

Effects of (HoxIn1-x)1.9Sn0.103 matrix on magnetization of dispersed Fe304 nanocrystals

著者	Tanabe Minemaru, Manabe Takuro, Kohiki
	Shigemi, Mitome Masanori, Yubuta Kunio
journal or	Physica Status Solidi. A, Applications and
publication title	Materials Science
volume	209
number	12
page range	2570-2573
year	2012-12
URL	http://hdl.handle.net/10228/00006226

doi: info:doi/10.1002/pssa.201228344

(pss-logo will be inserted here by the publisher)

Effects of $(Ho_xIn_{1-x})_{1.9}Sn_{0.1}O_3$ matrix on magnetization of dispersed Fe₃O₄ nanocrystals

Minemaru Tanabe¹, Takuro Manabe¹, Shigemi Kohiki^{*,1}, Masanori Mitome², and Kunio Yubuta³

¹ Department of Materials Science, Kyushu Institute of Technology, Kitakyushu, Japan

² National Institute for Materials Science, Tsukuba, Japan

³ Institute for Materials Research, Tohoku University, Sendai, Japan

Received ZZZ, revised ZZZ, accepted ZZZ Published online ZZZ (Dates will be provided by the publisher.)

Keywords (Ho_xIn_{1-x})_{1.9}Sn_{0.1}O₃, Fe₃O₄, spontaneous magnetization, matrix effects

* Corresponding author: e-mail kohiki@che.kyutech.ac.jp, Phone: +81 93 884 3310, Fax: +81 93 884 3300

Solid solutions $(Ho_xIn_{1-x})_{1.9}Sn_{0.1}O_3$ with x = 0 - 0.3 were synthesized to employ as dispersion matrix for oleic acid coated Fe₃O₄ nanocrystals. The x = 0.05 matrix exhibited a resistance minimum at a non-zero temperature in each temperature dependent resistivity with magnetic fields of 0 T and 1 T, and a negative magnetoresistance. The sample of oleic acid coated Fe₃O₄ nanocrystals dispersed in the x = 0.05 matrix showed enhanced spontaneous magnetization as the factor of ≈ 1.3 relative to as-synthesized oleic acid coated Fe₃O₄ nanocrystals.

Copyright line will be provided by the publisher

1 Introduction Transparent conducting oxides doped with 3*d* transition metal elements exhibiting room temperature ferromagnetism (RT-FM) have been studied intensively for realizing spintronics devices [1-20]. Tin doped indium sesquioxide (ITO) exhibiting RT-FM is promising for practical device applications because ITO has been the most widely used transparent conducting oxide in electronic and semiconductor industry.

Magnetite (Fe₃O₄) is well known as a half-metal material accompanied with fully spin-polarized carriers due to the minority-spin of octahedrally coordinated Fe²⁺. Spontaneous magnetization (Ms) of Fe₃O₄ below 585 °C, resulted from uncompensated majority-spin of octahedrally coordinated Fe²⁺, is antiparallel to the spin of polarized carriers. Okada et al. [21] reported that pulsed-laser-deposited Fe₃O₄ nanocrystals (NCs) dispersed in a single-crystalline ITO film exhibited RT-FM and a negative magnetoresistance (MR) due to collinear arrangement of Ms of the Fe₃O₄ NCs. Okada et al. [22] modified the matrix from ITO to $(Ho_xIn_{1-x})_2O_3$, and observed enlarged Ms. If the spin of polarized carriers itinerating around the conduction band of $(Ho_x In_{1-x})_2 O_3$ is antiparallel to the magnetic moments of localized Ho³⁺ (10.6 μ_B), localized Ho³⁺ moments align parallel with Ms of dispersed Fe₃O₄ NCs, and enlarge observed Ms.

It is known as the Kondo effect for diluted magnetic conductors that antiparallel arrangement between the spin of carriers and the localized magnetic moments accompanies a resistance minimum at a non-zero temperature in temperature dependent resistivity (ρ -T). Therefore, it is of great interest to examine effects of matrix with and without a resistance minimum at a non-zero temperature on magnetization (M-H) of dispersed Fe₃O₄ NCs. We employed $(Ho_x In_{1-x})_{1.9} Sn_{0.1}O_3$ with x = 0 - 0.3 as dispersion matrix. Hereafter, we denote $(Ho_xIn_{1-x})_{1.9}Sn_{0.1}O_3$ as Ho_xITO for convenience. The Ho_xITO matrix with x = 0.05 demonstrated a resistance minimum and a negative MR. We dispersed oleic acid coated (OA-) Fe_3O_4 NCs in Ho_xITO (x = 0 - 0.3) matrix, and examined changes in M-H with x. Carboxyl groups of OA were reported to combine with Fe atoms at surface of Fe₃O₄ NCs, and OA layer with thickness \approx 3 nm was formed on the surface [23]. It is expected that spin-polarized carriers of Fe₃O₄ NCs tunnel into Ho_xITO matrix through insulating OA layer, and the carriers in the matrix facilitate parallelization of localized Ho³⁺ moments and Ms of dispersed OA-Fe₃O₄ NCs if the matrix exhibits both a resistance minimum and a negative MR.

