method selects a representative prediction from

the predictions generated by a number of learning machi-

nes involving strong learners as follows: first, it obtains

plausible predictions holding large similarity of attractors

with the training time series and then selects the repre-

sentative prediction with the largest predictable horizon

estimated via LOOCV (leave-one-out cross-validation).

The method is also capable of providing average and/or

safe estimation of predictable horizon of the representative

prediction. We have used CAN2s (competitive associative

nets) for learning piecewise linear approximation of non-

linear function as strong learners in our previous study, and

this paper employs bagging (bootstrap aggregating) to

improve the performance, which enables us to analyze the

validity and the effectiveness of the method.

Keywords Probabilistic prediction of chaotic time series �
Long-term unpredictability � Attractors of chaotic time

series � Leave-one-out cross-validation � Estimation of

predictable horizon

1 Introduction

So far, a number of methods for time series prediction have

been studied (cf. [1, 2]), and our methods have awarded 3rd

and 2nd places in the competitions of time series prediction

held at IJCNN’04 [3] and ESTSP’07 [4], respectively. Our

methods have used model selection methods evaluating

MSE (mean square prediction error) for holdout and/or

cross-validation datasets. Recently, we have developed

several model selection methods for chaotic time series

prediction [5, 6]. The method in [5] utilizes moments of

predictive deviation as ensemble diversity measures for

model selection in time series prediction and achieves better

performance from the point of view of MSE than the con-

ventional holdout method. The method in [6] uses direct

multistep ahead (DMS) prediction to apply the out-of-bag

(OOB) estimate of MSE. Although both methods have

selected the models to generate good predictions on average,

they cannot always have provided good predictions, espe-

cially when the horizon to be predicted is large. This is

owing mainly to the fact that the MSE of a set of predictions

is largely affected by a small number of predictions with

short predictable horizons even if most of the predictions

have long predictable horizons. This is because the predic-

tion error of chaotic time series increases exponentially with

the increase in time after the predictable horizon (see [6] for

the analysis and [1] for properties of chaotic time series).

Instead of using model selection methods employing the

estimation of the MSE, we have developed a method of

probabilistic prediction of chaotic time series [7]. Here, from

[8], the probabilistic prediction has come to dominate the

science of weather and climate forecasting, mainly because

the theory of chaos at the heart of meteorology shows that

for a simple set of nonlinear equations (or Lorenz’s equa-

tions shown below) with initial conditions changed by
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minute perturbations, there is no longer a single determin-

istic solution and hence all forecasts must be treated as

probabilistic. Although most of the methods shown in [8]

use ensemble mean for representative forecast, our method

in [7] (see below for details) uses an individual prediction

selected from a set of plausible predictions for the repre-

sentative because our method employs learning machines

involving strong learners capable of making predictions with

small error for a desirably long duration and we can see that

ensemble mean does not work when the set of predictions

for the ensemble involves a prediction with short pre-

dictable horizon. This is owing mainly to the exponential

increase in prediction error of chaotic time series after the

predictable horizon (see Sect. 3.2 for details)

Thus, instead of using ensemble mean, our method in [7]

firstly selects plausible predictions by means of evaluating

the similarity of attractors between training and predicted

time series and then obtains the representative prediction

by means of LOOCV (leave-one-out cross-validation) to

select the prediction with longer predictable horizon.

Comparing with our previous methods using the MSE for

model selection [5, 6], the method in [7] has an advantage

that it is capable of selecting the representative prediction

from plausible predictions for each start time of prediction

and providing the estimation of predictable horizon. Fur-

thermore, it has achieved long predictable horizons on

average. However, there are several cases where the

method selects representative prediction with short pre-

dictable horizon, although there are plausible predictions

with longer predictable horizons.

To overcome this problem, this paper tries to improve

the performance of learning machines by using bagging

(bootstrap aggregating) method and show the analysis of

LOOCV predictable horizon. Here, the bagging is known

to use ensemble mean to have an ability to reduce the

variance of predictions by single learning machines, and

then, we can expect that the performance in time series

prediction becomes more stable and higher. Note that, in

this paper, the bagging ensemble is employed for iterated

one-step-ahead (IOS) prediction of time series, and we deal

with probabilistic prediction as an ensemble of longer-term

predictions. Furthermore, we use CAN2 (competitive

associative net 2) as a learning machine (see [3] for the

details of CAN2), where CAN2 has been introduced for

learning piecewise linear approximation of nonlinear

function and the performance has been shown in evaluating

predictive uncertainty challenge [9], where our method has

been awarded the first place in regression problems. The

CAN2 has been used in our methods [3, 4] for the com-

petitions of time series predictions shown above.

