
Effects of (HoxIn1-x)1.9Sn0.1O3 matrix on
magnetization of dispersed Fe3O4 nanocrystals

著者 Tanabe  Minemaru, Manabe  Takuro, Kohiki 
Shigemi, Mitome  Masanori, Yubuta  Kunio

journal or
publication title

Physica Status Solidi. A, Applications and
Materials Science

volume 209
number 12
page range 2570-2573
year 2012-12
URL http://hdl.handle.net/10228/00006226

doi: info:doi/10.1002/pssa.201228344

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/147427244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright line will be provided by the publisher 

pss-Header will be provided by the publisher   

1 
2 

3 

4 
5 

6 
7 

8 

9 
10 

11 
12 

13 
14 

15 

16 
17 

18 
19 

20 

21 
22 

23 
24 

25 
26 

27 

28 
29 

30 
31 

32 

33 
34 

35 
36 

37 
38 

39 

40 
41 

42 
43 

44 

45 
46 

47 
48 

49 
50 

51 

52 
53 

54 
55 

56 

57 

Review copy – not for distribution 

(pss-logo will be inserted here 

by the publisher) 

Effects of (HoxIn1-x)1.9Sn0.1O3 matrix 

on magnetization of dispersed Fe3O4 

nanocrystals 

Minemaru Tanabe1, Takuro Manabe1, Shigemi Kohiki*,1, Masanori Mitome2, and Kunio Yubuta3 

1 Department of Materials Science, Kyushu Institute of Technology, Kitakyushu, Japan 
2 National Institute for Materials Science, Tsukuba, Japan 
3 Institute for Materials Research, Tohoku University, Sendai, Japan 

Received ZZZ, revised ZZZ, accepted ZZZ 

Published online ZZZ  (Dates will be provided by the publisher.) 

Keywords (HoxIn1-x)1.9Sn0.1O3, Fe3O4, spontaneous magnetization, matrix effects  

* Corresponding author: e-mail kohiki@che.kyutech.ac.jp, Phone: +81 93 884 3310, Fax: +81 93 884 3300

Solid solutions (HoxIn1-x)1.9Sn0.1O3 with x = 0 - 0.3 were 

synthesized to employ as dispersion matrix for oleic acid 

coated Fe3O4 nanocrystals. The x = 0.05 matrix exhibited 

a resistance minimum at a non-zero temperature in each 

temperature dependent resistivity with magnetic fields of 

0 T and 1 T, and a negative magnetoresistance. The sam-

ple of oleic acid coated Fe3O4 nanocrystals dispersed in 

the x = 0.05 matrix showed enhanced spontaneous mag-

netization as the factor of ≈1.3 relative to as-synthesized 

oleic acid coated Fe3O4 nanocrystals. 

Copyright line will be provided by the publisher  

1 Introduction Transparent conducting oxides doped 

with 3d transition metal elements exhibiting room tempera-
ture ferromagnetism (RT-FM) have been studied intensive-

ly for realizing spintronics devices [1-20]. Tin doped indi-
um sesquioxide (ITO) exhibiting RT-FM is promising for 

practical device applications because ITO has been the 

most widely used transparent conducting oxide in electron-
ic and semiconductor industry.  

   Magnetite (Fe3O4) is well known as a half-metal ma-
terial accompanied with fully spin-polarized carriers due to 

the minority-spin of octahedrally coordinated Fe2+. Spon-
taneous magnetization (Ms) of Fe3O4 below 585 oC, result-

ed from uncompensated majority-spin of octahedrally co-

ordinated Fe2+, is antiparallel to the spin of polarized carri-
ers. Okada et al. [21] reported that pulsed-laser-deposited 

Fe3O4 nanocrystals (NCs) dispersed in a single-crystalline 
ITO film exhibited RT-FM and a negative magnetore-

sistance (MR) due to collinear arrangement of Ms of the 

Fe3O4 NCs. Okada et al. [22] modified the matrix from 
ITO to (HoxIn1-x)2O3, and observed enlarged Ms. If the spin 

of polarized carriers itinerating around the conduction band 
of (HoxIn1-x)2O3 is antiparallel to the magnetic moments of 

localized Ho3+ (10.6 B), localized Ho3+ moments align 
parallel with Ms of dispersed Fe3O4 NCs, and enlarge ob-

served Ms.  