2 Experiment 2.1 Sample preparation Ho_xITO with x = 0 - 0.3 were synthesized from powders of Ho_2O_3 and In_2O_3 mixed

Copyright line will be provided by the publisher

This is the accepted version of the following article: http://onlinelibrary.wiley.com/doi/10.1002/pssa.201228344/abstract, which has been published in final form at 10.1002/pssa.201228344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

flowing Ar gas. OA-Fe₃O₄ NCs were synthesized from Fe(acac)₃ in a solution of dibenzylether mixed with OA [24]. Fe(acac)₃, dibenzylether, and OA, weighed with the molar ratio of [1] : [26] : [2], were mixed with vigorous stirring for 1 h at RT. The mixture was kept at 300 °C for half an hour. After cooling to RT, OA-Fe₃O₄ NCs were precipitated from the crude solution by adding toluene/hexane (1:1) followed by centrifugation. The precipitation was washed with anhydrous chloroform.

As-synthesized OA-Fe₃O₄ NCs were dispersed into Ho_xITO powders with the molar ratio of $[Fe_3O_4]$: $[Ho_{x-}ITO] = [0.05]$: [1]. The mixtures were heated at 900 °C for 1 h in flowing Ar gas.

2.2 Characterization X-ray diffraction (XRD) was measured with a Rigaku CN2013 diffractometer with Cu $K\alpha$ radiation at RT. For electrical measurement by four probes method, Ho_xITO powders were pressed into a cointype pellet before heating at 1200 °C for 2 h in flowing Ar gas. Then, the pellet was cut into a bar-shaped sample. Pt electrodes were bonded by gold wires to a Quantum Design MPMS 5S system. Current-voltage (*I-V*) characteristics at various temperatures under H = 0 and 1 T were measured for all the samples and some selected samples, respectively. *M-H* curve at 300 K was recorded by using a Quantum Design MPMS 5S SQUID magnetometer.

3 Results and discussion

3.1 Ho_{*x*}**ITO matrix** As shown in the lower panel of Fig. 1, Ho_{*x*}ITO matrix showed diffraction peaks can be indexed only to the *C*-rare earth type cubic lattice. Both Ho₂O₃ and In₂O₃ are known to crystallize into the *C*-rare earth type cubic lattice, and the lattice constant *a* of Ho₂O₃ and In₂O₃ are 1.0606 nm (JCPDS 43-1018) and 1.0118 nm (JCPDS 06-0416), respectively. As shown in the upper panel of FIG. 1, the *a* value of Ho_xITO matrix varied linearly with *x* from 0 to 0.3, obeying the Vegard's law.

Temperature dependent resistivity at H = 0 T (ρ^0 -T) 44 45 for all the Ho_xITO matrices are shown in Fig. 2. The $x \leq$ 0.1 matrices were conductive ($\rho^0 < 0.1 \ \Omega cm$), but the x >46 0.2 matrices were rather resistive ($\rho^0 > 1 \Omega$ cm). The x =47 0.05 matrix showed larger ρ^0 than the x = 0.025 and 0.1 48 49 matrices. ρ^0 of the x = 0.025 and 0.1 matrices were so close 50 each other, and larger than the x = 0 matrix. In each ρ^0 -T, the x = 0.025 and 0.05 matrices exhibited the resistance 51 52 minimum respectively at ≈ 150 K and ≈ 125 K, while the x 53 = 0 and 0.1 matrices indicated no resistance minimum. As 54 known as the Kondo effect, the resistance minimum for di-55 luted magnetic conductors accompanied with antiparallel 56 configuration between spin of carriers and localized mag-57

Figure 1 Lower panel: XRD pattern of the Ho_xITO matrix with x = 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 0.2 (e), and 0.3 (f). Upper panel: lattice constant *a* of the matrix with *x*. Straight line is a guide for eye.

Figure 2 ρ^0 - *T* measured with H = 0 T for the Ho_xITO matrix with x = 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 0.2 (e), and 0.3 (f), shown by open circle. ρ^H - *T* measured with H = 1 T for the matrix with x = 0.025 (b) and 0.05 (c), shown by closed circle.

