Rough Set-Based Inf or mation Dilution by Non- det er míni stic Inf or nation

著者	Sakai Hi roshi, Wi Nao, Yamaguchi Naot o, Nakat a M chi nor i
j our nal or publ i cat i on titl e	Lect ure Not es in Comput er Sci ence
vol une	8170
page range	$55-66$
year	$2013-10-11$
URL	ht t p: //hdl . handl e. net /10228/00006074

Rough Set-Based Information Dilution by Non-deterministic Information

Hiroshi Sakai ${ }^{1}$, Mao Wu^{2}, Naoto Yamaguchi ${ }^{2}$ and Michinori Nakata ${ }^{3}$
${ }^{1}$ Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology Tobata, Kitakyushu 804-8550, Japan
sakai@mns.kyutech.ac.jp
${ }^{2}$ Graduate School of Engineering, Kyushu Institute of Technology
Tobata, Kitakyushu, 804-8550, Japan
wumogaku@yahoo.co.jp, KITYN1124@gmail.com
${ }^{3}$ Faculty of Management and Information Science, Josai International University
Gumyo, Togane, Chiba 283, Japan
nakatam@ieee.org

Abstract

We have investigated rough set-based concepts for a given Non-deterministic Information System (NIS). In this paper, we consider generating a NIS from a Deterministic Information System (DIS) intentionally. A $N I S \Phi$ is seen as a diluted $D I S \phi$, and we can hide the actual values in ϕ by using Φ. We name this way of hiding Information Dilution by non-deterministic information. This paper considers information dilution and its application to hiding the actual values in a table.

Keywords: Rough sets, NIS-Apriori algorithm, Information dilution, Privacy preserving, Randomization, Perturbation.

1 Introduction

In our previous research, we coped with rule generation in Non-deterministic Information Systems (NISs) [7, 11-13]. In contrast to Deterministic Information Systems (DISs) [9,14], NISs were proposed by Pawlak [9], Orłowska [8] and Lipski $[5,6]$ in order to better handle information incompleteness in data. We have proposed certain and possible rules in NISs, and proved an algorithm named NIS-Apriori is sound and complete for defined certain and possible rules. We have also implemented NIS-Apriori [10].

This paper considers the connection between information incompleteness and information hiding (or the randomization and the perturbation in privacypreserving [2]). We intentionally add information incompleteness, i.e., non-deterministic values, to a $D I S$ for hiding the actual values, then a $D I S$ is translated to a $N I S$. For such a $N I S$, we can apply our previous framework including NIS-Apriori.

Fig. 1. NIS Φ_{1} and 16 derived DISs. Here, Domainage $=\{$ young, middle, senior $\}$, Domain $_{\text {sex }}=\{\underline{\text { male }}, \underline{f}$ emale $\}$, Domain $_{\text {salary }}=\{\underline{\text { low }}, \underline{\text { normal }}, \underline{\text { high }}\}$. The number of derived $D I S s$ is finite. \bar{H} owever, it usually increases in the exponential order with respect to the level of incompleteness of $N I S^{\prime} s$ values.

The paper is organized as follows: Section 2 recalls rule generation in NISs. Section 3 introduces the framework of information dilution, and considers properties. Section 4 considers an algorithm for dilution and its relation to reduction [9], and Section 5 concludes the paper.

2 Apriori-Based Rule Generation in NISs

We omit any formal definition. Instead, we show an example in Figure 1. We identify a $D I S$ with a standard table. In a $N I S$, each attribute value is a set. If the value is a singleton, there is no incompleteness. Otherwise, we have a set of possible values. We can interpret this situation by saying that each set includes the actual value but we do not know which of them is the actual one.

