

Unprecedented formation of 4-(vinylketene)iron complexes from 4-(diene)iron complexes and aromatic compounds in the presence of a Lewis acid

著者	Okauchi Tatsuo, Sata Naoki, Urakawa Akihiro, Kitamura Mitsuru		
journal or	Chemical communications		
publication title			
volume	51		
number	40		
page range	8454-8456		
year	2015-05-18		
URL	http://hdl.handle.net/10228/00006110		

doi: info:doi/10.1039/C5CC00870K

Unprecedented formation of η^4 -(vinylketene)iron complexes from η^4 -(diene)iron complexes and aromatic compounds in the presence of a Lewis acid

Tatsuo Okauchi,* Naoki Sata, Akihiro Urakawa, and Mitsuru Kitamura

A novel and unprecedented formation of η^4 -(vinylketene)iron complexes from η^4 -(diene)iron complexes is described herein. Treatment of η^4 -(diene)iron complexes with a Lewis acid such as GaCl₃ or AlCl₃ in the presence of aromatic compounds under a CO atmosphere affords η^4 -(vinylketene)iron complexes via electrophilic aromatic substitution.

Vinylketenes are versatile building blocks for the preparation of a variety of cyclic compounds.¹ From a synthetic standpoint, however, reactions involving vinylketenes possess certain drawbacks related to their high reactivity and instability.² Compared to vinylketenes, their iron complexed counterparts are stable and undergo interesting synthetic transformations.^{3, 4} Although a number of η^4 -(vinylketene)iron complexes have been prepared from a variety of compounds,⁴ there are no reports on the preparation of η^4 -(vinylketene)iron complexes from η^4 -(diene)iron complexes. As part of our continuing interest in the chemistry of η^4 -(diene)iron complexes,^{5,6} we have been investigating their reaction in the presence of a Lewis acid. It is known that η^4 -(diene)iron complexes are reactive towards electrophilic reagents. For example, there are many reports of η^4 -(diene)irons Friedel-Crafts reactions ⁷ and undergoing cyclocarbonylations8 in the presence of a Lewis acid. However, to our knowledge, these are the only studies that have reported the reaction of η^4 -(diene)iron complexes with Lewis acids. Herein, we report the unprecedented formation of η^4 -(vinylketene)iron complexes from η^4 -(diene)iron complexes and aromatic compounds in the presence of AlCl₃ or GaCl₃.

Iron complex **1a**, which was easily prepared from a 2-siloxy-1,3diene,⁶ was treated with AlCl₃ (5.0 equiv) in the presence of mesitylene (5.0 equiv) in CH₂Cl₂ at room temperature. After the usual workup, a yellow crystal **2a** was obtained in moderate yield.[‡] From X-ray diffraction analysis, we identified that **2a** is an unexpected η^4 -(vinylketene)iron complex. The molecular structure of complex **2a** is depicted in Figure 1.

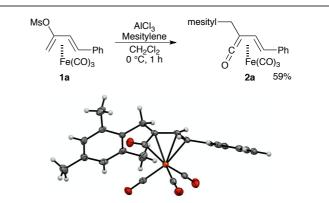


Fig. 1 Reaction of 1a and ORTEP diagram of 2a (50% probability).

The treatment of diene-iron complexes with an aluminum halide is known to give cyclopentenones after decomplexation.8 In our case, an unexpected reaction, which involved a diene-iron complex, an aromatic compound, and carbon monoxide, proceeded to afford a η^4 -(vinylketene)iron complex. This is the first example of the preparation of a η^4 -(vinylketene)iron complex from a η^4 -(diene)iron complex and an aromatic compound. With this promising result, the Lewis acidpromoted reaction between iron complex 1a and benzene was chosen as a model reaction for optimization using different Lewis acids and solvents under a carbon monoxide atmosphere as summarized in Table Among the solvents tested (entries 1-5), o-1. entries 1-11. dichlorobenzene was found to be the most appropriate. Subsequently, we examined various Lewis acids and found that GaCl₃⁹ was best suited for the reaction in o-dichlorobenzene. The yield of 2aa decreased when the reaction was performed at lower temperature (Table 1, entry 10), and the reaction at higher temperature resulted in a complex mixture of products (Table 1, entry 11). We then examined the effect of the leaving group at the C-2 position of the diene ligand (Table 1, entries 9, 12-15). Mesylate was superior to any of the other leaving groups.

