
On Parallelization of the NIS-apriori
Algorithm for Data Mining

著者 Wu Mao, Sakai Hiroshi
journal or
publication title

Procedia Computer Science

volume 60
page range 623 -631
year 2015-09-01
URL http://hdl.handle.net/10228/00006136

doi: info:doi/10.1007/978-3-642-28699-5_9

 Procedia Computer Science 60 (2015) 623 – 631

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2015.08.198

ScienceDirect

19th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems

On Parallelization of the NIS-Apriori Algorithm for Data Mining

Mao Wua, Hiroshi Sakaib,∗
aDwango Co. Ltd., Ginza, Tokyo, 104-0061, Japan

bFaculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, 804-8550, Japan

Abstract

We have been developing the getRNIA software tool for data mining under uncertain information. The getRNIA software tool

is powered by the NIS-Apriori algorithm, which is a variation of the well-known Apriori algorithm. This paper considers the

parallelization of the NIS-Apriori algorithm, and implements a part of this algorithm based on the Apache-Spark environment. We

especially apply the implemented software to two data sets, the Mammographic data set and the Mushroom data set in order to

show the property of the parallelization. Even though this parallelization was not so effective for the Mammographic data set, it

was much more effective for the Mushroom data set.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: data mining; getRNIA; NIS-Apriori; parallelization; rough sets; incomplete information; non-deterministic information;

1. Introduction

Rough set theory, proposed by Pawlak, gives us the mathematical framework for table data analysis12,13,14. This

theory is applied to tables for mining rules, reading a tendency and a pattern, etc.7,13,14. In our study, we proposed

the framework Rough Non-deterministic Information Analysis (RNIA), and push forward a study of the data mining

technique in tables with non-deterministic information. We call such tables Non-deterministic Information Systems
(NISs)15,16,18.

In rough set theory, we usually handle tables with deterministic information, which we call Deterministic In-
formation Systems (DISs). NIS and Incomplete Information Systems were proposed for dealing with information

incompleteness in DIS 6,8,9,10,11. Lipski employed the modal logic, and proved the logical properties in question-

answering9,10. Orłowska investigated the certainty and the possibility in NIS 11. We follow this robust framework, and

we are developing the algorithms and the software tools in RNIA.

The Apriori algorithm is known well as the representative algorithm for data mining1,2. This algorithm deals with

the item sets, which we call transaction data. For example, transaction data is automatically generated by using POS

systems. However, if we identify an item with a descriptor [attribute,attribute value] in DIS, we can similarly consider

∗ Corresponding author. Tel.: +81-93-884-3258 ; fax: +81-93-884-3258.

E-mail address: sakai@mns.kyutech.ac.jp

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.198&domain=pdf

624 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

the Apriori algorithm in DIS. We adjusted this Apriori algorithm in DIS to the NIS-Apriori algorithm in NIS. This is

the core algorithm for our getRNIA system17,19,20.

In this paper, we consider the parallelization of the NIS-Apriori algorithm for handling large scale data, and im-

plement a part of this algorithm. Based on the experiment, the effectiveness of the parallelization was confirmed,

especially for the Mushroom data set5. This paper is organized as follows: Section 2 recalls the rules in RNIA, and

Section 3 reviews the Apriori algorithm and the NIS-Apriori algorithm as well as the getRNIA software tool. Section

4 investigates the parallelization of the NIS-Apriori Algorithm, and implements a part of this algorithm based on the

Apache-Spark environment4. Finally, Section 5 concludes this paper.

2. Rules in Rough Non-deterministic Information Analysis (RNIA)

This section briefly surveys the framework of RNIA. A Deterministic Information System DIS ψ is a quadruplet

below:13,14

ψ = (OB,AT, {VALA | A ∈ AT}, f), f : OB × AT→ ∪A∈AT VALA, (1)

where OB is a finite set whose elements are called objects, AT is a finite set whose elements are called attributes,

VALA is a finite set whose elements are called attribute values and f is a mapping. We usually consider a table instead

of this quadruplet ψ. DIS ψ1 in Table 1 is an exemplary deterministic information system, and we see that the object

x1 means some implications, like [Color, red]⇒ [Weight, light] and [Color, red] ∧ [S ize, small]⇒ [Weight, light].