We show the present method of probabilistic prediction

of chaotic time series in Sect. 2, experimental results and

analysis in Sect. 3, and the conclusion in Sect. 4.

2 Probabilistic prediction of chaotic time series

2.1 IOS prediction of chaotic time series

Let yt ð2 RÞ denote a chaotic time series for a discrete time

t ¼ 0; 1; 2; . . . satisfying

yt ¼ rðxtÞ þ eðxtÞ; ð1Þ

where rðxtÞ is a nonlinear target function of a vector xt ¼
ðyt�1; yt�2; . . .; yt�kÞT generated by k-dimensional delay

embedding from a chaotic differential dynamical system (see

[1] for the theory of chaotic time series). Here, yt is obtained

not analytically but numerically, and then, yt involves an error

eðxtÞ owing to an executable finite calculation precision. This
indicates that there are a number of plausible target functions

rðxtÞ with allowable error eðxtÞ. Furthermore, in general, a

time series generated with higher precision has small predic-

tion error for longer duration of time from the initial time of

prediction. Thus, let a time series generated with a high pre-

cision (or 128-bit precision; see Sect. 3 for details), be ground

truth time series y
½gt�
t , while we examine predictions generated

with standard 64-bit precision.

Let yt:h ¼ yt ytþ1. . .ytþh�1 denote a time series with the

initial time t and the horizon h. For a given training time

series ytg:hg
ð¼ y

½train�
tg:hg

Þ, we are supposed to predict succeed-

ing time series ytp:hp
for tp � tg þ hg. Then, we make the

training dataset D½train� ¼ fðxt; ytÞ j t 2 I½train�g for I½train� ¼
ft j tg þ k� t\tg þ hgg to train a learning machine. After

the learning, the machine executes IOS prediction by

ŷt ¼ f ðxtÞ ð2Þ

for t ¼ tp; tpþ1; . . ., recursively, where f ðxtÞ denotes pre-

diction function of xt ¼ ðxt1; xt2; . . .; xtkÞ whose elements

are given by xtj ¼ yt�j for t � j\tp and xtj ¼ ŷt�j for

t � j� tp. Here, we suppose that yt for t\tp is known as the

initial state for making the prediction ŷtp:hp . As explained

above, we execute the prediction with standard 64-bit

precision, and we may say that there are a number of

plausible prediction functions f ðxtÞ with small error for a

duration of time from the initial time of prediction by

means of using strong learning machines.

2.2 Single CAN2 and the bagging for IOS prediction

We use CAN2 as a learning machine. A single CAN2 has

N units. The jth unit has a weight vector

wj,ðwj1; . . .;wjkÞT 2 Rk�1 and an associative matrix (or a

row vector) Mj , ðMj0;Mj1; . . .;MjkÞ 2 R1�ðkþ1Þ for

j 2 IN,f1; 2; . . .;Ng. The CAN2 after learning the training

dataset D½train� ¼ fðxt; ytÞ j t 2 I½train�g approximates the

target function rðxtÞ by
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byt ¼ eycðtÞ ¼ McðtÞext; ð3Þ

where ext , ð1; xTt Þ
T 2 Rðkþ1Þ�1 denotes the (extended)

input vector to the CAN2, and eycðtÞ ¼ McðtÞext is the output

value of the c(t)th unit of the CAN2. The index c(t) indi-

cates the unit who has the weight vector wcðtÞ closest to the

input vector xt, or cðtÞ, argminj2IN kxt � wjk: Note that the
above prediction performs piecewise linear approximation

of y ¼ rðxÞ and N indicates the number of piecewise linear

regions. We use the learning algorithm shown in [10]

whose high performance in regression problems has been

shown in evaluating predictive uncertainty challenge [9].

