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Abstract. We employed the granule (or the equivalence class) de�ned
by a descriptor in tables, and investigated rough set-based rule genera-
tion. In this paper, we consider the new granules de�ned by an implica-
tion, and propose a family of the granules de�ned by an implication in
a table with exact data. Each family consists of the four granules, and
we show that three criterion values, support, accuracy, and coverage,
can easily be obtained by using the four granules. Then, we extend this
framework to tables with non-deterministic data. In this case, each fam-
ily consists of the nine granules, and the minimum and the maximum
values of three criteria are also obtained by using the nine granules. We
prove that there is a table causing support and accuracy the minimum,
and generally there is no table causing support, accuracy, and coverage
the minimum. Finally, we consider the application of these properties to
Apriori-based rule generation from uncertain data. These properties will
make Apriori-based rule generation more e�ective.

Keywords: Association rules, Rule generation, Apriori algorithm, Gran-
ularity, Uncertainty.

1 Introduction

We coped with rule generation and data mining in Non-deterministic Informa-

tion Systems (NISs) [8, 13, 15]. NIS was proposed by Pawlak [11], Orªowska [9],
and Lipski [6, 7] in order to handle information incompleteness in the typical
table de�ned as a Deterministic Information System (DIS ) [10, 12, 17]. Pawlak's
framework in DIS is called Rough Set Theory, and the equivalence classes take
the important role. In [11], we see the de�nition of themany valued system, which
is similar to NIS. Orªowska and Lipski considered question-answering methods
in NIS independently.

We tried to extend rule generation in DIS to NIS by using the modal concepts
[3], and proposed the framework Rough Non-deterministic Information Analysis

(RNIA). In RNIA, we de�ned the certain rules and the possible rules, and proved
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that the algorithm named NIS-Apriori is sound and complete for the de�ned
rules [15, 16]. The NIS-Apriori algorithm is an adjusted Apriori algorithm [1,
2] to NIS. Even though NIS-Apriori handles the modal concepts in rules, the
computational complexity is about twice the complexity ofApriori. Furthermore,
we opened a web software tool getRNIA [18, 19].

In this paper, we propose the families of the granules in NIS, which are
extended from the division chart [14]. In rough sets, we usually make use of the
granules (or equivalence classes) de�ned by the descriptors. Some other types
of granules are also proposed for handling missing values [5]. Here, we consider
the granules de�ned by the implications. We have already coped with the six
granules de�ned by the implications in [14], and we extend them to the nine
granules. By this extension, we can consider the new criterion value coverage as
well as support and accuracy.

This paper is organized as follows: Section 2 focuses on the case of the tables
with exact data. We de�ne the family of the four granules, and show the cal-
culation of the criterion values. Section 3 considers the case of the tables with
non-deterministic data. We similarly de�ne the family of the nine granules, and
show the extended results from Section 2. Section 4 describes the perspective of
the NIS-Apriori algorithm based on the obtained results. Section 5 concludes
this paper.

2 A Family of the Granules in DIS ψ

This section considers a family of the granules and its property in DIS ψ.

2.1 Preliminary

A Deterministic Information System (DIS ) ψ is a quadruplet [10�12, 17]:

ψ = (OB,AT, {V ALA| A ∈ AT}, f), (1)

where OB is a �nite set whose elements are called objects, AT is a �nite set
whose elements are called attributes, V ALA is a �nite set whose elements are
called attribute values for an attribute A ∈ AT , and f is such a mapping:

f : OB ×AT → ∪A∈ATV ALA. (2)

We usually consider a table like Table 1 for ψ. A pair [A, v] (A ∈ AT , v ∈ V ALA)
is called a descriptor, and we consider a set CON ⊆ AT which we call (a set
of) condition attributes and an attribute Dec ∈ AT (Dec ̸∈ CON) which we
call a decision attribute. An implication τ for CON and Dec is a formula in the
following:

τ : ∧A∈CON [A, valA] ⇒ [Dec, val] (valA ∈ V ALA, val ∈ V ALDec). (3)

In most of work on rule generation, we try to obtain the appropriate implications,
which we call rules. The most famous criterion for de�ning rules consists of three
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Table 1. An exemplary deterministic information system ψ1.