   It is known as the Kondo effect for diluted magnetic 

conductors that antiparallel arrangement between the spin 
of carriers and the localized magnetic moments accompa-

nies a resistance minimum at a non-zero temperature in 
temperature dependent resistivity (ρ-T). Therefore, it is of 

great interest to examine effects of matrix with and without 

a resistance minimum at a non-zero temperature on mag-
netization (M-H) of dispersed Fe3O4 NCs. We employed 

(HoxIn1-x)1.9Sn0.1O3 with x = 0 - 0.3 as dispersion matrix. 
Hereafter, we denote (HoxIn1-x)1.9Sn0.1O3 as HoxITO for 

convenience. The HoxITO matrix with x = 0.05 demon-
strated a resistance minimum and a negative MR. We dis-

persed oleic acid coated (OA-) Fe3O4 NCs in HoxITO (x = 

0 - 0.3) matrix, and examined changes in M-H with x. Car-
boxyl groups of OA were reported to combine with Fe at-

oms at surface of Fe3O4 NCs, and OA layer with thickness 
≈3 nm was formed on the surface [23]. It is expected that 

spin-polarized carriers of Fe3O4 NCs tunnel into HoxITO 

matrix through insulating OA layer, and the carriers in the 
matrix facilitate parallelization of localized Ho3+ moments 

and Ms of dispersed OA-Fe3O4 NCs if the matrix exhibits 
both a resistance minimum and a negative MR. 

2 Experiment 
2.1 Sample preparation HoxITO with x = 0 - 0.3 

were synthesized from powders of Ho2O3 and In2O3 mixed 
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in accordance with x = 0, 0.025, 0.05, 0.1, 0.2, and 0.3, and 
SnO2 powders weighed as [Ho + In] : [Sn] = [1.9] : [0.1] in 

molar ratio. The mixtures were heated at 1500 oC for 6 h in 

flowing O2 gas, and then re-heated at 1200 oC for 2 h in 
flowing Ar gas.  

OA-Fe3O4 NCs were synthesized from Fe(acac)3 in a 
solution of dibenzylether mixed with OA [24]. Fe(acac)3, 

dibenzylether, and OA, weighed with the molar ratio of 

[1] : [26] : [2], were mixed with vigorous stirring for 1 h at
RT. The mixture was kept at 300 oC for half an hour. After

cooling to RT, OA-Fe3O4 NCs were precipitated from the
crude solution by adding toluene/hexane (1:1) followed by

centrifugation. The precipitation was washed with anhy-
drous chloroform.

   As-synthesized OA-Fe3O4 NCs were dispersed into 

HoxITO powders with the molar ratio of [Fe3O4] : [Hox-

ITO] = [0.05] : [1]. The mixtures were heated at 900 oC for 

1 h in flowing Ar gas. 

2.2 Characterization X-ray diffraction (XRD) was 

measured with a Rigaku CN2013 diffractometer with 
Cu Kα radiation at RT. For electrical measurement by four 

probes method, HoxITO powders were pressed into a coin-
type pellet before heating at 1200 oC for 2 h in flowing Ar 

gas. Then, the pellet was cut into a bar-shaped sample. Pt 
electrodes were bonded by gold wires to a Quantum De-

sign MPMS 5S system. Current-voltage (I-V) characteris-

tics at various temperatures under H = 0 and 1 T were 
measured for all the samples and some selected samples, 

respectively. M-H curve at 300 K was recorded by using a 
Quantum Design MPMS 5S SQUID magnetometer.  