A rule (more correctly, a candidate for a rule) is an implication τ in the form of Condition_part \Rightarrow Decision_part. In a $N I S$, the same τ may be generated from different tuples, so we use notation τ^{x} to express that τ is generated by an object x. For example in Φ_{1}, an implication $\tau:[$ age, senior $] \Rightarrow[$ salary, high $]$ occurs in objects 1 and 3 . Therefore, there are τ^{1} and τ^{3}. If τ^{x} is the unique implication from an object x, we say τ^{x} is definite, and otherwise we say τ^{x} is indefinite. In this example, τ^{1} is indefinite and τ^{3} is definite.

In a $D I S$, the following holds for each $y \in[x]_{C O N} \cap[x]_{D E C}(C O N$: condition attributes, $D E C$: decision attributes).

$$
\operatorname{support}\left(\tau^{y}\right)=\operatorname{support}\left(\tau^{x}\right), \operatorname{accuracy}\left(\tau^{y}\right)=\operatorname{accuracy}\left(\tau^{x}\right) .
$$

Therefore, we may identify τ^{x} with τ. However in a $N I S$, this may not hold. The property of each τ^{1} and τ^{3} is slightly different, namely the one is indefinite and the other is definite. If there is at least one τ^{x} satisfying constraint, we see this τ^{x} is the evidence for causing τ is a rule. There may be other τ^{y} not satisfying the constraint. We employ this strategy for rule generation in a $N I S$.

Fig. 2. A distribution of pairs (support,accuracy) for τ^{x}. There exists $\phi_{\text {min }} \in D D\left(\tau^{x}\right)$ which makes both support $\left(\tau^{x}\right)$ and $\operatorname{accuracy}\left(\tau^{x}\right)$ the minimum. There exists $\phi_{\text {max }} \in$ $D D\left(\tau^{x}\right)$ which makes both $\operatorname{support}\left(\tau^{x}\right)$ and $\operatorname{accuracy}\left(\tau^{x}\right)$ the maximum. We denote such quantities as minsupp, minacc, maxsupp and maxacc, respectively.

Let $D D(\Phi)$ and $D D\left(\tau^{x}\right)$ denote $\{\phi \mid \phi$ is a derived DISs from NIS $\Phi\}$ and $\left\{\phi \in D D(\Phi) \mid \tau^{x}\right.$ occurs in $\left.\phi\right\}$, respectively. According to rule generation (employing support and accuracy) in DISs [9], rule generation with missing values [3, 4] and data mining in transaction data [1], we defined the next tasks in rule generation in NISs [11].

Specification of the rule generation tasks in a NIS

Let us consider the threshold values α and $\beta(0<\alpha, \beta \leq 1)$.
(The Lower System: Certain rule generation task) Find each definite implication τ^{x} such that $\operatorname{support}\left(\tau^{x}\right) \geq \alpha$ and $\operatorname{accuracy}\left(\tau^{x}\right) \geq \beta$ hold in each $\phi \in D D\left(\tau^{x}\right)$. We say such τ is a certain rule and τ^{x} is an evidence of supporting τ in a NIS. (The Upper System: Possible rule generation task) Find each implication τ^{x} such that support $\left(\tau^{x}\right) \geq \alpha$ and $\operatorname{accuracy}\left(\tau^{x}\right) \geq \beta$ hold in some $\phi \in D D\left(\tau^{x}\right)$. If such τ is not certain rule, we say τ is a possible rule and τ^{x} is an evidence of supporting τ in a $N I S$.

Both the above tasks depend on $\left|D D\left(\tau^{x}\right)\right|$. In [11], we proved some simplifying results illustrated by Figure 2. We also showed how to effectively compute $\operatorname{support}\left(\tau^{x}\right)$ and $\operatorname{accuracy}\left(\tau^{x}\right)$ for $\phi_{\min }$ and $\phi_{\max }$ independently from $\left|D D\left(\tau^{x}\right)\right|$. Due to Figure 2, we have the following equivalent specification.