OB temperature headache nausea flu

1 very_high yes yes yes
2 high yes yes yes
3 normal yes yes no
4 very_high yes no yes
5 very_high yes yes yes
6 high no no no
7 normal no yes no
8 high no no no

values, i.e., support, accuracy and coverage [10�12, 17]. We employ these values,
and we de�ne that a rule is an implication τ satisfying the constraint

support(τ) ≥ α, accuracy(τ) ≥ β and coverage(τ) ≥ γ
for given 0 < α, β, γ ≤ 1.

(4)

The constraint coverage may not be employed in some frameworks, for example
the Apriori algorithm [1, 2] does not employ it, and we see γ=0 in such case.
In ψ1, we have support(τ)=3/8, accuracy(τ)=3/4, and coverage(τ)=3/4 for
τ : [headache, yes] ∧ [nausea, yes] ⇒ [flu, yes].

2.2 A Family of the Granules De�ned by an Implication

We propose the granules de�ned by an implication τ : ∧A∈CON [A, valA] ⇒
[Dec, val].

De�nition 1. We say an object x supports τ , if f(x,A)=valA for every A ∈
CON and f(x,Dec)=val. In order to clarify this object x, we may employ the

notation τx instead of τ .

In ψ1, the objects 1, 2 and 5 support τ : [headache, yes] ∧ [nausea, yes] ⇒
[flu, yes], and we have τ1, τ2, and τ5.

For more simplicity of τ : ∧A∈CON [A, valA] ⇒ [Dec, val], we employ the
following notation:
(1) p denotes the conjunction ∧A∈CON [A, valA],
(2) p′ denotes any conjunction ∧A∈CON [A, val′A] (val

′
A ̸= valA for at least one

A ∈ CON),
(3) r denotes [Dec, val],
(4) r′ denotes any descriptor [Dec, val′] (val′ ̸= val).
If we �x an implication τ : p ⇒ r, each object de�nes either p ⇒ r, p ⇒ r′,
p′ ⇒ r, or p′ ⇒ r′. In ψ1, let us consider τ : [headache, yes] ∧ [nausea, yes] ⇒
[flu, yes]. Then, the objects 1, 2, and 5 de�ne p⇒ r, the object 3 de�nes p⇒ r′,
the object 4 does p′ ⇒ r, and the objects 6, 7, and 8 do p′ ⇒ r′.
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Table 2. Four granules de�ned by τ : p⇒ r in ψ.

r r′

p 1⃝={x ∈ OB | x supports p⇒ r} 2⃝={x ∈ OB | x supports p⇒ r′}
p′ 3⃝={x ∈ OB | x supports p′ ⇒ r} 4⃝={x ∈ OB | x supports p′ ⇒ r′}

Based on these four types of implications, we de�ne four sets 1⃝, 2⃝, 3⃝, and
4⃝ in Table 2. Since we can show the following,

1⃝∪ 2⃝∪ 3⃝∪ 4⃝ = OB, i⃝∩ j⃝ = ∅ (i ̸= j), (5)

the four sets are equivalence classes over OB.

De�nition 2. For DIS ψ, an implication τ and the four equivalence classes in

Table 2, we de�ne FGr(τ, ψ)=( 1⃝, 2⃝, 3⃝, 4⃝), and we say FGr(τ, ψ) is a family

of the granules de�ned by τ in ψ.

In our previous work, we proposed a set of equivalence classes and named it
a division chart [14]. In a division chart, we handled two types of implications,
namely p⇒ r and p⇒ r′, and considered only two granules 1⃝ and 2⃝. We cal-
culated support and accuracy by using 1⃝ and 2⃝, however we can also calculate
coverage by using FGr(τ, ψ). Thus, we are extending the previous work [14] to
the more powerful one. Since FGr(τ, ψ) takes the role of the contingency table,
it is easy to obtain the following proposition.

Proposition 1. For a family FGr(τ, ψ) of the granules, the following holds.

(1) support(τ) =
| 1⃝|

| 1⃝|+| 2⃝|+| 3⃝+| 4⃝|
=

| 1⃝|
|OB| ,

(2) accuracy(τ) =
| 1⃝|

| 1⃝|+| 2⃝|
, (3) coverage(τ) =

| 1⃝|
| 1⃝|+| 3⃝|

.

