
TCP Network Coding with Enhanced
Retransmission for Heavy and Bursty Loss

著者 Vietha Nguyen, Kumazoe Kazumi, Tsuru Masato
journal or
publication title

IEICE Transactions on Communications

volume 100
number 2
page range 293-303
year 2016-08-09
URL http://hdl.handle.net/10228/00006300

doi: info:doi/10.1587/transcom.2016EBP3101

IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017
293

PAPER
TCP Network Coding with Enhanced Retransmission for Heavy
and Bursty Loss

Nguyen VIET HA†a), Student Member, Kazumi KUMAZOE††b), and Masato TSURU†c), Members

SUMMARY In general, Transmission Control Protocol (TCP), e.g.,
TCP NewReno, considers all losses to be a sign of congestion. It decreases
the sending rate whenever a loss is detected. Integrating the network cod-
ing (NC) into protocol stack and making it cooperate with TCP (TCP/NC)
would provide the benefit of masking packet losses in lossy networks, e.g.,
wireless networks. TCP/NC complements the packet loss recovery capabil-
ity without retransmission at a sink by sending the redundant combination
packets which are encoded at the source. However, TCP/NC is less effec-
tive under heavy and bursty loss which often occurs in fast fading chan-
nel because the retransmission mechanism of the TCP/NC entirely relies
on the TCP layer. Our solution is TCP/NC with enhanced retransmission
(TCP/NCwER), for which a new retransmission mechanism is developed
to retransmit more than one lost packet quickly and efficiently, to allow en-
coding the retransmitted packets for reducing the repeated losses, and to
handle the dependent combination packets for avoiding the decoding fail-
ure. We implement and test our proposal in Network Simulator 3. The
results show that TCP/NCwER overcomes the deficiencies of the original
TCP/NC and improves the TCP goodput under both random loss and burst
loss channels.
key words: TCP, Network coding, enhanced retransmission, dependence
retransmission, heavy loss, bursty loss

1. Introduction

The transmission control protocol (TCP) remains the domi-
nant transport protocol for reliable end-to-end data transmis-
sion. However, its performance is considerably degraded in
lossy networks for two main reasons. First, loss-based con-
gestion control recognizes packet losses as a network con-
gestion signal although non-congestion origin packet losses
often occur in lossy networks. Thus, TCP reduces the send-
ing rate mistakenly. Second, long latency often occurs in
wireless networks that results in a large round trip time
(RTT) in the TCP process, which yields a slow recovery
from the reduced sending rate and packet loss. To overcome
these problems, while a wide array of wireless network-
oriented TCP variants have been proposed, e.g., TCP West-
wood+; a different promising approach, TCP with network
coding (TCP/NC), has also been presented [1] which is more
dominant than TCP variants (mentioned in Sect. 4).

Manuscript received March 14, 2016.
Manuscript revised July 4, 2016.
Manuscript publicized August 9, 2016.
†The authors are with the Graduate School of Computer Sci-

ence and Systems Engineering, Kyushu Institute of Technology,
Iizuka-shi, 820-8502 Japan.
††The author is with the Network Design Research Center, Kyu-

shu Institute of Technology, Iizuka-shi, 820-8502 Japan.
a) E-mail: nvha@infonet.cse.kyutech.ac.jp
b) E-mail: kuma@ndrc.kyutech.ac.jp
c) E-mail: tsuru@cse.kyutech.ac.jp

DOI: 10.1587/transcom.2016EBP3101

TCP/NC complement the packet loss recovery capac-
ity by allowing the source to send m combination packets
(referred to as combinations) created from n original pack-
ets with m≥n. We expect that a sink can recover the lost
packets without retransmission by using the remaining com-
binations. The combination and the recovering processes
are called encoding and decoding. The main advantages
of TCP/NC are a high degree of robustness to packet loss
and potential throughput improvement for TCP. Within the
scope of the current study, TCP/NC is considered as a type
of TCP with a forward error correction coding. Neverthe-
less, we use the term TCP/NC here according to existing
studies. Some studies consider the encoding and the decod-
ing processes at the end nodes and the relay nodes [2]. In
this paper, we focus only on processing at the source and the
sink, not at the intermediate nodes.

In [3], the authors proposed a basic model of TCP/NC
and its architecture. They added a new layer between the
TCP and internet layer called NC layer shown in Fig. 1. Due
to the fact that TCP/NC is a type of block coding, it divides
all original packets to smaller groups called coding window
(CW) that carry n packets and processes the encoding as
well as decoding independently on each CW. Two basic pa-
rameters affecting the efficiency of TCP/NC are the redun-
dancy factor (R) and the recovery capacity of one CW (k).
R=m

n is the ratio of combination to original packet. In other
words, it shows the recovery ability of the system. R can
be chosen based on the link loss rate. If the link loss rate
is high, a large R can improve the goodput performance;
whereas, for a low link loss rate, a large R incurs the unnec-
essary redundancy and reduces the goodput.

The recovery capacity of one CW (k=m−n) is also un-
derstood as the number of accepted losses of each CW which
can be recovered without retransmission. It can be called
briefly as “the CW recovery capacity”. k is chosen based
on the types of channels, the time taken by the sink to wait

Fig. 1 The network coding Sub-layer in the TCP/IP model.

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers

294
IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017

for decoding (decoding delay) and the hardware limitations.
In the fast fading wireless channel, the occurrence proba-
bility of the burst loss and the situation are increased, in
which the number of losses in each CW exceeding k. There-
fore, a large k can improve throughput. However, a large k
implies that m and n are large; thus, the buffer of the NC
layer (NC buffer), the combination overhead, the processing
complexity and the decoding delay become large [4]. Fur-
thermore, if k is too large, the source cannot be aware of
congestion even though the congestion origin burst packet
losses occurs; thus, it cannot reduce its sending rate in a
timely manner, which may cause more congestion and fur-
ther performance degradation. Therefore, choosing k should
be considered to ensure a balance among the burst loss re-
covery ability and other limitations.