Equivalent specification of the rule generation tasks in a NIS

(The Lower System: Certain rule generation task) Find each definite τ^{x} such that $\operatorname{minsupp}\left(\tau^{x}\right) \geq \alpha$ and $\operatorname{minacc}\left(\tau^{x}\right) \geq \beta$ (see Figure 2).
(The Upper System: Possible rule generation task) Find each implication τ^{x} such that $\operatorname{maxsupp}\left(\tau^{x}\right) \geq \alpha$ and $\operatorname{maxacc}\left(\tau^{x}\right) \geq \beta$ (see Figure 2).

Example. In $N I S \Phi_{1}$, we at first generate two blocks inf and sup for each descriptor. These two blocks are the extensions from Grzymała-Busse's blocks [3, 4], and inf defines the minimum equivalence class. On the other hand, sup defines the maximum equivalence class. For example,

$$
\begin{aligned}
& \inf ([\text { age }, s])=\{3\}, \sup ([\operatorname{age}, s])=\{1,2,3\}, \\
& \inf ([\text { salary }, h])=\{1,3\}, \sup ([\text { salary }, h])=\{1,3\} .
\end{aligned}
$$

Since $\sup ([$ age,$s]) \cap \sup ([$ salary,$h])=\{1,3\}$, we know there are τ^{1} and τ^{3} for an implication $\tau:[$ age,$s] \Rightarrow[$ salary,$h]$. As for $\tau^{3}, 3 \in \inf ([$ age, $s]) \cap \inf ([$ salary, $h])$ holds, so we know τ^{3} is definite. In this case, we have the following.

$$
\begin{aligned}
& \operatorname{minsupp}\left(\tau^{3}\right)=(\mid \inf ([\text { age, } s]) \cap \inf ([\text { salary }, h]) \mid) / 3=|\{3\}| / 3=1 / 3 \text {. } \\
& \operatorname{minacc}\left(\tau^{3}\right)=\frac{\mid \inf ([\text { age }, s]) \cap \text { inf }([\text { salary }, h]) \mid}{(\mid \text { inf }(\mid \text { age }, s])|+|O U T|)}=|\{3\}| /(|\{3\}|+|\{2\}|)=1 / 2 \text {. } \\
& \operatorname{maxsupp}\left(\tau^{3}\right)=(\mid \sup ([\text { age }, s]) \cap \sup ([\text { salary }, h]) \mid) / 3=|\{1,3\}| / 3=2 / 3 \text {. } \\
& \operatorname{maxacc}\left(\tau^{3}\right)=\frac{\mid \sup ([\text { age,s }]) \cap \text { sup }([\text { salary }, h]) \mid}{(\mid \text { inf }([\text { ageses }()|+|I N|)}=|\{1,3\}| /(|\{3\}|+|\{2\}|)=2 / 2=1.0 . \\
& \operatorname{OUT}=(\sup ([\text { age }, s]) \backslash \inf ([\text { age }, s])) \backslash \inf ([\text { salary }, h]) \text {, } \\
& I N=(\sup ([\operatorname{age}, s]) \backslash \inf ([\text { age }, s])) \cap \sup ([\text { salary }, h]) \text {. }
\end{aligned}
$$

In the above calculation, we do not handle $D D\left(\Phi_{1}\right)$ at all. By using blocks inf and sup, it is possible to calculate four criterion values. We extended rule generation to $N I S s$ and implemented a software tool with $N I S$-Apriori algorithm [11]. NIS-Apriori does not depend on the number of derived DISs, and the complexity is almost the same as the original Apriori algorithm [1].

3 Information Dilution

This section considers a framework of information dilution.