3 Results and discussion 

3.1 HoxITO matrix As shown in the lower panel of 
Fig. 1, HoxITO matrix showed diffraction peaks can be in-

dexed only to the C-rare earth type cubic lattice. Both 
Ho2O3 and In2O3 are known to crystallize into the C-rare 

earth type cubic lattice, and the lattice constant a of Ho2O3 

and In2O3 are 1.0606 nm (JCPDS 43-1018) and 1.0118 nm 
(JCPDS 06-0416), respectively. As shown in the upper 

panel of FIG. 1, the a value of HoxITO matrix varied line-
arly with x from 0 to 0.3, obeying the Vegard's law.  

   Temperature dependent resistivity at H = 0 T (ρ0-T) 

for all the HoxITO matrices are shown in Fig. 2. The x ≤ 
0.1 matrices were conductive (ρ0 < 0.1 Ωcm), but the x > 

0.2 matrices were rather resistive (ρ0 > 1 Ωcm). The x = 
0.05 matrix showed larger ρ0 than the x = 0.025 and 0.1 

matrices. ρ0 of the x = 0.025 and 0.1 matrices were so close 
each other, and larger than the x = 0 matrix. In each ρ0-T, 

the x = 0.025 and 0.05 matrices exhibited the resistance 

minimum respectively at ≈150 K and ≈125 K, while the x 
= 0 and 0.1 matrices indicated no resistance minimum. As 

known as the Kondo effect, the resistance minimum for di-
luted magnetic conductors accompanied with antiparallel 

configuration between spin of carriers and localized mag- 

Figure 1 Lower panel: XRD pattern of the HoxITO matrix with x 

= 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 0.2 (e), and 0.3 (f). Upper 

panel: lattice constant a of the matrix with x. Straight line is a 

guide for eye. 

 

 

 

 

 

 

 

Figure 2 ρ0 - T measured with H = 0 T for the HoxITO matrix 

with x = 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 0.2 (e), and 0.3 (f), 

shown by open circle. ρH - T measured with H = 1 T for the ma-

trix with x = 0.025 (b) and 0.05 (c), shown by closed circle. 
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netic moments. Such antiparallel arrangement is expected 
to bring about MR = (ρH − ρ0)/ρ0 with a negative sign, here 

ρH represents ρ measured at H ≠ 0. Figures 2b and 2c show 

also temperature dependent resistivity at H = 1 T (ρH-T) for 
the x = 0.025 and 0.05 matrices, respectively. For the x = 

0.025 matrix, the resistance minimum disappeared in ρH-T, 
and ρH was larger than ρ0. The x = 0.05 matrix demonstrat-

ed ρH-T with the resistance minimum at ≈175 K, and ρH 

smaller than ρ0. Such a negative MR supports antiparallel 
arrangement between the spin of carriers and the localized 

magnetic moments of Ho3+ in the x = 0.05 matrix.  
 

3.2 OA-Fe3O4 NCs XRD pattern and M-H curve of 
as-synthesized OA-Fe3O4 NCs are shown in Fig. 3. All the 

XRD peaks were attributable to the inverse spinel type 

Fe3O4 cubic lattice (JCPDS 19-0629). Crystallite size of 
≈65 nm for the NCs was estimated from the (511) reflec-

tion by Scherrer’s equation.  
   At 300 K, as-synthesized OA-Fe3O4 NCs demon-

strated sigmoidal M-H curve almost saturated at H = 0.3 T. 

The small coercive field (Hc ≈27 Oe) indicates that OA 
prevented agglomeration of Fe3O4 NCs leading to larger 

second particle formation. Present M-H curve looks similar 
to those of reported OA-Fe3O4 NCs [23,25-27]. The mag-

netization at 1 T (M1T) of ≈1 μB/Fe atom for present NCs is 
rather large than those reported (≈0.85 μB/Fe atom [23] and 

≈0.82 μB/Fe atom [25]), and almost the same to that (≈0.95 

μB/Fe atom) reported in ref. 26.  
 