Since the setting of a large k is not always the solu-
tion, an efficient retransmission mechanism for burst loss
with the number of lost packets beyond k is of practical im-
portance for TCP/NC. However, the retransmission mecha-
nism of TCP/NC is not efficient because it entirely relies on
TCP layer which can only retransmit the lost packets one at
a time. The sink must wait for a long period to receive a
sufficient number of the retransmitted packets, then recover
all original packets and release the NC buffer.

Another shortcoming of TCP/NC is the dependent
combinations which are generated by the random coeffi-
cients selection. Dependent combinations will more likely
happen when a large k is used to increase the burst loss re-
cover ability. Consequently, the sink cannot decode all pack-
ets even though it receives enough combinations.

In our work, to make TCP/NC more effective in prac-
tice, to implement two new retransmissions schemes, for-
ward retransmission (FR) and dependence retransmission
(DR). With FR scheme, the system can recognize exactly
which packets are lost and retransmit multiple lost pack-
ets sequentially and efficiently rather than sending only one
lost packet in one RTT as original TCP/NC. With the DR
scheme, the system can determine and retransmit the suit-
able packets to solve the dependence problem. Thus, the k
can be increased to a large value to increase the burst loss re-
covery ability. Besides the two retransmission schemes, we
propose to encode all retransmitted packets to prevent the
repeated packet losses which cause an increase of the num-
ber of TCP timeout situations. The combination of FR, DR
and encoding the retransmitted packets schemes are called
enhanced retransmission (ER). The definition of all proto-
cols used in this paper are described in Table 1.

The ER is controlled by NC layer. To limit the adjust-

Table 1 Definition of protocol terms.

Term Definition
TCP/NC or original
TCP/NC

TCP with network coding [1],[3]

TCP/NCwDR TCP/NC with dependence retransmission
TCP/NCwFR TCP/NCwDR with forward retransmission
TCP/NCwER TCP/NC with enhanced retransmission (the

combination of TCP/NCwFR and encoding
the retransmitted packets)

ment of the system and for future evolution, we do not di-
rectly change the original TCP/NC system. We implement
new modules that operate in parallel with the old system.
Note that one of the functional objectives of the proposed
scheme is similar to TCP selective acknowledgment (TCP-
SACK). However, it is difficult for TCP layer to exactly de-
termine packet losses on the sink side in a timely manner
owing to the structure of TCP/NC.

The remainder of this paper is organized as follows. In
Sect. 2, we describe the fundamental concept of NC in TCP.
The proposed protocol is presented in Sect. 3. Simulations
and results are described in Sect. 4 and the conclusions is
discussed in Sect. 5.

2. TCP with Network Coding Overview

2.1 Integrating Network Coding to Protocol Stack

The study of TCP/NC in [1], [3] proposed the implemen-
tation of NC in the protocol stack with minor changes by
adding the NC layer between the TCP and internet layer,
as shown in Fig. 1. The NC layer executes the encod-
ing/decoding process and sets the ACK number of ACK
packets by using the degree of freedom concept and the
seen/unseen definition [5]. This layer is designed to be com-
pletely transparent with higher and lower layers. Thus, if all
losses can be recovered by NC layer, TCP is unaware of any
loss events occurring and keeps increasing the congestion
window (CWND) to improve the performance.

2.2 Recovering the Lost Packet by Network Coding

2.2.1 Encoding

Encoding is a combination of n TCP segments to produce m
combinations with m≥n. Based on the channel states, m and
n are defined as constant numbers or variable numbers [6].
n is also referred as the size of one coding window. Each
combination can contain one or many TCP segments, and
each TCP segment is multiplied by coefficient α. Combina-
tion C is created by Eq. (1). The coefficients can be chosen
depended on the purpose of use. TCP/NC system uses ran-
dom linear network coding (RLNC [7]) algorithm; thus, the
coefficients are selected randomly. On the other hand, when-
ever receiving a new TCP segment, TCP/NC uses a sliding
method to create one combination. The maximum sliding
size, i.e., the coding sliding window, equals the maximum
number of TCP segments in one combination or equals k+1.
For example, in Fig. 2, four packets (n=4) are encoded to
six combinations (m=6) at the source. Hence the CW size is
four and the coding sliding window is three.

C[i] =
n∑

j=1

αi j p j ; i = 1, 2, 3, ...,m (1)

2.2.2 Decoding

At any time, when the sink receives sufficient combinations,

VIET HA et al.: TCP NETWORK CODING WITH ENHANCED RETRANSMISSION FOR HEAVY AND BURSTY LOSS
295

Fig. 2 Network coding process.

it will attempt to decode by using an inverse matrix function,
e.g., the Gauss-Jordan elimination method. In case the re-
ceived combination cannot be decoded to the original pack-
ets, the sink will store them in NC buffer and wait for the
new combinations. In Fig. 2, C[1] to C[6] are sent through a
lossy network, C[2] and C[3] are lost. Until C[6] is received,
the sink has four equations and four unknown variables. Us-
ing the Gauss-Jordan elimination method, four packets can
be decoded even though two combinations are lost.

RLNC generates coefficients randomly; thus, it can-
not guarantee that all combinations are linearly independent.
The sink may not decode all the original packets despite of
receiving sufficient combinations. With a large coefficient
value (e.g., in a GF(28)), the probability of creating the lin-
ear dependent combination is negligible [8]. However, in
long TCP session, this problem still happens and makes the
system interrupt (the result is shown in Sect. 4.1). Therefore,
we propose the solution to overcome this problem described
in Sect. 3.2.

