

バンプフォイル軸受の理論最大負荷容量に及ぼすト ップフォイルの浮上および取付状態の影響

著者	畠中 清史,生島 大喜
雑誌名	トライボロジスト
巻	54
号	8
ページ	561-565
発行年	2009-08-01
URL	http://hdl.handle.net/10228/00006254

速報論文

バンプフォイル軸受の理論最大負荷 容量に及ぼすトップフォイルの浮上 および取付状態の影響

 自
 中
 清
 史
 九州工業大学 情報工学部機械情報工学科
 (〒 820-8502 福岡県飯塚市川津 680-4)
 生
 島
 大
 喜
 九州工業大学 大学院生
 (同
 上)

原稿受付 2009年4月7日 "トライボロジスト" 第54巻 第8号 (2009) 561~565

Abstract A bump foil journal bearing is a prospective applicant that can support a small-sized rotor of high-speed rotary machinery. However, a theoretical model that can make a reasonable prediction of the bearing performance has not been developed. The authors have predicted the maximum load carrying capacity of the bearing by using two model bearings, one of which corresponds to the bearing with an excessive static friction between the top and the bump foils and the other to the bearing without the friction. However, the top foil could not lift off the bump foil in the model bearings. In this report, the effect of lifting of top foil and also mounting style of top foil on the bearing housing on the predicted capacity will be investigated. It is found that their effect is little when excessive static friction is acted between the two foils. This results from their negligible influence on the distribution of air film pressure. On the other hand, the effect is also little when the friction is negligible. This is because only a slight change in the reaction force of air film arises although they affect the pressure distribution through a larger deformation of top foil.

1. はじめに

バンプフォイル軸受¹⁾は、マイクロガスタービンなどの小型,軽量の高速回転軸を支える軸受に 採用されている.この軸受は、軸受面を構成する トップフォイルとこれを弾性支持するバンプフォ イルからなる(Fig.1).

著者らは既報²³⁾において、この軸受の最大負 荷容量と安定限界速度を理論予測した.この解析 で用いたモデル軸受では、トップフォイルがバン プフォイルから浮上することを考慮していない. このため、先広がりすきま部のように、空気膜内 で発生する圧力(以下、空気膜圧力)が大気圧よ りも低い圧力(以下、負圧)となり、トップフォ イルが空気膜厚さを小さくする方向に変形するよ うな範囲では、バンプフォイルの引戻し作用のた めにその変形が抑制されると考えられる.一方、 そこの空気膜圧力は軸受性能に影響することが判 明した⁴⁾.このため、トップフォイルの浮上を考 慮すると、それら軸受性能の理論予測値が影響を 受けると考えられる.

本研究では、トップフォイルの浮上を考慮でき るように既報^{2,3)}のモデル軸受を修正し、理論最 大負荷容量に対するトップフォイルの浮上の影響 について調べることとする.

Effect of Lifting of Top Foil and Its Mounting Style on Predicted Maximum Load Carrying Capacity of Bump Foil Journal Bearings

By Kiyoshi HATAKENAKA, Department of Mechanical Information Science and Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology (680-4, Kawazu, Iizuka-shi, Fukuoka 820-8502) and Taiki SHOJIMA, Student, Graduate School, Kyushu Institute of Technology (ditto)

Key Words: hydrodynamic bearing, gas bearing, foil journal bearing, load carrying capacity, lifting off, mounting style

なお、フォイル軸受の実機では、空気膜のトル クに引きずられてトップフォイルが回転しないよ うに、その一端を軸受ハウジングに溶接する¹⁾、 あるいは、そこを折り曲げて軸受ハウジングのス リットに挿入する⁵⁾などの対策が取られている. これに依存して軸受面の終端部(以下、トップフ オイル後縁)付近におけるトップフォイルの変形 度合いが変わるので、本研究では、この影響につ いても調べることにする.

本論文では無次元量による解析を行う.使用する主な記号は次の通りである.無次元量の定義(有次元量との関係)は文献3)に掲載されている.