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16 17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

netic moments. Such antiparallel arrangement is expected to bring about MR = $(\rho^{H} - \rho^{0})/\rho^{0}$ with a negative sign, here ρ^{H} represents ρ measured at $H \neq 0$. Figures 2b and 2c show also temperature dependent resistivity at H = 1 T (ρ^{H} -T) for the x = 0.025 and 0.05 matrices, respectively. For the x =0.025 matrix, the resistance minimum disappeared in ρ^{H} -T, and ρ^{H} was larger than ρ^{0} . The x = 0.05 matrix demonstrated ρ^{H} -T with the resistance minimum at ≈ 175 K, and ρ^{H} smaller than ρ^{0} . Such a negative MR supports antiparallel arrangement between the spin of carriers and the localized magnetic moments of Ho³⁺ in the x = 0.05 matrix.

3.2 OA-Fe₃O₄ NCs XRD pattern and *M*-*H* curve of as-synthesized OA-Fe₃O₄ NCs are shown in Fig. 3. All the XRD peaks were attributable to the inverse spinel type Fe₃O₄ cubic lattice (JCPDS 19-0629). Crystallite size of \approx 65 nm for the NCs was estimated from the (511) reflection by Scherrer's equation.

At 300 K, as-synthesized OA-Fe₃O₄ NCs demonstrated sigmoidal *M*-*H* curve almost saturated at H = 0.3 T. The small coercive field (*H*c \approx 27 Oe) indicates that OA prevented agglomeration of Fe₃O₄ NCs leading to larger second particle formation. Present *M*-*H* curve looks similar to those of reported OA-Fe₃O₄ NCs [23,25-27]. The magnetization at 1 T (*M*_{1T}) of \approx 1 µ_B/Fe atom for present NCs is rather large than those reported (\approx 0.85 µ_B/Fe atom [23] and \approx 0.82 µ_B/Fe atom [25]), and almost the same to that (\approx 0.95 µ_B/Fe atom) reported in ref. 26.

3.3 OA-Fe₃O₄ NCs/Ho_xITO matrix All the samples of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix showed hysteresis loop at 300 K, as seen in Fig. 4. The M-*H* curve of the $x \le 0.05$ samples almost saturated at H = 0.5T, although the $x \ge 0.1$ samples showed no saturation below H = 1 T. Ms of the samples, derived from an intercept of a tangent line for each M-H curve, were larger than that of the as-synthesized NCs. As shown in Fig. 5, Ms of the samples normalized to that of the as-synthesized NCs, increased slightly with x from 0 to 0.025, peaked at x = 0.05, decreased at x = 0.1, and then slightly decreased with further increases in x to 0.3. The x = 0.05 sample showed enhancement of Ms as the factor of ≈ 1.3 . Both $M_{0.5T}$ and M_{1T} behaved almost parallel to Ms for the $x \leq 0.05$ samples, while those for the $x \ge 0.1$ samples deviated from Ms. Increments in $M_{0.5T}$ and M_{1T} for the $x \ge 0.1$ samples reflect increases of thermally excitable Ho³⁺ paramagnetic moment at 300 K with x of the matrix.

Figure 6 shows ρ^0 -*T* and ρ^H -*T* for the sample of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix with x = 0.05. The resistance minimum in both ρ^0 -*T* and ρ^H -*T* disappeared for the x = 0.05 sample. A positive MR ($\rho^H > \rho^0$) can arise from parallel configuration of localized Ho³⁺ moments with *M*s of dispersed OA-Fe₃O₄ NCs.

As shown in Fig.7, Hc of the samples also varied with x, and peaked at x = 0.05. The x dependence of Hclooks similar to that of Ms for the samples. Enlarged Hcand enlarged Ms for the x = 0.05 sample suggest carriers facilitated parallelization of localized Ho^{3+} moments and *Ms* of dispersed OA-Fe₃O₄ NCs.

Figure 3 Lower panel: XRD pattern of as-synthesized OA-Fe₃O₄ NCs. Upper panel: M-H ($H \ge 1$ T) curve of as-synthesized OA-Fe₃O₄ NCs.

Figure 4 *M*-*H* curve for the samples of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix with x = 0 (a), 0.025 (b), 0.05 (c), 0.1 (d), 0.2 (e), and 0.3 (f).

Figure 5 $M_{\rm S}$, $M_{0.5T}$ and M_{1T} for the samples with *x*. Values were normalized to those of as-synthesized OA-Fe₃O₄ NCs.

Figure 6 ρ^0 - *T* with H = 0 T and ρ^H - *T* with H = 1 T for the sample of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix with *x* = 0.05.

Figure 7 *H*c for the samples with *x*. Values were normalized to that of as-synthesized OA-Fe₃O₄ NCs.