(6)

Remark 1. For τ : [temperature, normal] ⇒ [flu, no] (=p ⇒ r) in ψ1, we have
FGr(τ, ψ1)=({3, 7}, ∅, {6, 8}, {1, 2, 4, 5}). Based on Proposition 1,

(1) support(τ) = |{3,7}|
8 = 1/4, (2) accuracy(τ) = |{3,7}|

|{3,7}|+|∅| = 1.0,

(3) coverage(τ) = |{3,7}|
|{3,7}|+|{6,8}| = 1/2.

(7)

Especially, 1, 2 ∈ 4⃝ seems quite new, as far as authors know. In the typical
equivalence relation, 1 and 2 are not in the same class, however they are equiv-
alent in the aspect that neither object 1 nor 2 is related to the implication τ at
all.

3 A Family of the Granules in NIS Φ

We have dealt with NIS as the case of the tables with uncertainty. In this section,
we consider a family of the granules in NIS and their property.
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Table 3. An exemplary non-deterministic information system Φ1.

OB temperature headache nausea flu

1 {very_high} {yes, no} {yes} {yes}
2 {high, very_high} {yes} {yes} {yes}
3 {normal, high} {yes} {yes} {yes, no}
4 {very_high} {yes} {yes, no} {yes}
5 {very_high} {yes, no} {yes} {yes}
6 {high} {no} {yes, no} {yes, no}
7 {normal} {no} {yes} {no}
8 {normal, high} {no} {yes, no} {no}

3.1 Preliminary

NIS Φ is also a quadruplet Φ=(OB,AT, {V ALA|A ∈ AT}, g) [9, 11], where g is
such a mapping:

g : OB ×AT → P (∪A∈ATV ALA) (a power set of ∪A∈AT V ALA). (8)

Every set g(x,A) is interpreted as that there is an actual value in this set, but
the value is not known. We usually consider tabular representation of Φ like
Table 3. Since each V ALA is a �nite set, we can easily de�ne all possible cases
from NIS. For Φ=(OB,AT, {V ALA|A ∈ AT}, g), we name the following DIS a
derived DIS from NIS Φ.

ψ = (OB,AT, {V ALA|A ∈ AT}, h) (h(x,A) ∈ g(x,A) for each x and A). (9)

For NIS Φ, let DD(Φ) denote a set below:

DD(Φ) = {ψ | ψ is a derived DIS from Φ}. (10)

Actually, ψ1 in Table 1 is a derived DIS from Φ1. We transfer the problem on
information incompleteness to the case analytic problem based on DD(Φ). We
de�ne that τ is a certain rule, if τ is a rule in every ψ ∈ DD(Φ), and τ is a
possible rule, if τ is a rule in at least one ψ ∈ DD(Φ). However, there are 1024
(=210) derived DISs in Φ1. In Mammographic data set [4], there are more than
10100 derived DISs. For solving this problem, the family of the granules takes
the important role.

De�nition 3. We say an object x supports τ in NIS Φ, if x supports τ in at

least one ψ ∈ Φ.

Remark 2. For τ : [temperature, normal] ⇒ [flu, no] in Φ1, we have τ
3, τ7, and

τ8, and we say each of them is an instance of τ . In order to evaluate τ in NIS

Φ, we consider the instance of τ in Φ. If there is an instance τx satisfying the
constraint, we say τ is a rule. In DIS, we need not to consider such instances,
because three criterion values are the same for every τx and τy (x ̸= y). However
in NIS, they may be di�erent. For example, the instance τ7 occurs in each of
the derived DIS, but there is a derived DIS where τ3 nor τ8 do not occur. They
have the di�erent property from τ7.
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3.2 A Family of the Granules in NIS Φ

For Φ, an implication τ , and an object x ∈ OB, we de�ne the following:

IMP (x, Φ, τ) = ∪ψ∈DD(Φ){τψ | x supports τψ in DIS ψ},
Here, τψ is either τ : p⇒ r, p⇒ r′, p′ ⇒ r or p′ ⇒ r′.

(11)

This IMP (x, Φ, τ)means a set of the obtainable implications, which are classi�ed
by τ , from x. For example in Φ1, we consider τ : [temperature, normal] ⇒
[flu, no] (= p⇒ q). Then, we have the following:

IMP (3, Φ1, τ) = {p⇒ r, p⇒ r′, p′ ⇒ r, p′ ⇒ r′},
IMP (7, Φ1, τ) = {p⇒ r},
IMP (8, Φ1, τ) = {p⇒ r, p′ ⇒ r}.