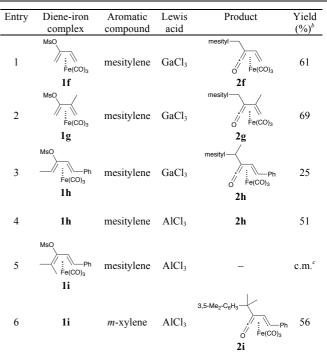
 Table 1 Optimizing conditions of the reaction between diene-iron complex 1 and benzene in the presence of a Lewis acid under a CO atmosphere.^a

Y Fe(CO) ₃			Lewis acid benzene solvent CO, rt., 1 h	Ph C D Fe(CO) ₃	
Enters	1	Y	Lewis acid	2aa	$\mathbf{X}_{i-1} \mathbf{I}_{i} (0/0)^{b}$
Entry	-			Solvent	Yield $(\%)^b$
1	1a	MsO	AlCl ₃	CH_2Cl_2	34
2	1a	MsO	AlCl ₃	CH ₂ ClCH ₂ Cl	17
3	1a	MsO	AlCl ₃	Et_2O	
4	1a	MsO	AlCl ₃	benzene	30
5	1a	MsO	AlCl ₃	o-Cl ₂ C ₆ H ₄	35
6	1a	MsO	BCl_3	o-Cl ₂ C ₆ H ₄	
7	1a	MsO	InCl ₃	o-Cl ₂ C ₆ H ₄	
8	1a	MsO	TiCl ₄	o-Cl ₂ C ₆ H ₄	c.m. ^d
9	1a	MsO	GaCl ₃	o-Cl ₂ C ₆ H ₄	51
10	1a	MsO	GaCl ₃	o-Cl ₂ C ₆ H ₄	36^e
11	1a	MsO	GaCl ₃	o-Cl ₂ C ₆ H ₄	c.m. ^{<i>d,f</i>}
12	1b	TsO	GaCl ₃	o-Cl ₂ C ₆ H ₄	25
13	1c	CH ₃ CO	GaCl ₃	o-Cl ₂ C ₆ H ₄	
14	1d	PhCO	GaCl ₃	o-Cl ₂ C ₆ H ₄	
15	1e	$(EtO)_2P(O)$	GaCl ₃	o-Cl ₂ C ₆ H ₄	

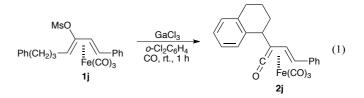
^{*a*} Reaction conditions: **1a** (1.0 equiv.), Lewis acid (5.0 equiv.), benzene (5.0 equiv.), solvent (5.0 mL), rt, 1 h, under CO (1 atm) ^{*b*} Isolated yield based on **1a** ^{*c*} No reaction ^{*d*} Complex mixture ^{*c*} Reaction temperature: 0 °C. ^{*f*} Reaction temperature: 40 °C

Table 2 Reaction between diene-iron complex **1a** and various aromatic compounds in the presence of $GaCl_3$ under a CO atmosphere.^{*a*}

MsO	Ph Fe(CO) ₃	$\begin{array}{ccc} & & & & & & \\ & & & & \\ \hline aromatic comound & & & \\ \hline o\text{-}Cl_2C_6H_4 & & & C \\ & & & CO, \text{ rt., 1 h} & & & O \end{array}$	Fe(CO) ₃
Entry	Aromatic	R	Yield
	compound		$(\%)^{b}$
1	benzene	Phenyl (2aa)	51
2	toluene	Tolyl $(2ab)^c$	58
3	p-xylene	$2,5-Me_2-C_6H_3$ (2ac)	53
4	anisole	2-MeO-C ₆ H ₄ (2ad) ^{d}	67
5	biphenyl	$4-Ph-C_{6}H_{4}$ (2ae)	56
6	naphthalene	Naphthyl $(2af)^e$	50
7	chlorobenzene	$cl-C_6H_4 (2ag)^{f}$	12
8	methyl benzoate	-	^g
9	thiophene	_	c.m. ^h
10	furan	-	c.m. ^h

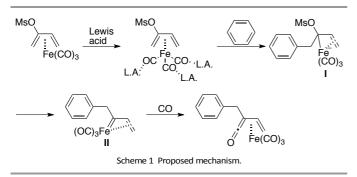

^{*a*} Reaction conditions: **1a** (1.0 equiv.), GaCl₃ (5.0 equiv.), aromatic compound (5.0 equiv.), *o*-dichlorobenzene (5.0 mL), rt, 1 h, under CO (1 atm) ^{*b*} Isolated yield based on **1a** ^{*c*} Obtained as a mixture of inseparable isomers in a ratio of ca. 1:1 determined by ¹H NMR ^{*d*} Obtained as a mixture of inseparable regioisomers in the ratio (*para* : *ortho*) of ca. 1:0.5 determined by ¹H NMR ^{*e*} Obtained as a mixture of inseparable isomers in a ratio of ca. 1:0.25 determined by ¹H NMR ^{*f*} No reaction ^{*h*} Complex mixture

After optimization of reaction conditions, various aromatic compounds were subjected to treatment with diene-iron complexes 1a in the presence of GaCl₃ under a CO atmosphere. The results are summarized in Table 2. Aromatic compounds with electron-donating groups underwent a reaction affording (vinylketene)iron complex 2 in moderate to good yield (entries 2-4), while electron-withdrawing substituents decreased the reactivity toward the iron complex (entries


7,8). These results show that this reaction proceeds via electrophilic aromatic substitution. In the case of five-membered heterocycles, the Lewis acid could decompose the arenes under the described reaction conditions (entries 9, 10).