$E_{ m tf}$:トップフォイル曲げ剛性
$\{F\}$: 空気膜圧力に等価な全体系節点荷重
	ベクトル
$\{F_{p}\}$: 組立予圧によるトップフォイルの初
	期変位に等価な全体系節点荷重ベク
	トル
Η	:空気膜厚さ
$H_{ m cr}$: 許容最小すきま
${H}_{\min}$: 最小空気膜厚さ
H_{tf}	:トップフォイルの半径方向変位
[K]	: 全体系剛性行列
$[K_{\rm bf}]$: バンプ等価ばね行列
$K_{ m bf}$: バンプ等価ばねのばね定数
$M_{\rm p}$:予圧係数
Р	: 空気膜圧力
$P_{ m at}$:周囲圧力
$X_{\mathbf{j}}$, $Y_{\mathbf{j}}$:円周方向,水平方向の偏心率
Ζ	:軸方向座標(原点は軸受幅中央)
${m eta}_{ m tf}$:トップフォイル張り角
Г	: 軸受荷重
${\varGamma}_{ m max}$:最大負荷容量
$\{\Delta\}$: 全体系節点変位ベクトル
θ	: 円周方向座標(原点はトップフォイ
	ル前縁)
$ heta_{ m pt}$: バンプ等価ばねを配置する間隔
${m heta}_{ m st}$: 鉛直上方から測ったトップフォイル
	前縁のθ方向座標(Fig. 1)
Λ	:軸受幅径比
${ au}_{ m tf}$:トップフォイル厚さ
ϕ	:偏心角(Fig. 1)

本解析では、既報^{2,3)}に倣い、トップフォイル とバンプフォイルとの間に作用する静摩擦力が極 めて大きい場合に相当するモデル軸受〔Fig.2 の (a1)と(a2)〕、トップフォイルに作用する摩擦力 を無視できる場合に相当するモデル軸受〔Fig.2 の(b1)と(b2)〕に対して、定常圧縮性等粘度レイ ノルズ方程式

$$\frac{\partial}{\partial \theta} \left[PH^3 \frac{\partial P}{\partial \theta} \right] + \frac{1}{4A^2} \frac{\partial}{\partial Z} \left[PH^3 \frac{\partial P}{\partial Z} \right] = \Omega \frac{\partial (PH)}{\partial \theta}$$
(1)

トップフォイルの変形方程式

$$([K] + [K_{bf}]) \{\Delta\} = \{F\} + \{F_{p}\}$$
 (2)

水平軸に作用する力の釣合い式

-54-

$$\frac{1}{2\Gamma} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{0}^{\beta_{tt}} (P - P_{at}) \cos(\theta + \theta_{st}) d\theta dZ + 1 = 0 \quad (3.a)$$

$$\frac{1}{2\Gamma} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{0}^{\beta_{\text{it}}} (P - P_{\text{at}}) \sin(\theta + \theta_{\text{st}}) d\theta dZ = 0 \quad (3.b)$$

を連立して解き,最大負荷容量を予測する.式(1) から式(3)までは,空気膜厚さ式

$$H = 1 + X_i \cos(\theta + \theta_{\rm st}) + Y_i \sin(\theta + \theta_{\rm st}) + H_{\rm tf} (4)$$

を介して相互に関連している.

既報²⁾では、トップフォイルの変位にかかわら ず、トップフォイルは必ずバンプフォイルと接触 しており、条件によっては、トップフォイルがバ ンプフォイルから引張力を受ける場合も許すとい う軸受モデルを設定した.これに対して、本研究 では、トップフォイルの浮上を考慮し、また、実 機におけるトップフォイルの取付状態と対応させ るため、既報²⁾に対して、次の修正を行うことに する.