(12)

Proposition 2. The relation ∼τ,Φ below de�nes an equivalence relation over

OB.
x ∼τ,Φ y ⇔ IMP (x, Φ, τ) = IMP (y, Φ, τ). (13)

Proof. We can easily show the re�exivity, the symmetry and the transitivity.

For p (=∧A∈CON [A, valA]) in τ , it is necessary to consider three cases, i.e.,
{p}, {p, p′} and {p′}. Similarly, we think three cases, {r}, {r, r′} and {r′}, and
we have the nine sets based on the obtainable implications in Table 4.

Table 4. Nine sets based on the obtainable implications for τ : p⇒ r.

{r} {r, r′} {r′}
{p} S1 : {p⇒ r} S2 : {p⇒ r, p⇒ r′} S3 : {p⇒ r′}

{p, p′} S4 : {p⇒ r, S5 : {p⇒ r, p⇒ r′, S6 : {p⇒ r′,
p′ ⇒ r} p′ ⇒ r, p′ ⇒ r′} p′ ⇒ r′}

{p′} S7 : {p′ ⇒ r} S8 : {p′ ⇒ r, p′ ⇒ r′} S9 : {p′ ⇒ r′}

De�nition 4. We de�ne the following based on Table4.

i⃝ = {x ∈ OB | IMP (x, Φ, τ) = Si} (1 ≤ i ≤ 9),
FGr(τ, Φ) = ( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝, 7⃝, 8⃝, 9⃝).

(14)

We say FGr(τ, Φ) is a family of the granules de�ned by τ in Φ.

For example, we have the following for τ : [temperature, normal] ⇒ [flu, no] in
Φ1 and the formulas (12).

IMP (3, Φ1, τ) = S5 and 3 ∈ 5⃝,
IMP (7, Φ1, τ) = S1 and 7 ∈ 1⃝,
IMP (8, Φ1, τ) = S4 and 8 ∈ 4⃝,
FGr(τ, Φ1) = ({7}, ∅, ∅, {8}, {3}, ∅, ∅, {6}, {1, 2, 4, 5}).

(15)
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3.3 Criterion Values of an Implication in NIS Φ

In NIS Φ, the criterion values depend upon ψ ∈ DD(Φ), so we consider the mini-
mum and the maximum values of support(τx), accuracy(τx), and coverage(τx).
We employ the notationsminsupp(τx),maxsupp(τx),minacc(τx),maxacc(τx),
mincov(τx), maxcov(τx) for them. We say τx is de�nite in Φ, if IMP (x, Φ, τ)
is a singleton set. If τx is not de�nite, there is at least on ψ ∈ DD(Φ) where τx

does not occur. In this ψ, we de�ne minsupp(τx)=minacc(τx)= mincov(τx)=0.
Now, we sequentially consider three criterion values by generating an actual
ψ ∈ DD(Φ).

Proposition 3. For NIS Φ and an implication τ , let us consider FGr(τ, Φ)
=( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝, 7⃝, 8⃝, 9⃝). If 1⃝ ≠ ∅, there is an object x ∈ 1⃝ and

ψminSA ∈ DD(Φ) satisfying the following:

(1) support(τx) in ψminSA = minsupp(τx) = | 1⃝|/|OB|,
(2) accuracy(τx) in ψminSA = minacc(τx) =

| 1⃝|
| 1⃝|+| 2⃝|+| 3⃝|+| 5⃝|+| 6⃝|

,

(3) coverage(τx) in ψminSA =
| 1⃝|

| 1⃝|+| 4⃝|+| 7⃝|+| 8⃝|
.

(16)

(Sketch of the proof) By the selection of an implication from the sets S2, S4, S5,

S6, S8, the criterion values change. For two natural number N andM (N ≤M),
we can easily show the inequality N

M ≤ N+1
M+1 . If we select τx : p ⇒ r in S2, this

x satis�es the condition on the denominator and the numerator of accuracy.
Based on the inequality, this selection causes to increase accuracy. Thus, we
select p ⇒ r′. Namely, we employ the strategy to select the same condition and

the di�erent decision. At the same time, we implicitly specify a table by this

selection. If we select the underlined part in Table 5, we have ψminSA, and both

support and accuracy are the minimum. If 1⃝=∅, we handle τx (x ∈ 2⃝∪ 4⃝∪ 5⃝).
In this case, we also have the formulas for the calculation, however the formulas

are slightly di�erent. We omit this case.