Table 1. An exemplary DIS ψ1.

Ob jects Color S ize Weight

x1 red small light
x2 blue small light
x3 red small heavy
x4 blue large heavy

Let us consider each implication τ below,

τ : ∧A∈CON[A, valA]⇒ [Dec, val], (valA ∈ VALA, val ∈ VALDec),
CON ⊆ AT : (a set of) condition attributes, Dec ∈ AT : the decision attribute.

(2)

We say τ is a rule (or a candidate of a rule) in ψ, if τ satisfies a constraint in ψ. We say τ is supported by x ∈ OB in ψ,

if f (x, A)=valA for every A ∈ CON and f (x,Dec)=val hold. For specifying the object x, we may employ the notation

τx. The most familiar constraint is defined by the following14, and we also employ this constraint for two threshold

values α and β (0 < α, β ≤ 1.0).

support(τx) = |OBJ(τ)|/|OB| ≥ α, accuracy(τx) = |OBJ(τ)|/|OBJ(∧A∈CON[A, valA])| ≥ β.
Here, OBJ(∗) means a set of objects supporting formula ∗ . (3)

NIS Φ is also a quadruplet below:11,13,14

Φ = (OB,AT, {VALA | A ∈ AT}, g), g : OB × AT→ P(∪A∈AT VALA) (a power set). (4)

Every set g(x, A) is interpreted as that there is an actual value in g(x, A) but this value is not known11,13,14. By

using NIS, it is possible to handle information incompleteness in DIS. Especially, if the actual value is not known

at all, g(x, A) is equal to VALA. This corresponds to the missing value6. We usually consider a table instead of this

quadruplet Φ. Table 2 is an exemplary NIS Φ2.

Now, we introduce the derived DIS from NIS. Since each VALA (A ∈ AT) is finite, we can generate one ψ by

replacing each non-deterministic information g(x, A) with an element v ∈ g(x, A). We named such ψ a derived DIS
from NIS, and define the following:

DD(Φ) = {ψ | ψ is a derived DIS from NIS Φ}. (5)

625 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

Table 2. An exemplary NIS Φ2.

Ob jects Color S ize Weight

x1 {red, green} {small} {light, heavy}
x2 {blue} {small,medium} {light, heavy}
x3 {red, blue} {small,medium} {light, heavy}
x4 {red, blue} {large} {heavy}

In Φ2, there are 256 (=28) derived DISs, and DIS ψ1 is a derived DIS from Φ2. Based on the interpretation of

non-deterministic information, we see an actual DIS ψactual exists in 256 derived DISs. We consider the following two

types of rules with modal concepts.

(Certain rule) An implication τ is a certain rule, if there is τx such that support(τx) ≥ α and accuracy(τx) ≥ β in each

ψ ∈ DD(Φ),

(Possible rule) An implication τ is a possible rule, if there is τx such that support(τx) ≥ α and accuracy(τx) ≥ β in at

least one ψ ∈ DD(Φ).

Remark 1. In DIS ψ, support(τx) = support(τy) and accuracy(τx) = accuracy(τy) hold. So, we may identify τx with
τ. However in NIS Φ, we may have such case that τx satisfies the constraint, but τy does not satisfy the constraint. If
there is at least one τx satisfying the constraint, we see this τx is the evidence for the rule τ.

We have DD(Φ) = {ψ} as the special case, and two types of rules define the same rules in ψ. Therefore, these two

types of rules are the natural extension from rules in DIS. However, we need to pay attention to the number |DD(Φ)|.
In the Mammographic data set ΦMammo

5, |DD(ΦMammo)| is more than 10 power 100.

3. Apriori Algorithm Adjusted to DIS, NIS-Apriori Algorithm, and the getRNIA Software

For adjusting the Apriori algorithm to DIS, we focus on descriptors and the structure of τ : ∧A∈CON[A, valA] ⇒
[Dec, val]. In the first step, we examine rules with one descriptor in the condition part of τ, i.e., rules in the form of

[A, valA]⇒ [Dec, val]. In the second step, we examine rules with two descriptors, i.e., rules in the form of ([A, valA]∧
[B, valB]) ⇒ [Dec, val]. In the third step, we examine rules with three descriptors. Like this, we sequentially pick up

any rule in the form of τ : ∧A∈CON[A, valA]⇒ [Dec, val]. In this process, we employ the following properties:

(The property on support) support(τ) ≤ α holds, if support(∧A∈CON′[A, valA]) ≤ α for at least one CON′ ⊂ CON or

support([Dec, val]) ≤ α.