We obtain bagging prediction by means of using a

number of single CAN2s as follows (see [11, 12] for

details); let D½na];j� ¼ fðxt; ytÞ j t 2 I½na
];j�Þg be the jth bag

(multiset, or bootstrap sample set) involving na elements,

where the elements in D½na];j� are resampled randomly with

replacement from the training dataset D½train� involving n ¼
jD½train�j elements. Here, a ð[ 0Þ indicates the bag size ratio
to the given dataset, and j 2 J½bag�,f1; 2; . . .; bg. Here, note
that a ¼ 1 is used in many applications (see [12, 13]),

which we use in the experiments shown below after the

tuning of a (see [12] for validity and effectiveness of using

variable a). Using multiple CAN2s employing N units after

leaning D½na]�
; j, which we denote h½j�N ð2 HN,fh½j�N j j

2 J½bag�gÞ, the bagging for predicting the target value rtc ¼
rðxtcÞ is done by

ŷ
½h½bag�

N
�

t ,
1

b

X

j2J½bag�
ŷ
½j�
t � ŷ

½j�
t

D E

j2J½bag� ð4Þ

where ŷ
½j�
tc ,ŷ½j�ðxtcÞ denotes the prediction by the jth

machine h½j�N . The angle brackets �h i indicate the mean, and

the subscript j 2 J½bag� indicates the range of the mean. For

simple expression, we sometimes use h�ij instead of

h�ij2J½bag� in the following.

2.3 Probabilistic prediction and estimation

of predictable horizon

2.3.1 Similarity of attractors to select plausible predictions

First, we make a number of IOS predictions ŷtp:hp ¼ y
½hN �
tp:hp

by means of learning machines or CAN2s, hN 2 H, with

different number N of units, where H indicates the set of

all learning machines. We employ single and bagging

CAN2s, which we denote h½single�N and h½bag�N , respectively, if

necessary. We suppose that there are a number of plausible

prediction functions f ð�Þ ¼ f ½hN �ð�Þ, and we have to remove

implausible ones. To have this done, we select the fol-

lowing set of plausible predictions:

Y
½Sth�
tp:hp

¼ y
½hN �
tp;hp

�

�

�

�

S y
½hN �
tp;hp

; y
½train�
tg:hg

� �

� Sth; hN 2 H

� �

ð5Þ

where

S y
½hN �
tp;hp

; y
½train�
tg:hg

� �

,

P

i

P

j a
½hN �
ij a

½train�
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i

P

j a
½hN �
ij

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i

P

j a
½train�
ij

� �2
r

ð6Þ

denotes the similarity of two-dimensional attractor (tra-

jectory) distributions a
½hN �
ij and a

½train�
ij of time series y

½hN �
tp;hp

and

y
½train�
tg:hg

, respectively, and Sth is a threshold. Here, the two-

dimensional attractor distribution, aij, of a time series yt:h is

given by

aij ¼
X
tþh�1

s¼t

1
ys � v0

Da

� 	

¼ i ^ ysþ1 � v0

Da

� 	

¼ j

� �

; ð7Þ

where v0 is a constant less than the minimum value of yt for

all time series and Da indicates a resolution of the distri-

bution. Furthermore, 1fzg is an indicator function equal to

1 if z is true, and 0 if z is false, and b�c indicates the floor

function.

2.3.2 LOOCV measure to estimate predictable horizons

Let us define predictable horizon between two predictions

y
½hN �
tp:hp

and y
½hN0 �
tp:hp

in Y
½Sth�
tp:hp

as

h y
½hN �
tp:hp

;y
½hN0 �
tp:hp

� �

¼max h
�

� 8s\h�hp; jy½hN �tpþs� y
½hN0 �
tpþsj�ey

n o

;

ð8Þ

where ey indicates the threshold of prediction error to

determine the horizon. Then, we employ LOOCV method

to estimate predictable horizon of y
½hN �
tp:hp

in Y
½Sth�
tp:hp

. Namely,

we use

~h
½hN �
tp:hp

¼ h y
½hN �
tp:hp

; Y
½Sth�
tp:hp




fy½hN �tp:hp
g

� �

¼ h y
½hN �
tp:hp

; y
½hN0 �
tp:hp

� �D E

y
½h
N0 �

tp :hp
2Y ½Sth �

tp :hp




fy½hN �
tp :hp

g
;