Table 5. The selection (underlined part) of the implications for ψminSA ∈ DD(Φ).

{r} {r, r′} {r′}
{p} S1 : {p⇒ r} S2 : {p⇒ r, p⇒ r′} S3 : {p⇒ r′}

{p, p′} S4 : {p⇒ r, S5 : {p⇒ r, p⇒ r′, S6 : {p⇒ r′,

p′ ⇒ r} p′ ⇒ r, p′ ⇒ r′} p′ ⇒ r′}
{p′} S7 : {p′ ⇒ r} S8 : {p′ ⇒ r, p′ ⇒ r′} S9 : {p′ ⇒ r′}

Example 1. For τ : [temperature, normal] ⇒ [flu, no], we obtained FGr(τ, Φ1)=
({7}, ∅, ∅, {8}, {3}, ∅, ∅, {6}, {1, 2, 4, 5}) in the formulas (15). Since 7 ∈ 1⃝, we can
apply Proposition 3 to τ7. Based on Table 5, we select [temperature, high] ⇒
[flu, no] from object 8 and [temperature, normal] ⇒ [flu, yes] from object 3.
Then, we have ψminSA in Table 6. In ψminSA, support(τ

7)=1/8=minsupp(τ7),
accuracy(τ7)=1/2=minacc(τ7), coverage(τ7)=1/3>mincov(τ7).
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Table 6. ψminSA from DD(Φ1).

OB temperature flu

1 very_high yes
2 high yes
3 normal yes
4 very_high yes
5 very_high yes
6 high no
7 normal no
8 high no

Table 7. ψminSC from DD(Φ1).

OB temperature flu

1 very_high yes
2 high yes
3 high no
4 very_high yes
5 very_high yes
6 high no
7 normal no
8 high no

Proposition 4. For NIS Φ and an implication τ , let us consider FGr(τ, Φ)
=( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝, 7⃝, 8⃝, 9⃝). If 1⃝ ≠ ∅, there is an object x ∈ 1⃝ and

ψminSC ∈ DD(Φ) satisfying the following:

(1) support(τx) in ψminSC = minsupp(τx) = | 1⃝|/|OB|,
(2) accuracy(τx) in ψminSC =

| 1⃝|
| 1⃝|+| 2⃝|+| 3⃝|+| 6⃝|

,

(3) coverage(τx) in ψminSC = mincov(τx) =
| 1⃝|

| 1⃝|+| 4⃝|+| 5⃝|+| 7⃝|+| 8⃝|
.

(17)

(Sketch of the proof) We similarly have the selection in Table 8, which de�nes the

minimum value of coverage. At the same time, ψminSC de�nes minsupp(τx),
because p⇒ r occurs only in S1.

Table 8. The selection (underlined part) of the implications for ψminSC ∈ DD(Φ).

{r} {r, r′} {r′}
{p} S1 : {p⇒ r} S2 : {p⇒ r, p⇒ r′} S3 : {p⇒ r′}

{p, p′} S4 : {p⇒ r, S5 : {p⇒ r, p⇒ r′, S6 : {p⇒ r′,

p′ ⇒ r} p′ ⇒ r, p′ ⇒ r′} p′ ⇒ r′}
{p′} S7 : {p′ ⇒ r} S8 : {p′ ⇒ r, p′ ⇒ r′} S9 : {p′ ⇒ r′}

Example 2. In the same condition in Example 1, we apply Proposition 4 to the
instance τ7. Then, we have support(τ7)=1/8=minsupp(τ7), accuracy(τ7)=1.0>
minacc(τ7), coverage(τ7)=1/4=mincov(τ7). As the side e�ect, we obtain a de-
rived ψminSC in Table 7.

Proposition 5. For NIS Φ and an implication τ , let us consider FGr(τ, Φ)
=( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝, 7⃝, 8⃝, 9⃝), and let us suppose 1⃝ ≠ ∅. There is an object

x ∈ 1⃝ and ψminSAC ∈ DD(Φ) satisfying the following, if and only if 5⃝=∅.