(The property on accuracy) accuracy(τ) ≥ β may hold, even if accuracy(∧A∈CON′[A, valA] ⇒ [Dec, val]) < β holds

for every CON′ ⊂ CON (CON′ � CON).

By employing these properties, we adjust each step in the Apriori algorithm to DIS.

(Step 1)

We generate CAN1, CANDec, and IMP1 in the first step.

CAN1 = {[A, valA] | support([A, valA]) ≥ α, A ∈ AT \ {Dec}},
CANDec = {[Dec, val] | support([Dec, val]) ≥ α},
IMP1 = {[A, valA]⇒ [Dec, val] | [A, valA] ∈ CAN1, [Dec, val] ∈ CANDec}.

(6)

For each τ ∈ IMP1, we calculate support(τ) and accuracy(τ) for deciding whether τ is a rule or not. In this step, we

recognize a set of rules in the form of [A, valA] ⇒ [Dec, val]. We add this implication to RULE1. For τ satisfying

support(τ) ≥ α and accuracy(τ) < β, we add this τ to RES T1.

(Step 2)

We generate IMP2 in the second step. Because of the property on accuracy, we need to consider RES T1.

IMP2 = {[A, valA] ∧ [A′, valA′]⇒ [Dec, val] |
[A, valA]⇒ [Dec, val] ∈ RES T1, [A′, valA′]⇒ [Dec, val] ∈ RES T1}. (7)

626 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

For each τ ∈ IMP2, we calculate criterion values support(τ) and accuracy(τ) for deciding whether τ is a rule or not.

In this step, we recognize a set of rules in the form of [A, valA] ∧ [A′, valA′] ⇒ [Dec, val]. We add this implication

to RULE2. For τ satisfying support(τ) ≥ α and accuracy(τ) < β, we similarly add this τ to RES T2. We sequen-

tially continue this procedure until IMPn = ∅. In each step, the properties on support and accuracy are effectively

employed, and we recognize ∪iRULEi is a set of all rules.

In the Apriori algorithm for the transaction data, the total search of the data set is employed frequently in or-

der to calculate criterion values. In rough sets, we make use of the equivalence classes, and we always consid-

er the equivalence class. Namely, we obtain a set {x ∈ OB | x supports [A, valA]} for [A, valA] and a set {x ∈
OB | x supports [Dec, val]} for [Dec, val] at the first step. By using the merging procedure20, we are managing the

equivalence class M for each implication τ, and we are calculating criterion values of τ (=τx) (∀x ∈ M). Since we are

following rough set theory, we currently manage the equivalence classes, however we are also considering the total

search of the data set instead of the equivalence classes.

Now, we cope with the NIS-Apriori algorithm. For considering this algorithm, we defined the following.

(1) minsupp(τx) = minψ∈DD(Φ){support(τx) in ψ},
(2) minacc(τx) = minψ∈DD(Φ){accuracy(τx) in ψ},
(3) maxsupp(τx) = maxψ∈DD(Φ){support(τx) in ψ},
(4) maxacc(τx) = maxψ∈DD(Φ){accuracy(τx) in ψ}.

(8)

We proved that it is possible to calculate the above criterion values in the polynomial time, and there is at least one

ψmin ∈ DD(Φ) causing the point (minsupp(τx),minacc(τx)). There is also at least one ψmax ∈ DD(Φ) causing the

point (maxsupp(τx),maxacc(τx)). The details are in the references 16 and 18. Based on these results, we obtained

Figure 1 for each τx.

Fig. 1. Each pairs (support(τx),accuracy(τx)) in ψ (ψ ∈ DD(Φ)) belongs to the rectangle area. In DIS, the minimum and the maximum points are

the same, however they are different in NIS.

We have the following by using Figure 1.

(1) support(τx) ≥ α and accuracy(τx) ≥ β hold for each ψ ∈ DD(Φ), if and only if minsupp(τx) ≥ α and minacc(τx) ≥
β.