2.3 TCP Functionality

2.3.1 Acknowledgement Mechanism

In TCP/NC system, in cases of a lost packet caused by the
lossy channel, TCP layer should not aware of this event
but should continue increasing the CWND. This process
achieves a high stability and fast data transfer. Note that the
number of lost packets must be less than the CW recovery
capacity k. Otherwise, TCP needs to know the losses and re-
transmits them. TCP/NC uses the seen definition to redefine
the ACK number in the ACK packet. TCP/NC does not send
an ACK packet for a received packet or a decoded packet; it
sends ACK packets for the degree of freedom [5].

Definition 1 (seeing a packet). A node is said to have
seen a packet p if it has enough information to compute a
linear combination of the form (p+q), where q is itself a
linear combination involving only packets that arrived after
p at the sender [5].

In Fig. 2, when combination C[i] is received, pi is al-
ways expressed to the set of pk with k>i; thus, all packets
are seen.

When C[1] is received: p1 = p1 + 0p2
When C[4] is received: p2 =

1
3 (C[4] − 2p3 − p4)

Fig. 3 Retransmission mechanism in original TCP/NC system.

When C[5] is received: p3 =
1
3 (C[5] − 2p4)

When C[6] is received: p4 = C[6] − 0p5
For every new seen packet, the sink returns an ACK

packet whose ACK number corresponds to the smallest un-
seen packet even if all seen packets have not been decoded.
The source simply forwards this ACK number to TCP layer;
therefore, the TCP layer is unaware that a loss has occurred
and it continues increasing the CWND. In Fig. 2, the k is
equal to 2; thus, the system can work normally with two lost
combinations. As a result, although C[2] and C[3] are lost,
all packets are seen sequentially; thus, the CWND continues
to increase. When the last combination C[6] is received, all
original packets are decoded.

2.3.2 Retransmission and Congestion Control Mechanism

TCP/NC just attempts to use the original retransmission
and congestion control mechanisms of TCP layer. In other
words, NC layer is completely transparent in these mecha-
nisms.

When the number of lost packets exceeds the CW re-
covery capacity, the sink will return ACK packets with the
same value of the smallest sequence number of an unseen
packet. At the source, NC layer simply forwards this in-
formation to TCP layer which makes retransmission deci-
sions based on triple duplicate ACKs or timeout events. Fig-
ure 3 shows the standard retransmission mechanism in four
lost combinations. This example assumes that k is 1; thus,

296
IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017

three packets must be retransmitted to decode all the original
packets. TCP/NC needs to retransmit the three unseen pack-
ets p2, p3 and p4. The retransmission process finishes after
the source receives the ACK packet used to confirm p14. In-
creasing and decreasing CWND for controlling congestion
are processed by TCP layer. In this example, TCP/NC needs
three times to retransmit the combinations. It takes a long
time to start increasing CWND. To shorten the waiting time,
we propose the new retransmission technique described in
Sect. 3.1.

3. Enhanced Retransmission Scheme

The simplest idea of the enhanced retransmission has been
presented in [9]. It is brought back in this paper with new
improvements, which make it become more realistic. The
enhanced retransmission includes three functions, forward
retransmission, the encoding of retransmitted packets and
dependence retransmission.

3.1 Forward Retransmission Scheme

In this section, we discuss the forward retransmission
scheme, which can quickly adapt to the burst losses. If the k
is larger than 1, TCP/NC can recover the burst losses. How-
ever, as mentioned in Sect. 1, k must be limited. If the size
of the burst losses is large, TCP layer should retransmit the
oldest unseen packets and decrease the CWND to avoid con-
gestion. However, the original TCP/NC does not have an
independent retransmission mechanism; it depends entirely
on TCP layer. The retransmitted packets are sent at different
RTTs. Therefore, TCP/NC takes a long time for retransmis-
sion. Return to the example in Fig. 3, the original TCP/NC
takes three RTTs to retransmit all the unseen packets p2, p3
and p4.

TCP must retransmit all lost packets; however,
TCP/NC needs to retransmit only the unseen packets. Tech-
nically, the system has to know how many lost combina-
tions and how many unseen packets occur. Consequently,
the system can indicate how many packets must be retrans-
mitted and sequentially retransmit them in one RTT after
receiving the first transmitted packet from TCP layer. This
method helps to shorten the retransmission time to reduce
the entire flow transfer time. In Fig. 4, the proposed sys-
tem sequentially sends p2, p3 and p4. After the NC layer
receives the retransmitted p2 from the TCP layer, it deter-
mines other unseen packets (p3, p4) to retransmit following
p2. The retransmission process finishes after the source re-
ceives the ACK packet used to confirm p10. To achieve this
goal, we must implement three additional functions, i.e., de-
termining the number of packet losses, enabling the retrans-
mission process, and retransmitting lost packets in NC layer
that are explained in the next subsections.

3.1.1 Determining the Number of Lost Packets

First, NC layer must know the total lost packets to deter-

Fig. 4 Retransmission mechanism in TCP/NCwFR system.

Fig. 5 The NC header (above) and the NC-ACK header.

Table 2 The description of the NC header and NC-ACK header fields.

Field name Description
S rcPort The source port number
DestPort The destination port number
Pid The packet identity
Pkt status The packet status
Base The sequence number (SN) of the oldest packet in

the NC buffer of the source. Using for buffer man-
agement in the sink.