Next, various (diene)iron complexes 1 were subjected to treatment with aromatic compounds in the presence of GaCl₃ or AlCl₃. The results are summarized in Table 3. The reaction of 1,3,4-unsubstitued and 3-substituted (diene)iron complexes with mesitylene in the presence of GaCl₃ yielded the corresponding (vinylketene)iron complexes (entries 1,2). Introduction of substituents that surrounded the reaction center resulted in a lower yield (entry 3). A higher yield was obtained when a stronger Lewis acid (AlCl₃) was used in the reaction of 1h (entry 4). The more sterically demanding 1,1disubstituted (diene)iron complex 1i reacted with m-xylene in the presence of AlCl₃, although the reaction of more hindered mesitylene did not occur (entries 5,6). To investigate the possibility of intramolecular cyclization, reaction with a (diene)iron complex bearing a phenyl ring tethered by a trimethylene was examined. The complex 1j was cyclized after treatment with GaCl₃ under a CO atmosphere. The (vinylketene)iron complex bearing a tetralin ring was isolated in 67% yield (eq. 1).

Table 3 Reaction between various diene-iron complexes 1 and mesitylene, toluene, and benzene in the presence of a Lewis acid.^{*a*}



^{*a*} Reaction conditions: **1** (1.0 equiv.), Lewis acid (5.0 equiv.), aromatic compound (5.0 equiv.), *o*-dichlorobenzene (5.0 mL), rt, 1 h, under CO (1 atm) ^{*b*} Isolated yield based on **1** ^{*c*} Complex mixture

Journal Name

A plausible mechanism for this reaction is depicted in Scheme 1. The diene ligand is activated electrophilically by the coordination of the Lewis acid with the CO ligands.⁸ Electrophilic aromatic substitution with the activated η^4 -(diene)iron complex leads to the formation of the anionic intermediate I.¹⁰ Elimination of the mesylate group results in the vinylcarbene-iron complex II.¹¹ In the presence of carbon monoxide, CO insertion takes place in the Fe=C bond of the complex II to give the η^4 -(vinylketene)iron complex.¹²

In conclusion, treatment of η^4 -(1,3-diene)iron complexes with GaCl₃ or AlCl₃ in the presence of an aromatic compound under a CO atmosphere affords η^4 -(vinylketene)iron complexes. The reaction proceeds via electrophilic aromatic substitution. This is the first reported case of the preparation of a η^4 -(vinylketene)iron complex from a η^4 -(diene)iron complex and an aromatic compound. This procedure provides a new approach to prepare η^4 -(vinylketene)iron complexes.

We gratefully acknowledge financial support for this research by Grant-in-Aid for Scientific Research from MEXT. We also thank the Center for Instrumental Analysis KIT for the measurement of analytical data.

Notes and references

Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan.

E-mail: okauchi@che.kyutech.ac.jp

[†] Electronic supplementary information (ESI) available: Details of experimental procedures and characterization data as well as X-ray crystallographic data for **2a** in CIF format. CCDC 1043623. For ESI and crystallographic data in CIF or other electronic format see DOI: XXXXXXX

[‡] Data for **2a**: yellow solid; IR (ATR) 2917, 2051, 1976, 1766, 1608, 1450, 1373, 1029, 854 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ 2.30 (s, 3H), 2.35 (s, 6H), 3.18 (d, 1H, *J* = 9.0 Hz), 3.43 (d, 1H, *J* = 16.5 Hz), 3.64 (d, 1H, *J* = 16.5 Hz), 6.02 (d, 1H, *J* = 9.5 Hz), 6.92 (s, 2H), 7.29-7.21 (m, 5H); ¹³C NMR (126 MHz; CDCl₃) δ 20.3, 20.9, 27.0, 50.1, 59.1, 96.1, 126.6, 127.5, 129.1, 129.5, 130.6, 136.8, 136.9, 138.2, 208.0, 233.7; Anal. Found: C, 66.47; H, 5.13. Calcd for C₂₃H₂₀FeO₄: C, 66.37; H, 4.84%.

For some recent examples, see: (a) F. P. Cossio, A. Arrieta and M. A. Sierra, Acc. Chem. Res., 2008, 41, 925; (b) W. F. Austin, Y. Zhang and R. L. Danheiser, Tetrahedron Lett., 2008, 64, 915; (c) M. W. Giese and W. H. Moser, Org. Lett., 2008, 10, 4215; (d) Z. Li, W. H. Moser, R. Deng and L. Sun, J. Org. Chem., 2007, 72, 10254; (e) C. P.