ð9Þ

which we call LOOCV measure of predictable horizon or

LOOCV predictable horizon. Here, we expect that

h y
½hN �
tp:hp

; Y
½Sth�
tp:hp




fy½hN �tp:hp

� �

and h y
½hN �
tp:hp

; y
½gt�
t

� �

have positive

correlation by means of assuming that Y
½Sth�
tp:hp

involves a

number of predictions neighboring y
½gt�
t .
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2.3.3 Probabilistic prediction involving longer LOOCV

predictable horizons

Let a subset of plausible predictions involving longer

LOOCV predictable horizons be

Y
½Hth;Sth�
tp:hp

¼ y
½hrðiÞ�
tp:hp

�

�

�

�

i

jY ½Sth�
tp:hp

j
�Hth

8

<

:

9

=

;

; ð10Þ

where rðiÞ denotes the order of LOOCV predictable hori-

zons satisfying ~h
½hrðiÞ�
tp:hp

� ~h
½hrðiþ1Þ�
tp:hp

for i ¼ 1; 2; . . .; jY ½Sth�
tp:hp

j. The
threshold Hth ð0\Hth � 1Þ indicates the ratio of the number

of elements in Y
½Hth;Sth�
tp:hp

and Y
½Sth�
tp:hp

, or Y
½Hth;Sth�
tp:hp

�

�

�

�

�

� ¼ Hth Y
½Sth�
tp:hp

�

�

�

�

�

�.

Now, we derive the probability of the prediction yt for

tp � t\tp þ hp as

p vi � yt\viþ1ð Þ ¼ 1
y
½h�
t � v0

Dv

$ %

¼ i

( )* +

h2H½Hth;Sth
�

ð11Þ

where H½Hth;Sth
� is the set of parameters h of learning

machines which have generated y
½h�
tp:hp

2 Y
½Hth;Sth�
tp:hp

, and Dv

denotes the resolution of yt, and vi ¼ iDv þ v0 for

i ¼ 0; 1; 2; . . .. Note that the probability pðvi � yt � viþ1Þ
indicates how much the plausible predictions in Y

½Hth;Sth�
tp:hp

take the values in between vi and viþ1.

2.3.4 Representative prediction and estimation

of predictable horizon

Now, we provide y
½hrð1Þ�
tp:hp

as a representative prediction, and

an estimation of the predictable horizon h
½hrð1Þ�
tp:hp

¼

h y
½hrð1Þ�
tp:hp

; y
½gt�
tp:hp

� �

as

ĥ
½hrð1Þ�
tp:hp

¼ min hðy½hrð1Þ�tp:hp
; y

½h�
tp:hp

Þ
�

� 8yhtp:hp 2 Y
½Hth;Sth�
tp:hp




y
½hrð1Þ�
tp:hp

n o

;

ð12Þ
where we have to tune Hth from the point of view of

accuracy and safeness. Here, the safe estimation of ĥ
½hrð1Þ�
tp:hp

indicates that ĥ
½hrð1Þ�
tp:hp

is smaller than or equal to the actual

predictable horizon h
½hrð1Þ�
tp:hp

, and we can see that ĥ
½hrð1Þ�
tp:hp

become safer with the increase in Hth.

3 Numerical experiments and analysis

3.1 Experimental settings

We use the Lorenz time series, as shown in Fig. 1 and [6],

obtained from the original differential dynamical system

given by

dxc

dtc
¼ rðyc � xcÞ;

dyc

dtc
¼ �xczc þ rxc � yc;

dzc

dtc
¼ xcyc � bzc;

ð13Þ

for r ¼ 10, r ¼ 28 and b ¼ 8=3. Here, we use tc for con-

tinuous time and t ð¼ 0; 1; 2; . . .Þ for discrete time related

by tc ¼ tT with the sampling time or the embedding delay

T ¼ 25 ms. We have generated the time series y
½gt�
t ¼

xcðtTÞ for t ¼ 1; 2; . . .; 5000 from the initial state

ðxcð0Þ; ycð0Þ; zcð0ÞÞ ¼ ð�8; 8; 27Þ via the fourth-order

Runge–Kutta method with step size Dt ¼ 10�4 and r ¼
128-bit precision of GMP (GNU multiprecision library).