3.3 OA-Fe3O4 NCs/HoxITO matrix   All the sam-
ples of OA-Fe3O4 NCs dispersed in the HoxITO matrix 

showed hysteresis loop at 300 K, as seen in Fig. 4. The M-

H curve of the x ≤ 0.05 samples almost saturated at H = 0.5 
T, although the x ≥ 0.1 samples showed no saturation be-

low H = 1 T. Ms of the samples, derived from an intercept 
of a tangent line for each M-H curve, were larger than that 

of the as-synthesized NCs. As shown in Fig. 5, Ms of the 
samples normalized to that of the as-synthesized NCs, in-

creased slightly with x from 0 to 0.025, peaked at x = 0.05, 

decreased at x = 0.1, and then slightly decreased with fur-
ther increases in x to 0.3. The x = 0.05 sample showed en-

hancement of Ms as the factor of ≈1.3. Both M0.5T and M1T 
behaved almost parallel to Ms for the x ≤ 0.05 samples, 

while those for the x ≥ 0.1 samples deviated from Ms. In-

crements in M0.5T and M1T for the x ≥ 0.1 samples reflect 
increases of thermally excitable Ho3+ paramagnetic mo-

ment at 300 K with x of the matrix.  
   Figure 6 shows ρ0-T and ρH-T for the sample of OA-

Fe3O4 NCs dispersed in the HoxITO matrix with x = 0.05. 
The resistance minimum in both ρ0-T and ρH-T disappeared 

for the x = 0.05 sample. A positive MR (ρH > ρ0) can arise 

from parallel configuration of localized Ho3+ moments 
with Ms of dispersed OA-Fe3O4 NCs. 

   As shown in Fig.7, Hc of the samples also varied 
with x, and peaked at x = 0.05. The x dependence of Hc 

looks similar to that of Ms for the samples. Enlarged Hc 

and enlarged Ms for the x = 0.05 sample suggest carriers 

facilitated parallelization of localized Ho3+ moments and 
Ms of dispersed OA-Fe3O4 NCs.  

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 3 Lower panel: XRD pattern of as-synthesized OA-Fe3O4 

NCs. Upper panel: M-H (H ≥ 1 T) curve of as-synthesized OA-

Fe3O4 NCs.  

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
Figure 4 M-H curve for the samples of OA-Fe3O4 NCs dispersed 

in the HoxITO matrix with x = 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 

0.2 (e), and 0.3 (f).  
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Figure 5 Ms, M0.5T and M1T for the samples with x. Values were 

normalized to those of as-synthesized OA-Fe3O4 NCs. 

 

 

 
 

 
 

 
 

 

 
 

 
Figure 6 ρ0 - T with H = 0 T and ρH - T with H = 1 T for the 

sample of OA-Fe3O4 NCs dispersed in the HoxITO matrix with x 

= 0.05.  

 

 
 

 
 

 

 
 

 
 

 

 
Figure 7 Hc for the samples with x. Values were normalized to 

that of as-synthesized OA-Fe3O4 NCs. 

 

4 Summary The HoxITO matrix with x = 0.05 exhib-

ited both a resistance minimum at a non-zero temperature 

and a negative MR. The sample of OA-Fe3O4 NCs dis-
persed in the HoxITO matrix with x = 0.05 demonstrated 

enlarged Ms as the factor of ≈1.3 relative to the as-
synthesized NCs. In the sample of OA-Fe3O4 NCs dis-

persed in the HoxITO matrix with x = 0.05, the resistance 

minimum in both ρ0-T and ρH-T disappeared, and the sign 
of MR turned from negative to positive. Similar behavior 

in Ms and Hc with x also supports that the enlarged Ms for 
the x = 0.05 sample arose from parallel configuration of lo-

calized Ho3+ moments in the HoxITO matrix to Ms of dis-

persed OA-Fe3O4 NCs. 
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