N The number of original packets in the combination
SN1 The SN of the first original packet
SNn Equals SNn− SN1
Sizen The payload size of n-th packet
αn The n-th NC coefficient
Pid-reply The packet identity echo reply
R The redundancy indicate flag
D The dependence indicate flag
SN of depen-
dence pkt

The SN of the dependence packet

mine which lost packets should be retransmitted. We pro-
pose to use some additional information besides the normal
TCP header; thus, the new header called NC-ACK header
is added. We add the new Packet-id (Pid) field to the NC
header as well as the new Packet-id echo-reply field (Pid-
reply) and redundancy-indicate flag (R-flag) in the NC-ACK
header, as shown in Fig. 5 and Table 2. Each combination
has a unique Pid number. With each received combination,
the sink will return the ACK packet which has the Pid-reply
number equal to the Pid number in this combination. Af-
ter receiving the ACK packet, the source can know exactly
which combination has been lost. With this loss counting

VIET HA et al.: TCP NETWORK CODING WITH ENHANCED RETRANSMISSION FOR HEAVY AND BURSTY LOSS
297

Fig. 6 The receiving ACK function at the source.

purpose, the sink has to return an ACK packet for all combi-
nations including the redundant combinations which should
be ignored by original TCP/NC. Therefore, the sink must
inform the source of which ACK packet is used only for
counting (rather than confirming) and does not forward to
the TCP layer. The sink will set the R-flag to 1 in the re-
turned ACK packet of the redundant combination.

To determine the starting time of the retransmission
(in Sect. 3.1.2) and which packets have to be retransmitted
(Sect. 3.1.3), NC layer stores the information of each CW
including the number of the lost packets, the CW recovery
capacity k, the Pids and the sequence number of the original
packets of each Pid. CWs are distinguished by the ordinal
number of them (CWid).

3.1.2 Enabling Retransmission Process

NC layer should retransmit the unseen packets; thus, it must
know the seen/unseen status of all transmitted packets. Af-
ter receiving the ACK packet, based on the stored sequence
numbers of original packets in each transmitted combina-
tion, the source can infer which packets had been seen or
unseen by the sink. In the left flowchart in Fig. 6, when
NC layer at the source receives an ACK packet, it will read
the Pid-reply and list all the sequence numbers combined in
the combination which has Pid equal to Pid-reply. Subse-
quently, NC layer can update the seen/unseen status of all
packets, as shown in the right flowchart in Fig. 6. Besides,
NC layer counts the number of lost packets and stores their
CWids. If the number of lost packets is greater than the
CW recovery capacity, the sink cannot decode all combina-
tions. NC layer adds this CWid to a list in NC buffer control
block called the retransmitted list (re list) which stores all
CWs containing the retransmitted packets. Disabling or en-
abling of the retransmission process will then be relied on
the empty or not empty status of re list. This list will be
cleaned when NC layer finishes retransmission process.

3.1.3 Retransmitting the Lost Packets

As mentioned previously, we use the advantages of the con-
gestion control of TCP. In our propose, the forward retrans-
mission scheme only processes after TCP layer decreases
CWND and retransmits a packet. The forward retransmis-

sion process is shown in Fig. 7. Basically, NC layer deter-
mines the CWid of the retransmitted packet (step 1), calcu-
lates the number of the retransmitted packets in each CWid
(step 2) and forwards them to the internet layer after adding
NC header (step 4).

As the main purpose of forward retransmission is to
retransmit multiple lost packets and to force the TCP layer
to assume that only one packet has been lost, NC layer for-
wards only one ACK packet that confirms the last unseen
packet in all retransmitted unseen packets to TCP layer. In
other words, NC layer will ignore all ACK packets until
receiving the ACK packet of the last retransmitted packet
as shown in Fig. 4. To know which ACK packet is needed
to forward to TCP layer, we manipulate the R-flag of NC-
ACK header that is used for indicating the ACK packet of
redundant combination. The sink will set this flag to 1 if the
received combination is the retransmitted combination, but
this combination is not the last one. The key issue is how the
sink determines which combination is the retransmitted one
and this is the last one. Thus, we propose to add a new infor-
mation to NC header called a packet status field. When NC
layer creates the combination for the retransmitted packets,
the packet status of the last retransmitted combination is set
to 2 in NC layer. For other retransmitted combinations, the
packet status is set to 1. If this is a normal combination, the
field is 0. Setting 1 or 0 for R-flag in NC-ACK header will
depend on the packet status field of 1 or 2 respectively.

There are three situations in which NC layer receives
a retransmitted packet from the TCP layer. First, the source
has already retransmitted the lost packets but the last one is
lost. This situation is called “lost the last” in Fig. 7. The
source just receives ACK packets whose R-flag is 1; hence
TCP layer has never received an ACK packet. In this sit-
uation, TCP layer retransmits the first combination of the
group of retransmitted combinations even if this packet has
been seen at the sink. When this packet arrives at NC layer,
NC layer creates and returns an ACK packet which has ACK
number equal to the sequence number of the unseen packet.
After that, TCP layer retransmits the actual lost packet.

The second situation is retransmission timeout. When
the retransmission time is exceeded, TCP layer will retrans-
mit a packet. NC layer checks whether the packet receiving
from TCP layer is in the retransmitted packet list (re p list)
or not, which is the list of retransmitted packets. If not, NC
layer simply adds it in the re p list shown in Fig. 7 at step
3.

Finally, in a normal situation, NC layer will determine
the number of CWids (num CWid) that has the packets
needed to retransmit (in Fig. 7 at step 1), and the number
of the retransmitted packets (at step 2). Moreover, the NC
layer needs to list all the retransmitted packets into re p list
for each CWids. After that, NC layer simply retransmits the
packets in re p list of each CWids sequentially (at step 4).

3.1.4 Encoding Retransmitted Packet Scheme

One of the reasons that causes a decrease in performance

298
IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017

Fig. 7 The forward retransmission function at the source.

Fig. 8 Encoding the retransmitted packets function at the source.

is the repeated loss which leads to an increase of the num-
ber of timeout situations. A larger value of link loss rate is,
the more repeated losses occur. In the forward retransmis-
sion scheme, if the last retransmitted combination is lost, the
timeout situation will be happened. To limit the repeated
loss, we propose the encoding of the retransmitted packets.