(2) support(τx) ≥ α and accuracy(τx) ≥ β hold for at least one ψ ∈ DD(Φ), if and only if maxsupp(τx) ≥ α and

maxacc(τx) ≥ β.

Namely, we can handle certain rules by comparing minsupp(τx) and minacc(τx) with threshold values α and β, respec-

tively. We can similarly handle possible rules by comparing the point maxsupp(τx) and maxacc(τx) with threshold

values α and β. We adjusted Apriori algorithm in DIS to NIS by using the above properties. Since we can calculate

criterion values in the polynomial time, the computational complexity of the NIS-Apriori algorithm is about the twice

of the Apriori algorithm.

627 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

We opened a software getRNIA powered by the NIS-Apriori algorithm. In this web page, we can execute some

demonstration files. In the Mammographic data set ΦMammo
5, |DD(ΦMammo)| is more than 10 power 100, however we

can easily obtained rules depending upon more than 10100 derived DISs.

4. Parallelization of the NIS-Apriori Algorithm and RNIA-Spark

This section reconsiders the parallelization of NIS-Apriori21, and reports the current state of the implementation.

The parallelization for data mining has been investigated by Agrawal3. In the reference 3, some parallelization

processes based on the transaction data sets were considered.

4.1. Parallelization of NIS-Apriori

As we have shown in Section 3, NIS-Apriori generates the following sets sequentially.

IMP1 = {[A, valA]⇒ [Dec, val] | [A, valA] ∈ CAN1, [Dec, val] ∈ CANDec}.
IMP2 = {[A, valA] ∧ [A′, valA′]⇒ [Dec, val] |

[A, valA]⇒ [Dec, val] ∈ RES T1, [A′, valA′]⇒ [Dec, val] ∈ RES T1}.
IMP3 = {[A, valA] ∧ [A′, valA′] ∧ [A′′, valA′′]⇒ [Dec, val] |

[A, valA] ∧ [A′, valA′]⇒ [Dec, val] ∈ RES T2, [A, valA] ∧ [A′′, valA′′]⇒ [Dec, val] ∈ RES T2,
[A′, valA′] ∧ [A′′, valA′′]⇒ [Dec, val] ∈ RES T2}.

IMP4 = : : :

(9)

For each implication τ ∈ IMPk (k = 1, 2, · · ·), we apply the calculation specified in Figure 1, and obtain the certain

and possible rules. Figure 2 indicates this procedure.

Fig. 2. The evaluation process of the implications by NIS-Apriori

We focused on this procedure, and considered the parallelization in Figure 3. In Figure 2, each implication τi is

examined sequentially. In Figure 3, the list of implications are divided into four sub-lists, and each list is handled

simultaneously. We implemented a software tool for the fixed number of the core processors21, and newly revised this

software tool so as to detect the number of the core processors automatically. The new software tool generates the

sub-lists based on the number of the core processors, and assigns each procedure to each core processor. Even though

this is more general software than the previous implementation, the implementation is restricted to the set IMP1. As

for the set IMP2 and IMP3, we are still in progress.

In the following, we know spark1p.py takes one core processor, and we see each task is executed sequentially. On

the other hand, spark multi.py takes four core processors, and we see each task is executed at the same time.

>pyspark ../rnia_spark/rnia_spark1p.py local data/mush3.pl

15/02/10 09:04:05 INFO Executor: Running task ID 1

15/02/10 09:04:08 INFO Executor: Running task ID 2

15/02/10 09:04:11 INFO Executor: Running task ID 3

15/02/10 09:04:13 INFO Executor: Running task ID 4

628 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

Fig. 3. The evaluation process of the implications for the quad-core processor.

>pyspark ../rnia_spark/rnia_spark_multi.py local data/mush3.p

15/02/10 09:07:09 INFO Executor: Running task ID 1

15/02/10 09:07:09 INFO Executor: Running task ID 2

15/02/10 09:07:09 INFO Executor: Running task ID 4

15/02/10 09:07:09 INFO Executor: Running task ID 3

4.2. Apache-Spark Environment

Spark is a MapReduce-like data-parallel computation engine open-sourced by UC Berkeley. The Spark Python API

(PyS park) exposes the Spark programming model to Python. At a high level, every Spark application consists of a

driver program that runs the user’s main function and executes various parallel operations on a cluster. We employ this

environment for implementing the software tools for RNIA, and we call this framework RNIA-Spark. In RNIA-Spark,

we distribute rule generation operations of different descriptors to a cluster which may consist of multiple processors.