Using y
½train�
tg:hg

¼ y
½gt�
0:2000, we make the training dataset

D½train� ¼ fðx½gt�t ; y
½gt�
t Þ j t 2 I½train�g for I½train� ¼ f10 ð¼

kÞ; 11; . . .; 1999g and x
½gt�
t ¼ ðy½gt�t�1; . . .; y

½gt�
t�kÞ

T
. For learning

machines hN , we have employed single CAN2s h½single�N and

bagging CAN2s h½bag�N with the number of units

N ¼ 5þ 20i ði ¼ 0; 1; 2; . . .; 14Þ. After the training, we

execute IOS prediction ŷt ¼ f ½hN �ðxtÞ for t ¼ tp; tp þ 1; . . .

with the initial input vector xtp ¼ ðy½gt�tp�1; . . .; y
½gt�
tp�kÞ for pre-

diction start time tp 2 Tp ¼ f2000þ 100i j i ¼
0; 1; 2; . . .; 29g and prediction horizon hp ¼ 500. We show

experimental results for the embedding dimension being

k ¼ 10 and the threshold in (8) being ey ¼ 10 (see [7] for

the result with k ¼ 8, which is not significantly but slightly

different).

-20
-15
-10

-5
 0
 5

 10
 15

y t

 0  1000  2000  3000  4000  5000
t

 20Fig. 1 Lorenz time series yt for

t ¼ 0; 1; 2; . . .; 4999, or ground

truth time series y
½gt�
0:5000
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In order to estimate the accuracy of y
½gt�
t , we have

obtained an average predictable horizon

h y
½gt�
t:500; y

½Dt¼10�5;r¼128�
t:500

� �D E

t2Tp
¼ 230 steps (=5.75 s/

25 ms) for the time series y
½Dt¼10�5;r¼128�
t:500 generated with

Dt ¼ 10�5 and r ¼ 128-bit precision via the Runge–Kutta

method. This indicates that y
½gt�
t with Dt ¼ 10�4 and r ¼

128 is considered to be accurate during 230 steps on

average because we have observed that predictable horizon

of two time series generated by the Runge–Kutta method

with step sizes Dt ¼ 10�n and 10�n�1 for n ¼ 3; 4; 5; 6; 7

increases monotonically with the decrease in step size or

the increase in n.

Here, note that we have executed several experiments

with using the parameter h ¼ ðN; kÞ for k ¼ 6, 8, 10, 12

and so on, and we do not have found out any critically

different results, although we would like to execute and

show the results of comparative study in our future

research.

3.2 Results and analysis

First, we show an example of all predictions y
½hN �
tp:hp

for tp ¼
2300 in Fig. 2a. Note that tp ¼ 2300 is the start time of

representative prediction y
½hrð1Þ�
tp:hp

with predictable horizon

h
½hrð1Þ�
tp:hp

being smaller than 100 by single CAN2 (actually

h
½h½single�

rð1Þ �
tp:hp

¼ 72) and improved by bagging CAN2 as h
½h½bag�

rð1Þ �
tp:hp

¼
183 (see Fig. 3a).

In Fig. 2b, we can see that single CAN2s have larger

number of predictions with the similarity S smaller than

Sth ¼ 0:8 than bagging CAN2s at t ¼ 2799, and their pre-

dictions are not selected as plausible predictions. A

detailed analysis of the similarity is shown below.

The representative prediction y
½hrð1Þ�
tp:hp

(green) shown in

(c) is chosen by means of selecting the largest LOOCV

predictable horizon ~h
½hrð1Þ�
tp:hp

shown in (d). From (d), we can

see that the single CAN2 (left) has actual predictable hori-

zon h
½hN �
tp:hp

larger than 200 and LOOCV predictable horizon

~h
½hN �
tp:hp

smaller than 100, actually ðh½hN �tp:hp
; ~h

½hN �
tp:hp

Þ ¼ ð209; 72:1Þ.
Since the present method selects the prediction with the

largest ~h
½hN �
tp:hp

, the prediction with h
½hN �
tp:hp

¼ 209 could not

have selected. On the other hand, we can see that bagging

CAN2 (right in (d)) successfully selects the prediction with

h
½hN �
tp:hp

larger than 100, actually ðh½hN �tp:hp
; ~h

½hN �
tp:hp

Þ ¼ ð183; 191Þ.
Precisely, bagging CAN2s have successfully provided

large ~h
½hN �
tp:hp

¼ 191 because there are a number of predictions

with long predictable horizons around h
½hN �
tp:hp

¼ 200 as

shown as the group of points neighboring h
½hN �
tp:hp

¼ 200 in

(d) on the right-hand side. Incidentally, from (c), we can

see that ensemble mean does not seem appropriate for

producing representative prediction in long-term prediction

of chaotic time series.