The encoding process of the retransmitted packets is
shown in Fig. 8. As our system handles packets in sepa-
rate CW, the encoding process is executed for each CW. In
this section, CW is referred to only those that contain the
retransmitted packets. In each CW, all the retransmit pack-
ets are sent one by one as the normal combinations which
have only one original packet. Then, all the retransmitted
packets will be encoded into ⌈R×num re⌉−num re combina-
tions where num re is the number of retransmitted packets.
To avoid confusion, the combination which is not created
from the encoding process is called an uncoded retransmit-
ted combination. The other is called a coded retransmitted
combination. Since there are some new types of the retrans-
mitted combinations, we supplement two states for packet
status variables increasing the total number of packet status
to five states which are described in Table 3.

Depend on the operation of the forward retransmission,
the source forwards only one ACK packet to the TCP layer
based on the R-flag in NC-ACK header. At the sink, in-
stead of assigning the last ACK packet as a forwarding ACK
packet, the new scheme has more choices which are deter-
mined based on the received packet status as shown in Fig. 9.

If the packet status is 0, the received combination is

Table 3 Packet status description.

Packet
status

Description

0 The normal combination
1 The coded/uncoded retransmitted combination which is not

in the last CW
2 The last uncoded retransmitted combination of the last CW
3 The coded retransmitted combination of the last CW
4 The last coded retransmitted combination of the last CW

Fig. 9 Packet status processing at the sink.

not the retransmitted combination. The sink simply checks
whether it is the redundancy combination or not and sets the
R-flag to 1 or 0, respectively.

If the packet status is 1, the received combination is
the retransmitted combination which has not created from
the retransmitted packets of the last CW. Because only one
ACK packet can be forwarded to TCP layer, the sink should
wait for the remaining retransmitted combinations. The R-
flag is always set to 1.

In the case of packet status is 2, the received combi-
nation is the last uncoded retransmitted combination of the
last CW. The system will check whether all the retransmitted
packets of this CW are decoded or not. If not, some uncoded
retransmitted combinations are lost; thus, NC layer waits for
the coded retransmitted combinations and set R-flag to be 1.
Otherwise, the R-flag is set 0.

If packet status is 3, the received combination is the

VIET HA et al.: TCP NETWORK CODING WITH ENHANCED RETRANSMISSION FOR HEAVY AND BURSTY LOSS
299

coded retransmitted combination of the last CW which is
used in case the uncoded retransmitted packets are lost. This
combination is combined from all the retransmitted packets
of the last CW. Thus, if it can be used to decode to new
packets, some uncoded retransmitted combinations, which
was lost, are recovered. Hence NC layer does not need to
wait for the other retransmitted combinations. The R-flag is
set to be 0. Conversely, it is set to 1.

Finally, the packet status is 4. The received combi-
nation is the last coded retransmitted combination. If this
combination can be used for decoding, it is not the redun-
dant combination. It means no ACK packet is forwarded to
TCP layer. Thus, the R-flag must be set to 0. Otherwise, it
is the redundant combination. The R-flag is set to 1.

In all cases the ACK number will be set to the smallest
sequence number of the lost combinations.

3.2 Dependence Retransmission Scheme

This part, we describe how to retransmit the suitable pack-
ets to solve problem of dependent combinations which cause
the failure of the decoding process. The type of retransmis-
sion and the retransmitted packet are called “dependence re-
transmission” and “dependence packet”, respectively.

As discussed above, to work well with a heavy and
bursty loss, a value of k should be higher than 1. In RLNC
method, the k that is greater than 2 can cause the depen-
dence combinations. The system cannot decode to origi-
nal packets even though all packets are “seen” at the sink.
Thus, the system must determine and retransmit the suitable
packets to solve this problem. However, it has two chal-
lenges. First, the packet that is the origin of the dependence
situation, might have been seen at the sink; hence the re-
turned ACK number will never equal to the sequence num-
ber of this packet. The second is how to make TCP layer
decrease the CWND to avoid buffer overloading. The nor-
mal retransmission method which uses only the ACK num-
ber to determine the retransmitted packet cannot be oper-
ated. Therefore, we propose the dependence retransmission
method which adds to the NC-ACK header a one bit Depen-
dent indicates flag (D-flag) and 2 bytes SN as a dependence
packet field (Dependence-SN). D-flag is used to inform the
source about the status of the dependence situation. If D-
flag is set, it means the dependence situation is happening;
thus, the source retransmits the packet having the sequence
number equal to Dependence-SN. Otherwise, the source op-
erates normally.

3.2.1 Determining the Suitable Packet to be Retransmitted

To specify a dependence packet, the sink uses an inverse ma-
trix method, e.g., the Gauss-Jordan elimination, to simplify
the coefficient matrix which is generated from the received
combinations. If the dependence situation happens, this has
some all-zero rows corresponding with the packets which
cannot be decoded and needed to be retransmitted. After de-
termining the dependence packets, sink sets D-flag to 1 and

Fig. 10 Preprocessing for retransmitted dependence packet at the source.

Dependence-SN to the smallest sequence number of depen-
dence packets in all returned ACK packets until the depen-
dence situation is solved. Moreover, to avoid the NC buffer
overloading caused by the inability of releasing the buffer,
the sink has to assign the ACK number to the last ACK num-
ber even though the packet, which has the sequence number
equal to this ACK number, might have been seen. Source al-
ways stores D-flag and Dependence-SN whenever receiving
the ACK packet. When the triple duplicate ACK condition
is matched, TCP layer retransmits a packet indicated from
the received ACK number. If this packet arrives at NC layer
and the D-flag is 1, a suitable packet which has the sequence
number equal to Dependence-SN will be sent. In case of the
retransmitted packet is seen, it will be ignored. By waiting
for the retransmitted packet from TCP layer to retransmit
the dependence packet, our proposed can take advantage of
TCP congestion control to prevent the buffer overloading.