The main abstraction Spark provides is a resilient distributed dataset (RDD), which is a collection of elements

partitioned across the nodes of the cluster that can be operated on in parallel. In RNIA-Spark, we try to partition the

whole rule generation task to separate rule generation tasks of difference descriptors.

4.3. An Automated Detection of Core Processors

However in the previous version of RNIA-Spark, we hard-coded the number of processors for parallelized rule

generations. In this paper we use Python’s multiprocessing module to check system specs, and optimize the parallel

execution based on the number of cores.

Firstly, we need to import the multiprocessing module and call the cpu count function to obtain the number of

cores, and assign it to a variable NCore, which will be used in the main function later.

check number of cpus >python2.6

import multiprocessing

NCore = multiprocessing.cpu_count()

Then, we need to import SparkContext and define the main function, which accepts several arguments needed

when we run RNIA-Spark from command line afterward. The first thing a Spark program must do is to create a

S parkContext object, which tells Spark how to access a cluster. For example, the first parameter sys.argv[1] is a

string specifying a Spark or Mesos cluster URL to connect to, or a special local[NCore] string to run in local mode.

The second parameter rnia spark is the application name, which will be shown in the cluster web UI. The

plCleaning here is the data cleaning function used to convert raw ∗.pl files or csv files to formatted data. The fol-

lowing ruleGeneration function is the core of RNIA-Spark, which applies NIS-Apriori algorithm on formatted data

based on the settings we configured in the raw file. It returns a list of rules or an empty list if none of the rules satisfy.

Finally, the dTCF2list function’s job is to convert the list of results to readable texts.

629 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

from pyspark import SparkContext

def ruleGeneration(argW, orDsp=None):

...

dctps=sc.parallelize(

list(itertools.product(

xrange(0,len(AT[D])),

condition_Indexes)),

NCore)

...

if __name__ == "__main__":

if len(sys.argv) < 3 or len(sys.argv)>4:

print >> sys.stderr, "Usage: ./pyspark rnia_spark_multi.py <master> <file>"

exit(-1)

localCore="local[{NCore}]".format(NCore=NCore)

sc = SparkContext(localCore, "rnia_spark")

argWrapper=plCleaning(file_name)

dataWrapper= ruleGeneration(argWrapper)

rules=_dTCF2list(dataWrapper)

4.4. An Implementation and Experiments

To take full advantage of rnia spark multi.py, we need a computer of more than 4 cores or a cluster of more than 4

nodes. We obtain the following comparison result on an 8-core PC.

Firstly, we execute rnia spark multi.py on data Mammo.pl, which has 960 objects and 6 attributes per object. The

Mammo.pl is the revised Mammographic data set5 as we have specified in Section 2. The result proves that the

rnia spark multi version is not very efficient because the cost of parallel procedure itself is much more expensive than

the efficiency it brings on such scale of data.

>pyspark rnia_spark/rnia_spark1p.py local data/mammo.pl

Number of cores: 1

Data Cleaning time: 0.315397977829

Rule Generation time: 0.308684110641

>pyspark rnia_spark/rnia_spark4p.py local data/mammo.pl

Number of cores: 4

Data Cleaning time: 0.312597036362

Rule Generation time: 0.241578102112

>pyspark rnia_spark/rnia_spark_multi.py local data/mammo.pl

Number of cores: 8

Data Cleaning time: 0.352070093155

Rule Generation time: 0.268180847168

The following figure is the execution time (the difference between the finishing time and the starting time) of

the duplicated Mushroom data set5 including descriptions of hypothetical samples corresponding to 23 species of

gilled mushrooms. Every Mushroom data set has 8124 objects and 22 attributes per object which may contain non-

deterministic attribute values. From top to bottom, the lines are the result of RNIA-Spark with single processor , result

with 4 processors, and result with 8 processors. Obviously, RNIA-Spark on multiple processors become more efficient

when the dataset grows bigger.

As for this parallelization, we can easily have the following.