4 Summary The Ho_xITO matrix with x = 0.05 exhibited both a resistance minimum at a non-zero temperature and a negative MR. The sample of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix with x = 0.05 demonstrated enlarged *M*s as the factor of ≈ 1.3 relative to the assynthesized NCs. In the sample of OA-Fe₃O₄ NCs dispersed in the Ho_xITO matrix with x = 0.05, the resistance minimum in both ρ^0 -*T* and ρ^H -*T* disappeared, and the sign of MR turned from negative to positive. Similar behavior in *M*s and *H*c with *x* also supports that the enlarged *M*s for the x = 0.05 sample arose from parallel configuration of localized Ho³⁺ moments in the Ho_xITO matrix to *M*s of dispersed OA-Fe₃O₄ NCs.

Acknowledgements S.K. thanks Dr. H. Shimooka for assistance and Prof. T. Shishido of Tohoku University for discussion. This work was partly supported by the "Nanotechnology Support Project" of the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the "Inter-university cooperative research program" of the Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University.

References

- Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, *Science* 291, 854 (2001).
- [2] D. H. Kim, J. S. Yang, K. W. Lee, S. D. Bu, T. W. Noh, S.-J. Oh, Y.-W. Kim, J.-S. Chung, H. Tanaka, H. Y. Lee, and T. Kawai, *Appl. Phys. Lett.* **81**, 2421 (2002).
- [3] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
- [4] J. H. Kim, H. Kim, Y. E. Ihm, and W. K. Choo, J. Appl. Phys. 92, 6066 (2002).
- [5] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, *Nat. Mater.* 2, 673 (2003).
- [6] S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, *Phys. Rev. Lett.* **91**, 077205 (2003).
- [7] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, *Appl. Phys. Lett.* 84, 1332 (2004).
- [8] J. Philip, N. Theodoropoulou, G. Berera, J. S. Moodera, and B. Satpati, *Appl. Phys. Lett.* 85, 777 (2004).
- [9] N. H. Hong, J. Sakai, N. T. Huong, N. Poirot, and A. Ruyter, *Phys. Rev. B* 72, 045336 (2005).
- [10] Y. K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G. F. Dionne, S. Xu, J. He, Y. S. Chu, S. D. Preite, S. E. Lofland, and I. Takeuchi, *Appl. Phys. Lett.* 86, 042506 (2005).
- [11] J. He, S. Xu, Y. K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G. F. Dionne, and I. Takeuchi, *Appl. Phys. Lett.* 86, 052503 (2005).
- [12] N. H. Hong, J. Sakai, N. T. Huong, and V. Brize, *Appl. Phys. Lett.* 87, 102505 (2005).
- [13] H. S. Kim, S. H. Ji, H. Kim, S.-K. Hong, D. Kim, Y. E. Ihm, and W. K. Choo, *Solid State Commun.* 137, 41 (2006).
- [14] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos, and J. S. Moodera, *Nat. Mater.* 5, 298 (2006).
- [15] N. H. Hong, J. Sakai, N. T. Huong, and V. J. Brize, *Mag. Mag. Mater.* **302**, 228 (2006).
- [16] G. Peleckis, X. L. Wang, and S. X. Dou, *Appl. Phys. Lett.* 88, 132507 (2006).
- [17] G. Peleckis, X. L. Wang, and S. X. Dou, *Appl. Phys. Lett.* 89, 022501 (2006).
- [18] T. Ohno, T. Kawahara, H. Tanaka, T. Kawai, M. Oku, K. Okada, and S. Kohiki, *Jpn. J. Appl. Phys.* 45, L957 (2006).
- [19] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, *Phys. Rev. Lett.* **92**, 166601 (2004).

- [20] K. Okada, S. Kohiki, S. Nishi, H. Shimooka, H. Deguchi, M. Mitome, Y. Bando, and T. Shishido, *Jpn. J. Appl. Phys.* 46, L823 (2007).
- [21] K. Okada, S. Kohiki, M. Mitome, H. Tanaka, M. Arai, M. Mito, and H. Deguchi, ACS Appl. Mater. Interfaces 1, 1893 (2009).
- [22] K. Okada, S. Kohiki, F. Tsutsui, H. Shimooka, M. Mitome, Y. Bando, M. Mito, H. Deguchi, and T. Shishido, *Scripta Materialia* 59, 444 (2008).
- [23] D. Li, D. Jiang, M. Chen, J. Xie, Y. Wu, S. Dang, and J. Zhang, *Materials Letters* 64, 2462 (2010).
- [24] D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, J. Am. Chem. Soc. 131, 454 (2009).
- [25] Y. Hou, Z. Xu, and S. Sun, Angew. Chem. Int. Ed. 46, 6329 (2007).
- [26] L. Zhang, J. Wu, H. Liao, Y. Hou, and S. Gao, *Chem. Commun.* 4378 (2009).
- [27] P. C. Papapilippou, A. Pourgouris, O. Marinica, A. Taculescu, G. I. Athanasopoulus, L. Vekas, and T. Krasia-Christoforu, J. Mag. Mag. Mater. 323, 557 (2011).