3.2.2 Retransmitting the Suitable Packet

Basically, the dependence retransmission scheme uses the
retransmission mechanism of the forward retransmission
scheme to retransmit the dependence packet, which was dis-
cussed in the Sect. 3.1. Therefore, the main process of the
dependence retransmission is to force the forward retrans-
mission to retransmit the dependence packet even though no
loss packets needed to be retransmitted, as shown in Fig. 10.
When NC layer receives the retransmitted packet from TCP
layer, it specifies the dependence situation status through the
stored D-flag from the last ACK packet. If the flag is 0, this
packet is a normal retransmission; hence NC layer just sim-
ply forwards this packet to the forward retransmission pro-
cess. Otherwise, this packet is the dependence packet. That
means the dependence problem is happening. In the case
of the CWid of this packet is not in the retransmitted list
(re list) because there is no retransmitted packet, NC layer
adds this CWid to re list and sets the number of lost packet
of this CWid to k+1. Finally, the process will turn to the for-
ward retransmission process to retransmit the dependence
packet and the lost packets if there is any.

4. Simulation Result

The combination of the forward retransmission, encoding
the retransmitted packet and the dependence retransmission
is called the enhanced retransmission (TCP/NCwER). With
k>2, the original TCP/NC cannot work because of the linear

300
IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017

Fig. 11 Simulation topology 1: single flow.

Fig. 12 Simulation topology 2: multiple flows.

dependent combinations. Thus, TCP/NCwDR is used to re-
place it. Their performance are equal in the case that no de-
pendence problem occurs. To compare the goodput between
without encoding and encoding the retransmitted packets,
we use TCP/NCwFR and TCP/NCwER. The dependence
retransmission scheme is integrated in both of them.

The implementation of TCP/NCwER was accom-
plished using Network Simulator 3 (ns-3) [11]. The topol-
ogy of the simulation was a tandem network consisting of
four routers. In a first scenario, one source and one sink
were connected to four routers, as shown in Fig. 11. In a sec-
ond scenario, two sources and two sinks were employed, as
shown in Fig. 12. The source and the sink were at opposite
ends of the chains. All links had a bandwidth of 1 Mbps and
a propagation delay of 5 ms. The TCP type used in the sim-
ulation was NewReno, and the packet size was 1000 bytes.
The transferred data size was 100 Mbytes. In all simula-
tions, we performed the system at least 10 times to obtain
the average value.

4.1 Benefit of Using Dependence Retransmission

The first scenario (Fig. 11) is used in this simulation. In this
scenario, the link loss rate was set from 0 to 0.3. To evaluate
the goodput performance of the variants of TCP/NC over
such a wide range of link loss rate, we choose two values
of redundancy factor R, one is small (R=1.1) and the other
is large (R=1.5) unless otherwise noted. With the fixed R, n
can be calculated corresponding to k based on the equation
n= k

R−1 .
Figure 13 shows the evolution of dependence situations

versus the lost rate. The Y-axis represents the percentage
of the number of dependence situation over the number of
sending combination packets. Although the result is the av-
erage value of 20 iterations, it is not convergence. The rea-
son is that the number of the dependence situations is very
huge. Therefore, the simulation of the completed depen-
dence situation seems impossible. However, the result can
show the increasing trend of the dependence situation. It
is greater than 0 if the loss rate is increased. With the de-
pendence retransmission, our simulation can run to transfer
completely all 100 Mbytes data with link loss rate is 0.3.

Fig. 13 The dependence situations vs the link loss rate for TCP/NCwDR.

4.2 Performance of Single Flow

The first scenario which has the topology shown in Fig. 11
continues to be used to evaluate the fundamental effective-
ness of our proposed. The simulation was run in 2 types
of channel, random loss and burst loss. TCP NewReno and
TCP Westwood+ were used to compare to our proposed.

4.2.1 Random Loss Channel

The random loss channel simulates a slow fading channel
which causes the separated losses. At first, Fig. 14 and
Fig. 15 show all TCP/NC variants which have the recov-
ery ability significantly outperform TCP NewReno and TCP
Westwood+. Besides, Fig. 14 also indicates the efficiency of
increasing k. When k is increased from 1 to 6, the goodput
will be improved. Because the losses are dispersed, the per-
formance of system is not much improved when k is larger
than 2. The results indicate that a higher k is better.

In Fig. 15, we compare the goodput of three proto-
cols, TCP/NCwDR, TCP/NCwFR and TCP/NCwER. As
mentioned in Sect. 1, k should be limited; thus we set to
3 in this simulation. The goodput of TCP/NCwDR and
TCP/NCwFR are slightly different because the losses are
separated. However, when the link loss rate is increased,
separated losses exceed the CW recovery capacity. Related
to the retransmission capacity for multiple packets at once,
TCP/NCwFR performs better than TCP/NCwDR. While, if
TCP/NCwER is used, repeated losses is limited. The num-
ber of timeout situations is degraded which is shown in
Fig. 16. Therefore, the goodput is the best.

4.2.2 Burst Loss Channel

The burst loss channel simulates a fast fading channel e.g.,
mobile wireless channels. We use two types of the burst
loss model, one is a default burst loss model of ns-3 simula-
tor (NS3 burst loss model) and the other is a well-known
Gilbert burst loss model [12]. In NS3 burst loss model,
under a given link loss rate, the number of the continuous
packet losses in one loss event is chosen randomly from 1
to the changeable number l called “the max burst loss size”.
In this simulation, l is set at 3, 5 and 7. In the Gilbert burst

VIET HA et al.: TCP NETWORK CODING WITH ENHANCED RETRANSMISSION FOR HEAVY AND BURSTY LOSS
301

Fig. 14 The effect of k to the goodput performance in the random loss
channel.