(1) The parallelization will be effective, if IMPk has the large number of implications.

(2) The parallelization may not be effective, if IMPk has the small number of implications.

(3) Since IMPk depends upon the threshold values α and β, the parallelization will be effective for α and β with lower

values. The parallelization may not be effective for α and β with higher values.

(4) The rule generation from the Mushroom data set will correspond to the effective case, and the rule generation from

the Mammo.pl data set will correspond to the ineffective case.

630 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

Fig. 4. Execution time for the Mushroom data set by the multiple core version of RNIA-Spark

5. Concluding Remarks

This paper briefly surveyed rough sets in DIS, rough sets in NIS, RNIA and rule generation. We implemented the

web software getRNIA based on the NIS-Apriori algorithm, and opened it to the public17,19,20. This is implemented

in Python, and employs Google App Engine. We are now adding the parallelization functionality to the NIS-Apriori
algorithm, especially the parallelization for the evaluation of the criterion values by using Apache-Spark environment.

As Agrawal described3, we need to consider the parallelization in other procedures. Even though our work is in

progress, we think the parallelization of the algorithm will take the important role for analyzing big data.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This work is supported by

JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number 26330277.

References

1. Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C., editors.

VLDB, Morgan Kaufmann; 1994. p. 487–499.

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I. Fast discovery of association rules. In: Usama M. Fayyad, et al., editors.

Advances in Knowledge Discovery and Data Mining AAAI/MIT Press; 1996. p. 307–328.

3. Agrawal, R., Shafer, C. Parallel mining of association rules. IEEE Transaction on Knowledge and Data Engineering 1996;8(6):962–969.

4. Apache Spark project Homepage

https://spark.apache.org/

5. Frank, A., Asuncion, A. UCI Machine Learning Repository, Irvine, CA, 2010.

http://mlearn.ics.uci.edu/MLRepository.html

6. Grzymała-Busse, J.W., Werbrouck, P. On the best search method in the lem1 and lem2 algorithms. Incomplete Information: Rough Set

Analysis Studies in Fuzziness and Soft Computing 1998;13:75–91.

7. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A. Rough sets: a tutorial. Rough Fuzzy Hybridization: A New Method for Decision
Making Springer; 1999. p. 3–98.

8. Kryszkiewicz, M. Rough set approach to incomplete information systems. Information Sciences 1998;112(1-4):39–49.

9. Lipski, W. On semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 1979;4(3):262–

296.

10. Lipski, W. On databases with incomplete information. Journal of the ACM 1981;28(1):41–70.

11. Orłowska, E., Pawlak, Z. Representation of nondeterministic information. Theoretical Computer Science 1984;29(1-2):27–39.

12. Pawlak, Z. Rough sets. International Journal of Computer and Information Sciences 1982;11:341–356.

13. Pawlak, Z. Systemy Informacyjne: Podstawy teoretyczne. Wydawnictwa Naukowo-Techniczne Publishers; 1983.

14. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers; 1991.

631 Mao Wu and Hiroshi Sakai / Procedia Computer Science 60 (2015) 623 – 631

15. Sakai, H., Okuma, A. Basic algorithms and tools for rough non-deterministic information analysis. Transactions on Rough Sets 2004;1:209–

231.

16. Sakai, H., Ishibashi, R., Koba, K., Nakata, M. Rules and apriori algorithm in non-deterministic information systems. Transactions on Rough
Sets 2008;9:328–350.

17. Sakai, H. RNIA software logs, 2011.

http://www.mns.kyutech.ac.jp/∼sakai/RNIA
18. Sakai, H., Wu, M., Nakata, M. Apriori-based rule generation in incomplete information databases and non-deterministic information sys-

tems. Fundamenta Informaticae 2014;130(3):343–376.

19. Wu, M., Sakai, H. getRNIA web software, 2013.

http://getrnia.org/

20. Wu, M., Nakata, M., Sakai, H. An overview of the getRNIA system for non-deterministic data. Procedia Computer Science 2013;22:615–

622.

21. Wu, M., Yamaguchi, N., Liu, C., Sakai, H. Toward the enhancement of the getRNIA system for rough-set based data analysis. Proc. SCIS-
ISIS2014 2014; TP5-2-5-(3).