(1) support(τx) in ψminSAC = minsupp(τx) = | 1⃝|/|OB|,
(2) accuracy(τx) in ψminSAC = minacc(τx) =

| 1⃝|
| 1⃝|+| 2⃝|+| 3⃝|+| 6⃝|

,

(3) coverage(τx) in ψminSAC = mincov(τx) =
| 1⃝|

| 1⃝|+| 4⃝|+| 7⃝|+| 8⃝|
.

(18)
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(Sketch of the proof) Based on Table 5 and 8, only the selection in 5⃝ is di�erent.

If 5⃝=∅, the selections in Table 5 and 8 are the same.

We generally know there is no ψminSAC ∈ DD(Φ) de�ning minsupp(τx),
minacc(τx), andmincov(τx) based on Proposition 5. However, there are ψminSA
de�ning minsupp(τx) and minacc(τx), and ψminSC de�ning minsupp(τx) and
mincov(τx). Namely, we recognize minsupp(τx), minacc(τx), and mincov(τx)
by examining at most two derived DISs ψminSA and ψminSC . Now, we consider
the maximum case. We have the following.

Proposition 6. For NIS Φ and an implication τ , let us consider FGr(τ, Φ)
=( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝, 7⃝, 8⃝, 9⃝). For any object x ∈ 1⃝∪ 2⃝∪ 4⃝∪ 5⃝, there is

ψmaxSAC ∈ DD(Φ) satisfying the following:

(1) support(τx) in ψmaxSAC = maxsupp(τx) =
(| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)

|OB| ,

(2) accuracy(τx) in ψmaxSAC = maxacc(τx) =
(| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)

(| 1⃝|+| 2⃝|+| 3⃝|+| 4⃝|+| 5⃝|)
,

(3) coverage(τx) in ψmaxSAC = maxcov(τx) =
(| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|)

(| 1⃝|+| 2⃝|+| 4⃝|+| 5⃝|+| 7⃝|)
.

(19)
(Sketch of the proof) Based on Table 9, we can similarly show the equations.

Table 9. The selection (underlined part) of the implications for ψmaxSAC ∈ DD(Φ).

{r} {r, r′} {r′}
{p} S1 : {p⇒ r} S2 : {p⇒ r, p⇒ r′} S3 : {p⇒ r′}

{p, p′} S4 : {p⇒ r, S5 : {p⇒ r, p⇒ r′, S6 : {p⇒ r′,

p′ ⇒ r} p′ ⇒ r, p′ ⇒ r′} p′ ⇒ r′}
{p′} S7 : {p′ ⇒ r} S8 : {p′ ⇒ r, p′ ⇒ r

′} S9 : {p′ ⇒ r′}

4 Criterion Values and Apriori-based Rule Generation

This section applies the obtained results to Apriori -based rule generation.

4.1 Current Rule Generation by Criteria support and accuracy

By Proposition 3, there is a derived ψminSA ∈ DD(Φ) for τx (x ∈ 1⃝), and we
can prove (C1) (the de�nition of a certain rule by support and accuracy) and
(C2) are equivalent [15].
(C1) support(τx) ≥ α and accuracy(τx) ≥ β in each ψ ∈ DD(Φ),
(C2) support(τx) ≥ α and accuracy(τx) ≥ β in ψminSA, namely

minsupp(τx) ≥ α and minacc(τx) ≥ β.
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Similarly, we can prove (P1) (the de�nition of a possible rule by support and
accuracy) and (P2) are equivalent by Proposition 6.
(P1) support(τx) ≥ α and accuracy(τx) ≥ β in at least one ψ ∈ DD(Φ),
(P2) support(τx) ≥ α and accuracy(τx) ≥ β in ψmaxSAC , namely

maxsupp(τx) ≥ α and maxacc(τx) ≥ β.
Even though the conditions (C1) and (P1) depend upon |DD(Φ)|, the con-

ditions (C2) and (P2) do not depend upon |DD(Φ)|. We can calculate the con-
ditions (C2) and (P2) in the polynomial time order, and we escaped from the
computational complexity problem on |DD(Φ)|.