In Fig. 3, we show the results of actual and estimated

predictable horizons. Note that we have obtained

h y
½gt�
t:500; y

½Dt¼5�10�4;r¼64�
t:500

� �D E

t2Tp
¼ 172 steps (=4.3s/25ms)

and h y
½gt�
t:500; y

½Dt¼10�3;r¼64�
t:500

� �D E

t2Tp
¼ 142 steps (=3.55 s/

25 ms) and the former is almost the same as the mean of

predictable horizons achieved by single and bagging CAN2

being 170 and 175 steps, respectively. This indicates that

single and bagging CAN2s after learning the training data

generated via the Runge–Kutta method with the step size

Dt ¼ 10�4 have almost the same prediction performance as

the Runge–Kutta method with Dt ¼ 5� 10�4. Although

we do not have no general measure to evaluate time series

prediction so far, the above method using the step size of

Runge–Kutta method and the mean predictable horizon

seems reasonable. In Fig. 3a, we can see that the perfor-

mance of the stability of prediction by single CAN2 is

improved by bagging CAN2 from the point of view that the

former has four actual predictable horizons h
½h½single�

rð1Þ �
tp:hp

smaller

than 100 among all predictions for tp 2 Tp and bagging

CAN2 has achieved all h
½h½bag�

rð1Þ �
tp:hp

larger than 100. From (b), we

can see that the estimated predictable horizon ĥ
½hrð1Þ�
tp:hp

with

Hth ¼ 0:5 is almost the same as actual predictable horizon

h
½hrð1Þ�
tp:hp

, while Hth ¼ 0:9 has achieved safe estimation, or

ĥ
½hrð1Þ�
tp:hp

� h
½hrð1Þ�
tp:hp

,

In order to analyze the property of the method, we show

the attractor distribution of training and representative time

series in Fig. 4. We can see that the similarity of attractors

Sðy
½h½single�

rð1Þ �
tp:hp

; y
½train�
tg:hg

Þ ¼ 0:859 obtained by single CAN2 is

smaller than Sðy
½h½bag�

rð1Þ �
tp:hp

; y
½train�
tg:hg

Þ ¼ 0:939 obtained by bagging

CAN2. From the result on the left in Fig. 2b, we can see

that there is a prediction with the similarity larger than

0.859 for single CAN2. Actually, the maximum similarity

of single CAN2s is 0.931. The prediction y
½hrSð1Þ�
tp:hp

with the

maximum similarity of attractors in plausible predictions

has a possibility to be used for selecting a representative
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prediction, where hrSð1Þ indicates the learning machine with

the maximum similarity. The comparison between h
½hrð1Þ�
tp:hp

and h
½hrSð1Þ�
tp:hp

is shown in Fig. 5a, where h
½hrSð1Þ�
tp:hp

seems com-

petitive with h
½hrð1Þ�
tp:hp

for single CAN2, but worse for bagging

CAN2. To analyze much more, we have examined the

correlation rðS½hN �tp:hp
; h

½hN �
tp:hp

Þ between the similarity S
½hN �
tp:hp

¼
Sðy½hN �tp:hp

; y
½train�
tg:hg

Þ and the predictable horizon

h
½hN �
tp:hp

¼ hðy½hN �tp:hp
; y

½train�
tg:hg

Þ, as well as the correlation
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Fig. 2 Experimental results obtained by single CAN2s (left) and

bagging CAN2s (right) for the prediction start time tp ¼ 2300 and the

horizon hp ¼ 500. The top row, a, shows superimposed original

predictions y
½hN �
tp :hp

. b Shows time evolution of similarity S of attractors,

and the predictions with S� Sth ¼ 0:8 at t ¼ tp þ hp � 1 ¼ 2799 are

selected as plausible predictions. c Shows selected plausible

predictions y
½hN �
tp :hp

as well as ground truth time series y
½gt�
t (red) and

representative prediction y
½hrð1Þ �
tp :hp

(green). d Shows the relationship

between actual predictable horizons h
½hN �
tp :hp

and LOOCV pre-

dictable horizons ~h
½hN �
tp :hp

of plausible predictions (colour figure online)
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rð~h½hN �tp:hp
; h