Fig. 15 Goodput comparison among protocols in random loss channel.

Fig. 16 The timeout situation vs the link lost rate (R=1.1, k=3).

loss model, we cannot control the max burst loss size in con-
trast to NS3 burst loss model. The number of the continu-
ous packet losses in one loss event is totally random; thus,
we can only set the average burst loss size (L) under a given
link loss rate. To compare two types of burst loss model
with a “similar” setting, we calculate L of Gilbert burst loss
model based on l of NS3 burst loss model under the same
link loss rate. In the first case, we choose L so that the av-
erage burst loss size of Gilbert burst loss model is equal to
that of NS3 burst loss model with l, i.e., L=(l+1)/2. In the
second case, we choose L so that the 90-percentile of burst
loss size of Gilbert burst loss model is equal to that of NS3
burst loss model with l, i.e., L=1/(1−0.11/(0.9×l)).

NS3 burst loss channel: In this simulation, the max
burst loss size (l) is set at 3. The results are shown in Fig. 17
and Fig. 18. In Fig. 17, we can see the efficiency of increas-
ing k. Since the number of continuous losses is up to 3,
the goodput is significantly improved when the k is set to

Fig. 17 The effect of k to the goodput performance in NS3 burst loss
channel with l=3.

Fig. 18 Goodput comparison among protocols in NS3 burst loss channel
with l=3.

Fig. 19 Goodput comparison among protocols in NS3 burst loss channel
with l=5.

3 or greater compared to 2 or less. While the performance
of TCP/NCwDR and TCP/NCwFR are nearly the same in
the random loss channel in Fig. 15, their performance are
clearly different in the burst loss channel in Fig. 18. When
encoding the retransmitted packets is applied, the goodput
is improved significantly. We increase l to 5 or 7 in Fig. 19
and Fig. 20. The results remain constant, i.e., TCP/NCwER
always performs better than TCP/NCwDR, TCP NewReno
or TCP Westwood+.

Gilbert burst loss channel: l=5 is used to calculate L
in Gilbert burst loss channel. In case 1 mentioned above, L
is equal to 3. In case 2, L is equal to 2.4968. Fig. 21, and
Fig. 22 show the goodput comparison of TCP/NCwDR and
TCP/NCwER in three cases of the burst loss channel, which
are NS3 burst loss channel (NS3), Gilbert burst loss chan-
nel with L=3 (Gilbert1) and Gilbert burst loss channel with
L=2.4968 (Gilbert2), by applying two different redundancy

302
IEICE TRANS. COMMUN., VOL.E100–B, NO.2 FEBRUARY 2017

Fig. 20 Goodput comparison among protocols in NS3 burst loss channel
with l=7.

Fig. 21 Goodput comparison between TCP/NCwDR and TCP/NCwER
(R=1.1, k=3) in the burst loss channel.

Fig. 22 Goodput comparison between TCP/NCwDR and TCP/NCwER
(R=1.5, k=3) in the burst loss channel.

factor R, respectively. Although the conditions of channels
are different, the tendency of the goodput performance is
almost the same. The goodput of TCP/NCwER is always
better than TCP/NCwDR.

4.3 Performance of Multiple Flows

The topology shown in Fig. 12 is used to evaluate the pro-
posed scheme with multiple flows. To show a compatibility
of TCP/NCwER to TCP NewReno, a moderate link loss rate
is chosen to be 0.01. To recovery the losses, R is set at 1.01
and k is set at 1. The buffer size of the links was set at
100 packets. Source 1 began at t=0s and source 2 began
at t=300s. Every flow stops transferring data if it finishes
sending 100 Mbytes data. The current throughput was cal-
culated at intervals of 1s. We examined three cases. In case
1 and 2, two flows use the same protocol, TCP NewReno or

Fig. 23 Network congestion - two TCP NewReno flows in lossy net-
work.

Fig. 24 Network congestion - two TCP/NCwER flows in lossy network.

Fig. 25 Network congestion - one TCP and one TCP/NCwER flow in
lossy network.

TCP/NCwER. In case 3, the TCP/NCwER flow competes
with the TCP NewReno flow.

Figure 23 and Fig. 24 show that the fairness is satis-
fied. The time-averaged throughput over congestion period,
which is calculated from 300s until one flow finishes to
transfer, is nearly the same in two competitive flows. In
Fig. 23, the time-averaged throughput is 0.4983 Mbps and
0.5061 Mbps, respectively. And the time-averaged through-
put is 0.4968 Mbps and 0.5112 Mbps for two TCP/NCwER
flows in Fig. 24.

In Fig. 25, because of the lossy channel and the net-
work congestion, TCP flow decreases the sending rate for
every loss, on the contrary, TCP/NCwER flow can recover
the losses in many cases. Therefore, the time-averaged
throughput of TCP flow and TCP/NCwER over congestion
period, are 0.3688 Mbps and 0.6366 Mbps. The fairness is
not fully satisfied but it can be acceptable. When this sim-

VIET HA et al.: TCP NETWORK CODING WITH ENHANCED RETRANSMISSION FOR HEAVY AND BURSTY LOSS
303

ulation ran again with the link loss rate set to 0, the time-
averaged throughput were 0.4346 Mbps and 0.5702 Mbps.
Base on the results of both loss and no loss channel cases,
the compatibility can be accepted.