まず,モデル軸受については,既報²⁰のモデル A(以下,モデルA0),モデルB(以下,モデル B0)のいずれにおいても,バンプ等価ばね支持部 におけるトップフォイルの半径方向変位(空気膜 厚さを広くする向きを正の方向とする)が $-M_p$ を 下回ると,トップフォイルがバンプフォイルから 浮上すると判定する.浮上する場合は,トップフ ォイルはバンプ等価ばねからの反力を受けないと する.また,トップフォイルの端部を折り曲げて 軸受ハウジングのスリットに挿入する場合に対応 するモデル[Fig.2の(a1)と(b1)]を1で,トッ プフォイルを軸受ハウジングに溶接で取り付ける 場合に対応するモデル[Fig.2の(a2)と(b2)]を2 で表すことにする.

式(1),式(3),式(4)に対する修正はない.これ に対し、トップフォイルの変形方程式(2)では、ト ップフォイルの浮上がある場合には、そこのバン プ等価ばね支持部における等価ばね定数を0とす る.モデルA1とモデルA2(以下、モデルA0と 合わせて、モデルA)では、等価ばね支持部にお

 Table 1
 Constants for prediction of maximum load carrying capacity

いてトップフォイルの浮上がなければ、その支持 部では円周方向変位は生じないという拘束条件を 与える.一方、トップフォイルが浮上する支持部 に対しては、トップフォイルが円周方向にも変位 できるようにする.また、モデル A1 とモデル B1 ではトップフォイル後縁は円周方向には変位でき ないものの半径方向には変位できるとする.一方、 モデル A2 とモデル B2 ではトップフォイル後縁は 円周方向にも半径方向にも変位できないとする.

本解析では、既報²⁾と同様に、式(1)から式(4) を解いて求めた最小空気膜厚さ H_{\min} が許容最小 すきま H_{cr} (=0.05) に等しくなる軸受荷重を最大 負荷容量 Γ_{\max} とする.なお以下では、モデル B0, B1, B2 を合わせてモデル B と表記する.

3. 結果および考察

まず、空気膜の圧力と厚さならびにトップフォ イルの半径方向変位に対するトップフォイルの浮 上の影響を、トップフォイルの浮上が最も生じや すい予圧係数 $M_p = 0$ に対して調べた. Table 1³⁰ に示す仕様のフォイル軸受のうち、軸受荷重 $\Gamma = 0.2$ の場合の軸受幅中央における空気膜圧力の分 布を、モデル A に対しては Fig. 3 に、モデル B

Distribution of deformation of top foil Fig. 5 (Model B, $M_{\rm P} = 0$, $\Gamma = 0.2$)

に対しては Fig. 4 に示す. モデル A では, 点線, 実線、破線はほとんど一致していて、トップフォ イルの変形が小さい²⁾ために,空気膜圧力 Pがト ップフォイルの浮上ならびにその後縁の取付状態 の影響を受けにくいことが分かった.

これに対してモデルBでは,空気膜圧力Pはト ップフォイルの浮上ならびにトップフォイル後縁 の取付状態の影響を大きく受ける. 同条件に対す るトップフォイルの半径方向変位 H_{tf}と空気膜厚 さ Hの分布はそれぞれ Fig.5 と Fig.6 のようにな る. トップフォイルが浮上できる(図中の実線) と, 浮上できない場合(図中の点線)に空気膜圧 力が負圧となる箇所でトップフォイルがジャーナ ル側に大きく変形し、最小空気膜厚さ位置の下流 側における明瞭な先広がりすきま部の形成がなく なる.この結果,空気膜圧力の分布において負圧 の発生する範囲が大幅に縮小し、最小空気膜圧力

Fig. 7 Distribution of air film pressure in midplane of bearing width (Model B, $M_{\rm P} = 0$, $\Gamma = 2.0$)

が大気圧程度となる.

— 56 —

ところが、トップフォイルは浮上できるものの、 その後縁が変位できない(図中の破線)と、後縁 近くにおいてトップフォイルの変形が阻害される ため、トップフォイルが浮上できない場合(図中 の点線)よりは狭くなるものの、最小空気膜厚さ 位置の下流側において先広がりすきま部が形成さ れるようになる.この結果,空気膜圧力 P が負圧 となる範囲が現れる. その範囲はトップフォイル が浮上できない場合よりは狭くなるものの、その 最小値は同程度となることが分かった.