½hrSð1Þ�
tp:hp

Þ as shown in Fig. 5b. From this result, there

are a number of cases with positive low or negative value

of correlations. In particular, the correlation of similarity,

rðS½hN �tp:hp
; h

½hN �
tp:hp

Þ, has few cases with the values larger than 0.5

for both single and bagging CAN2. This suggests that the

selection of representative prediction by using the simi-

larity measure is not so reliable. On the other hand, bagging

CAN2 has larger number of cases with the correlations

larger than 0.5 as we can see the thick line of

rð~h½hN �tp:hp
; h

½hrSð1Þ�
tp:hp

Þ on the right-hand side in Fig. 5b. Further-

more, we can see that there are several cases of tp with

negative correlations rð~h½hN �tp:hp
; h

½hrSð1Þ�
tp:hp

Þ in (b), and the

corresponding predictable horizons h
½hrð1Þ�
tp:hp

in (a) are shorter

than the neighboring (w.r.t. tp) horizons. This correspon-

dence seems reasonable because negative correlation does

not contribute to the selection of the prediction with large

predictable horizon. Thus, we have to remove the cases of

negative correlations. So far, we have two approaches: one

is to improve the performance of learning machine much

more as we have done with the bagging method in this

paper, and the other is to refine the selection method by

means of modifying LOOCV predictable horizon or

developing new methods. Actually, we have predictions

with much longer predictable horizons not shown in this

paper, but we cannot select such predictions without

knowing the ground truth time series, so far.
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Fig. 3 Experimental result of a actual predictable horizons h
½h½single�

rð1Þ �
tp :hp

and h
½h½bag�

rð1Þ �
tp :hp

, and b estimated predictable horizon ĥ
½h½bag�

rð1Þ �
tp :hp

with Hth ¼ 0:9

and 0.5 for tp ¼ 2300. The mean of the predictable horizons is

h
½h½single�

rð1Þ �
tp :hp

� �

tp2Tp

¼ 170, h
½h½bag�

rð1Þ �
tp :hp

� �

tp2Tp

¼ 175, ĥ
½h½bag�

rð1Þ �
tp :hp

� �

tp2Tp ;Hth¼0:9

¼

115 and ĥ
½h½bag�

rð1Þ �
tp :hp

� �

tp2Tp;Hth¼0:5

¼ 182, respectively
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Fig. 4 Experimental result of attractor distribution: a a
½train�
ij of

training time series y
½train�
tg :hg

, b a
½h½single�

rð1Þ �
ij of the representative prediction

y
½h½single�

rð1Þ �
tp :hp

obtained by single CAN2 with rð1Þ ¼ N ¼ 145, and c a
½h½bag�

rð1Þ �
ij

of the representative prediction y
½h½bag�

rð1Þ �
tp :hp

obtained by bagging CAN2

with rð1Þ ¼ N ¼ 225, at t ¼ 2799. The resolution of the distributions

is Da ¼ ðvmax � v0Þ=40 ¼ ð18:5� ð�18:5ÞÞ=40 ¼ 0:925. The simi-

larity Sðy
½h½single�

rð1Þ �
tp :hp

; y
½train�
tg :hg

Þ ¼ 0:859 and Sðy
½h½bag�

rð1Þ �
tp :hp

; y
½train�
tg :hg

Þ ¼ 0:939
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4 Conclusion

We have presented a performance improvement in the

method for probabilistic prediction of chaotic time series

by means of using bagging learning machines. The method

obtains a set of plausible predictions by means of using

similarity of attractors between training and predicted time

series. And then, it provides representative prediction

which has the longest LOOCV predictable horizon. By

means of executing numerical experiments using single

and bagging CAN2s, we have shown that bagging CAN2

improves the performance of single CAN2 and analyzed

the relationship between LOOCV and actual pre-

dictable horizons. In our future research studies, we would

like to overcome the problem of negative correlation

between the achieved predictable horizon and the LOOCV

predictable horizon, or the measure of selecting represen-

tative prediction.
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