3.1 An Intuitive Example

We at first consider $D I S_{16}$ and Φ_{1} in Figure 1. Since a $D I S$ is a special case of a $N I S$, we can apply $N I S$-Apriori to each $D I S$. In this case, the lower and the upper systems generate the same rules. The following is the real execution under the decision attribute salary, $\alpha=0.5$ and $\beta=0.6$.

```
?-step1. /* Rule generation in DIS \(_{16}\) under \(\alpha=0.5\) and \(\beta=0.6\) */
File Name for Read Open: dis16.pl.
SUPPORT:0.5, ACCURACY:0.6
===== Lower System ===========================================12
[1] MINSUPP=0.667, MINACC=0.667
[age,senior] ==> [salary,high] [1,3] /* Obtained rule */
[2] MINSUPP=0.333, MINACC=0.5
(Lower System Terminated)
```

```
===== Upper System ==========================================
[1] MAXSUPP=0.667, MAXACC=0.667
    : : :
EXEC_TIME=0.0 (sec)
```

We obtained an implication $[$ age, senior $] \Rightarrow[$ salary, high $]$ from $D I S_{16}$. Now, we consider the 2 nd person's tuple (senior, female, normal). If we employ the following replacement,
senior to [young, senior] (semantically young or senior),
female to [male, female], normal to [low, normal],
the 2 nd person's tuple is changed to
([young, senior], [male, female], [low, normal]).

This is an example of information dilution. There are 8 possible tuples and one of the tuple is actual, so in such case we say the actual tuple is diluted with $1 / 8$ degree. Similarly, $D I S_{16}$ is diluted to Φ_{1} with $1 / 16$ degree in Figure 1. The following is the real execution of rule generation in Φ_{1}.

```
?-step1. /* Rule generation in \(\Phi_{1}\) under \(\alpha=0.5\) and \(\beta=0.6\) */
File Name for Read Open: Phi1.pl.
SUPPORT:0.5, ACCURACY:0.6
===== Lower System ===============================================1
(Lower System Terminated)
===== Upper System
[1] MAXSUPP=0.667, MAXACC=1.0
[age,senior] ==> [salary,high] [1,3] /* Obtained rule */
[2] MAXSUPP=0.333, MAXACC=1.0
[3] MAXSUPP=0.333, MAXACC=1.0
(Upper System Terminated)
EXEC_TIME=0.0 (sec)
```

In this execution, we know that the results (an obtained rule) in Φ_{1} is the same as the original $D I S_{16}$. Namely, $D I S_{16}$ and Φ_{1} are equivalent in rule generation, but some actual values are hidden in Φ_{1}. Even though this example depends on threshold values $\alpha=0.5$ and $\beta=0.6$, these $D I S_{16}$ and Φ_{1} give an example of information dilution with obtainable rules preserved.

Figure 3 shows the chart of information dilution, namely the relation between a $D I S$, a $N I S$ and obtained rules. In data mining, we usually do not open the original data set, namely a $D I S$, to save privacy-preserving. However, we may open the diluted data set, namely a $N I S$, because some data in a $N I S$ are changed to disjunctive information. We may consider diluting some specified

Fig. 3. Formalization of information dilution with constraint
person's data intentionally. Like this, information dilution may take the role of hiding the actual values in a table.

3.2 Some Properties and a Formalization of a Problem

Now, we confirm the following facts.
(Fact 1) A $D I S \phi$ is diluted to a $N I S \Phi$.
(Fact 2) $N I S$-Apriori is applicable to Φ.
(Fact 3) For Φ diluted from ϕ, each rule in ϕ is obtainable by the upper system in Φ.
(Fact 3) is the key background. Let us suppose an implication τ^{x} satisfies $\operatorname{support}\left(\tau^{x}\right) \geq \alpha$ and $\operatorname{accuracy}\left(\tau^{x}\right) \geq \beta$ in ϕ, and ϕ is diluted to Φ. Then, we know $\phi \in D D\left(\tau^{x}\right) \subseteq D D(\Phi)$. According to the specification of the upper system, τ satisfies the condition of a possible rule, namely τ is obtainable in the upper system. However, we also have a problem. For $\phi^{\prime} \in D D(\Phi)\left(\phi^{\prime} \neq \phi\right)$, the upper system may pick up another implication η as a possible rule. Therefore, we need to know the next fact.
(Fact 4) For Φ diluted from ϕ, some rules not related to ϕ may be obtained by the upper system in Φ. We name such rules unexpected rules.
(Fact 5) If we dilute much more attribute values, we may have much more unexpected rules. On the other hand, if we dilute less attribute values, we will have less unexpected rules.