We have opened a software getRNIA powered by NIS-Apriori algorithm [18,
19]. In this implementation, we handled support and accuracy, and did not han-
dle coverage. The getRNIA actually calculates the conditions (C2) and (P2)
instead of the de�nitions (C1) and (P1), respectively. Moreover, getRNIA em-
ploys the merging procedure internally. For two families FGr((p1 ⇒ r), Φ) and
FGr((p2 ⇒ r), Φ), we can obtain FGr((p1 ∧ p2 ⇒ r), Φ) [14]. After merging
them, we can similarly apply Proposition 3 to 6.

4.2 Rule Generation by Criteria support, accuracy, and coverage

At �rst, we consider Apriori -based possible rule generation. By Proposition 6,
there is a derived ψmaxSAC ∈ DD(Φ) for any τx, so we can easily prove the con-
ditions (P'1) (the de�nition of a certain rule by support, accuracy, and coverage)
and (P'2) are equivalent.
(P'1) support(τx) ≥ α, accuracy(τx) ≥ β, and coverage(τx) ≥ γ

in at least one ψ ∈ DD(Φ),
(P'2) support(τx) ≥ α, accuracy(τx) ≥ β, and coverage(τx) ≥ γ in ψmaxSAC ,

namely maxsupp(τx) ≥ α, maxacc(τx) ≥ β, and maxcov(τx) ≥ γ.
Therefore, we employ the condition (P'2) for possible rule generation. The fol-
lowing is an overview of Apriori -based possible rule generation.

An overview of Apriori-based possible rule generation in NIS

(Base step)
Set i=1. Prepare LISTi:={τ : [A, valA] ⇒ [Dec, val]}, and ANS:={}.
(Inductive step)
Generate FGr(τ, Φ) for each τ ∈ LISTi by searching the total data set, and
examine the following:
(1) REST :={}. Set i:=i+1.
(2) Apply Proposition 6 for every FGr(τ, Φ).

If τx satis�es the constraint, ANS := ANS ∪ {τ}. If maxsupp(τx) ≥ α,
maxcov(τx) ≥ γ, and maxacc(τx) < β, REST := REST ∪ {τ}.

(3) LISTi:={}. For τj : conj ⇒ r, τk : conk ⇒ r ∈ REST ,
generate τ : condition⇒ r (the condition is a conjunction consisting of
i number of descriptors), and LISTi:=LISTi ∪ {τ}.

(4) If LISTi is an empty set, this program terminates. All certain rules are
stored in ANS. Otherwise, repeat the inductive step.
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Fig. 1. The relation between ψminSA, ψminSC , ψminSAC , and ψmaxSAC .

Now, let us consider certain rule generation based on Proposition 3, 4, and
5. For τx (x ∈ 1⃝), the conditions (C'1) and (C'2) are equivalent, if the granule
5⃝=∅ in FGr(τ, Φ).
(C'1) support(τx) ≥ α, accuracy(τx) ≥ β, and coverage(τx) ≥ γ

in each ψ ∈ DD(Φ),
(C'2) support(τx) ≥ α, accuracy(τx) ≥ β, and coverage(τx) ≥ γ in ψminSAC ,

namely minsupp(τx) ≥ α, minacc(τx) ≥ β, and mincov(τx) ≥ γ.
If 5⃝ ≠ ∅, we need to consider the condition (C'3).
(C'3) support(τx) ≥ α, accuracy(τx) ≥ β in ψminSA, and coverage(τx) ≥ γ

in ψminSC .
Figure 1 shows the survey. We will employ the condition (C'3) for adding the
criterion coverage to the NIS-Apriori algorithm as well as support and accuracy.

5 Concluding Remarks

This paper proposed a family of the granules FGr(τ, Φ), and examined its prop-
erty related to rule generation and data mining. We showed the calculation on
mincov(τx) andmaxcov(τx), and proved that we always have ψminSA ∈ DD(Φ),
ψminSC ∈ DD(Φ), and ψmaxSAC ∈ DD(Φ). As for ψminSAC ∈ DD(Φ), generally
we may not have it. We proved the necessary and su�cient condition for exist-
ing ψminSAC ∈ DD(Φ). The computational complexity for calculating criterion
values depends upon DD(Φ) in the de�nition, however we can calculate them in
the polynomial time based on the properties of FGr(τ, Φ). The content in this
paper will be the mathematical foundation on FGr(τ, Φ), and such background
will enhance Apriori-based rule generation.
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