次に, 軸受荷重が大きい場合 (*Γ* = 2.0)の空気 膜圧力の分布を調べた. モデル A では, $\Gamma = 0.2$ の場合(Fig. 3)と同様に、空気膜圧力 P に対す るトップフォイルの浮上、ならびに、その後縁の 取付状態の影響はほとんどなかった.一方,モデ νB (Fig. 7) では, $\Gamma = 0.2$ の場合と同様に, 最

小空気膜厚さ位置の下流側に相当する右側水平面 付近($\theta + \theta_{st} = 240 \sim 300^{\circ}$)で負圧が発生す るものの,鉛直・水平両方向の空気膜反力に対し てはその影響が小さくなることが分かった.

なお,予圧係数 *M*_pを大きくすると,トップフ オイルの浮上の影響はより小さくなる.

次に、Table 1 に示す仕様のフォイル軸受の最 大負荷容量 Γ_{max} を Fig. 8に示す. モデル A では、 空気膜圧力 P に対するトップフォイルの浮上、な らびに、その後縁の取付状態の影響がほとんどな いことから、 Γ_{max} に対するそれらの影響はなかっ た. 一方、モデル B では、軸受荷重が大きい場合 には空気膜反力に対するそれらの影響が小さいた めに、 Γ_{max} への影響も小さくなった.

このように、軸受荷重が大きく、したがって、 偏心率が大きい場合の軸受特性(最大負荷容量) に対するトップフォイルの浮上、ならびに、その 後縁の取付状態の影響は小さいことが分かった. この一方で、軸受荷重が小さい、したがって、偏 心率が相対的に小さい場合の空気膜圧力 P の分 布には、それらは大きく影響する.このことから、 安定限界速度のように、偏心率が相対的に小さい 場合の軸受特性に対しては、それらの影響が現れ ると予想される.今後は、これに関して調べるこ とにする.

4. おわりに

本研究では、バンプフォイル軸受の理論最大負 荷容量に対するトップフォイルの浮上ならびにそ の後縁の取付状態の影響について調べた.その過 程において得られた知見は次の通りである.

- (1) トップフォイルとバンプフォイルとの間に 作用する静摩擦力が極めて大きい場合には, 最大負荷容量に対するトップフォイルの浮 上ならびにその後縁の取付状態の影響はほ とんどない.
- (2) トップフォイルに作用する摩擦力を無視で きる場合には、最大負荷容量に対するそれら の影響は小さい.これは、軸受荷重が大きい と、空気膜反力に対するそれらの影響が小さ くなるためである.

軸受荷重が小さい,したがって,偏心率が相対 的に小さい場合には,空気膜圧力の分布に対する トップフォイルの浮上,ならびに,その後縁の取 付状態の影響が明瞭に現れる.このことから,安 定限界速度に対してはそれらの影響が現れると 予想される.

文 献

- H.Heshmat: Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity, ASME J. Tribology, 116, 2 (1994) 287.
- 2) 畠中・山口:組立て予圧を与えた動圧型気体フォイル 軸受の最大負荷容量に対する軸受設計変数の影響,日 本機械学会論文集(C編),74,741 (2008) 1154.
- 3) 畠中・山口・生島:バンプフォイル軸受の理論安定限 界速度とホワール比(第1報)一過大な静摩擦と組立 予圧の影響一,トライボロジスト,53,12 (2008) 842.
- 4) 畠中・生島: バンプフォイル軸受の安定限界速度に対 する軸受設計変数の影響,日本機械学会論文集(C編), 75,753 (2009) 1361.
- J.H.Song & D.Kim: Foil Gas Bearing with Compression Springs: Analyses and Experiments, ASME J. Tribology, 129, 3 (2007) 628.