5. Conclusion

We proposed a method that avoids the two key deficiencies
of the original TCP/NC, the inefficiency retransmission and
the limitation of k. These shortages lead to the low perfor-
mance of the system in the heavy and bursty losses. Some
studies focus on methods which can dynamic change R and
k such as Self-Adaptive NC with TCP (SANC-TCP) [4]
and Adaptive NC with TCP (ANC-TCP) [6] for the vari-
ance channels. However, they do not respond in time when
the channel changes rapidly. With these unstable channels,
our proposed has advantages in determining the lost packets
and scheduling sequential retransmission in order to shorten
the retransmission time. It also can encode all the retrans-
mitted packets to prevent the repeated loss which causes
the increase of timeout situation. Moreover, our proposed
method can solve the dependence situation that causes the
failure decoding at the sink by determining and retransmit-
ting the suitable packets. We implemented the proposed
TCP/NCwER using ns-3. The simulation results demon-
strate that the proposed scheme can improve the goodput
of a system compared to the original TCP/NC, TCP West-
wood+ and TCP NewReno.

In this study, we adopted constant R and k. However,
in practice, the link loss rate varies in time, depending on
the channel state. In future, we will attempt to integrate
our proposed into adaptive TCP/NC, such as SANC-TCP
and ANC-TCP. Another enhancement direction can be con-
sidered are applying the congestion detection [13] into the
system to respond well with network congestion.

This work is partly supported by JSPS KAKENHI
(16K00130) and KDDI Foundation.

References

[1] J.K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J.
Barros, “Network coding meets TCP,” Proc. 28th Conf. on Comput.
Commun., Rio de Janeiro, Brazil, no.2, pp.280–288, April 2009.
DOI: 10.1109/INFCOM.2009.5061931

[2] C.C. Chen, C. Chen, S.Y. Oh, J.S. Park, M. Gerla, and
M.Y. Sanadidi, “ComboCoding: Combined intra-/inter-flow net-
work coding for TCP over disruptive MANETs,” Int. J. Ad-
vanced Research, vol.2, no.2, pp.241–252, May 2011. DOI:
10.1016/j.jare.2011.05.002

[3] J.K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proc. IEEE, vol.99, no.3, pp.490–512, Feb. 2011.
DOI: 10.1109/JPROC.2010.2093850

[4] C.Y. Cheng and H.Y. Yi, “Adaptive network coding scheme for TCP
over wireless sensor networks,” J. Comput. Commun. and Control,
vol.8, no.6, pp.800–811, Dec. 2013. DOI: 10.15837/ijccc.2013.6.26

[5] J.K. Sundararajan, D. Shah, and M. Medard, “ARQ for network
coding,” Proc. IEEE Int. Sym. on Info. Theory, Toronto, Canada,
pp.1651–1655, July 2008. DOI: 10.1109/ISIT.2008.4595268

[6] S. Song, H. Li, K. Pan, J. Liu and S Y R Li, “Self-adaptive TCP

protocol combined with network coding scheme,” Proc. 6th Conf.
on Sys. and Net. Commun., pp.20–25, Barcelona, Spain, Oct. 2011.

[7] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” Proc. IEEE
Int. Sym. on Info. Theory, Yokohama, Japan, June 2003. DOI:
10.1109/ISIT.2003.1228459

[8] C. Fragouli, J.L. Boudec. Shah, and J. Widmer, “Network coding:
an instant primer,” ACM/SIGCOMM Comput. Commun. Review,
vol.36, no.1, pp.63–68, Jan. 2006. DOI: 10.1145/1111322.1111337

[9] N.V. Ha, K. Kumazoe, and M. Tsuru, “TCP network coding with
forward retransmission,” Proc. IEEE of Asia Pacific Conf. on Wire-
less and Mobile, Bandung, Indonesia, pp.136–141, Aug. 2015. DOI:
10.1109/APWiMob.2015.7374970

[10] M.J. Kim, M. Medard, and J. Barros, “Modeling network
coded TCP throughput: A simple model and its validation,”
Proc. 5th Int. ICST Conf. on Perfor.e Eval. Methodologies
and Tools, Brussels, Belgium, pp.131–140, May 2011. DOI:
10.4108/icst.valuetools.2011.246509

[11] “Network simulator (ns-3),” https://www.nsnam.org/, accessed
March 1. 2016.

[12] C. Jiao, L. Schwiebert, and B. Xu, “On modeling the packet
error statistics in bursty channels,” Proc. 27th Local Com-
puter Networks, Florida, USA, pp.534–541, Nov. 2002. DOI:
10.1109/LCN.2002.118 1827

[13] S. Cen, P.C. Cosman, and G.M. Voelker, “End-to-end dif-
ferentiation of congestion and wireless losses,” J. IEEE/ACM
Trans. Netw., vol.11, no.5, pp.703–717, Oct. 2003. DOI:
10.1109/TNET.2003.818187

Nguyen Viet Ha received the B.S. de-
gree (2009), and M.S. degree (2012) in Elec-
tronics and Telecommunications, both from Ho
Chi Minh University of Science, Viet Nam. He
is currently a Ph.D student in Kyushu Institute
of Technology, Japan. His research interest are
transport layer protocols and network coding.
He is a student member of IEEE and IEICE.

Kazumi Kumazoe received the B.E. degree
(1993), M.E. degree (1995) and D.E. degree
(2007) in computer science from Kyushu Insti-
tute of Technology, Japan. Since April 2013, she
has been a visiting researcher at Network Design
Research Center, Kyushu Institute of Technol-
ogy. Her research interests are in various areas
of computer networks, including transport layer
protocols, network coding and network manage-
ment. She is a member of IEICE.

Masato Tsuru received the B.E. and M.E.
degrees from Kyoto University, Japan in 1983
and 1985, and then received his D.E. degree
from Kyushu Institute of Technology, Japan in
2002. He has been a professor in the department
of Computer Science and Electronics, Kyushu
Institute of Technology since 2006. His re-
search interests include performance measure-
ment, modeling, and management of computer
communication networks. He is a member of
the ACM, IEEE, IEICE, IPSJ, and JSSST.