Davie and R. L. Danheiser, *Angew. Chem., Int. Ed.*, 2005, **44**, 5867; (*f*) W. F. Austin, Y. Zhang and R. L. Danheiser, *Org. Lett.*, 2005, **7**, 3905.

- 2 W. S. Trahanovsky, B. W. Surber, M. C. Wilkes and M. M. Preckel, J. Am. Chem. Soc., 1982, 104, 6779.
- For some recent examples, see: (a) A. Rosas-Sánchez, R. A. Toscano, J. G. López-Cortés and M. C. Ortega-Alfaro, *Dalton Trans.*, 2015, 44, 578; (b) M. C. Ortega-Alfaro, A. Rosas-Sánchez, B. E. Zarate-Picazo, J. G. López-Cortés, F. Cortés-Guzmán and R. A. Toscano, Organometallics, 2011, 30, 4830; (c) J. Truong, V. Caze, R. K. Akhani, G. K. Joshi, L. Kakalis, N. Matsunaga and W. F. K. Schnatter, *Tetrahedron Lett.*, 2010, 51, 921; (d) R. K. Akhani, A. Rehman and W. F. K. Schnatter, *Tetrahedron Lett.*, 2009, 50, 930; (e) N. D. Darbasie, W. F. K. Schnatter, K. F. Warner and N. Manolache, *Tetrahedron Lett.*, 2006, 47, 963.
- 4 For a review, see: S. E. Gibson and M. A. Peplow, *Adv. Organomet. Chem.*, 1999, 44, 275-353.
- 5 T. Okauchi, T. Teshima, M. Sadoshima, H. Kawakubo, K. Kagimoto, Y. Sugahara and M. Kitamura, *Chem. Commun.*, 2010, 46, 5015.
- 6 T. Okauchi, T. Teshima, K. Hayashi, N. Suetsugu and T. Minami, J. Am. Chem. Soc., 2001, 123, 12117.
- For some selected examples, see: (a) M. Franck-Neumann, P. Bissinger and P. Geoffroy, *Tetrahedron Lett.*, 1993, 34, 4643; (b) J. T. Wasicak, R. A. Craig, R. Henry, B. Dasgupta, H. Li and W. A. Donaldson, *Tetrahedron*, 1997, 53, 4185; (c) R. E. Graf and P. Lillya, *J. Organomet. Chem.*, 1979, 122, 377; (d) J. T. Wasicak, R. A. Craig, R. Henry, B. Dasgupta, H. M. Li and W. A. Donaldson, *Tetrahedron*, 1997, 53, 4185; (e) M.-C. P. Yeh, S.-C. Chang and C.-J. Chang, *J. Organomet. Chem.*, 2000, 599, 128; (f) E. O. Greaves, G. R. Knox and P. L. Pauson, *Chem. Commun.*, 1969, 1124.
- 8 For some selected examples, see: (a) S. S. Ullah, F. R. Alam and M. R. Haque, *Indian J. Chem. Sec. B*, 2000, **39**, 539; (b) M. Franck-Neumann, E. L. Michelotti, R. Simler and J. M. Vernier, *Tetrahedron Lett.*, 1992, **33**, 7361; (c) P. Eilbracht, R. Jelitte and P. Trabold, *Chem. Ber. Recl.*, 1986, **119**, 169; (d) B. F. G. Johnson, J. Lewis and D. J. Thompson, *Tetrahedron Lett.*, 1974, **15**, 3789.
- 9 For reviews on gallium halide, see: (a) S. Kumar, A. Saini and J. S. Sandhu, Arkivoc, 2007, 27; (b) R. Amamiya and M. Yamaguchi, Eur. J. Org. Chem. 2005, 5145; (c) D. C. Barman, Synlett, 2003, 2440.
- 10 B. B. Zhou and J. M. Goicoechea, Chem. Eur. J., 2010, 16, 11145.
- 11 For some selected examples, see: (a) K.-i. Fujita, K. Ito, T. Kondo and T.-a. Mitsudo, Organometallics, 1997, 16, 677; (b) J. Park and J. Kim, Organometallics, 1995, 14, 4431; (c) T.-a. Mitsudo, H. Nakanishi, T. Inubushi, I. Morishima, Y. Watanabe and Y. Takegami, J. Chem. Soc., Chem. Commun., 1976, 416.
- 12 T.-a. Mitsudo, T. Sasaki, Y. Watanabe, Y. Takegami, S. Nishigaki and K. Nakatsu, *J. Chem. Soc., Chem. Commun.*, 1978, 252.