According to five facts, we have the problem in the following.
(Problem of Information Dilution) Dilute a $D I S \phi$ to a $N I S \Phi$ so as not to generate any unexpected rules.

4 A Example on an Algorithm for Information Dilution

We are now starting this work, and we are considering how to dilute a $D I S$ to a $N I S$. Therefore, we employ an exemplary $D I S \phi_{1}$ in Table 1 for considering an algorithm. For simplicity, we fix constraint such that the decision attribute is $D, \operatorname{maxsupp}\left(\tau^{x}\right)=\alpha>0$ and $\operatorname{maxacc}\left(\tau^{x}\right)=\beta=1.0$. In this example, we dilute ϕ_{1} to a NIS with obtainable 7 rules preserved in Table 2 . We can easily obtain them by using a software tool [10].

Table 1. An exemplary $D I S \phi_{1}$. Here, $\operatorname{Domain}_{A}=\{1,2,3\}, \quad \operatorname{Domain}_{B}=\{1,2\}$, Domain $_{C}=\{1,2\}$ and Domain $_{D}=\{1,2\}$.

Table 2. Seven rules in ϕ_{1}.

$O B$	A	B	C	D
1	3	1	1	1
2	2	1	1	1
3	1	1	1	2
4	3	1	2	1
5	3	1	1	1
6	2	2	2	2
7	1	2	1	2
8	2	2	2	2

	Rules	Objects
$($ Imp 1)	$[\mathrm{A}, 1]==>[\mathrm{D}, 2]$	$[3,7]$
(Imp 2)	$[\mathrm{A}, 3]==>[\mathrm{D}, 1]$	$[1,4,5]$
$($ Imp 3)	$[\mathrm{B}, 2]==>[\mathrm{D}, 2]$	$[6,7,8]$
$($ Imp 4)	$[\mathrm{A}, 2] \&[\mathrm{~B}, 1]==>[\mathrm{D}, 1]$	$[2]$
$($ Imp 5 $)$	$[\mathrm{A}, 2] \&[\mathrm{C}, 1]==>[\mathrm{D}, 1]$	$[2]$
$($ Imp 6 $)$	$[\mathrm{A}, 2] \&[\mathrm{C}, 2]==>[\mathrm{D}, 2]$	$[6,8]$
$($ Imp 7)	$[\mathrm{B}, 1] \&[\mathrm{C}, 2]==>[\mathrm{D}, 1]$	$[4]$

4.1 Reduction and Dilution

Reduction seems to be applicable to information dilution, namely we apply reduction to a table, and we replace non-necessary attribute values with the set of all attribute values. However, this way is not sufficient for preserving the rules.

In ϕ_{1}, the degree of data dependency from $\{A, B, C\}$ to $\{D\}$ is 1.0 , and 8 objects are consistent for condition attributes A, B, C and decision attribute D. In reduction, we have a tuple $(3,-,-, 1)$ from object $1,4,5$, and a tuple $(1,-,-, 2)$ from object 3,7 , because they are still consistent. After this reduction, it seems possible to replace each - symbol with all attribute values, i.e., [1, 2]. Like this we have a tuple ($1,[1,2],[1,2], 2)$ from object 3 . In this tuple, we need to consider four cases $(1,1,1,2),(1,1,2,2),(1,2,1,2)$ and $(1,2,2,2)$. An implication $\tau^{2}:[B, 1] \&[C, 1] \Rightarrow[D, 1]$ contradicts to $\eta^{3}:[B, 1] \&[C, 1] \Rightarrow[D, 2]$ related to the tuple ($1,1,1,2$). However in other three cases, τ^{2} does not contradict to any implication, and τ^{2} becomes the unexpected rule.

4.2 Base Step Dilution: Dilution in Each Attribute

We propose a dilution process related to reduction. We start with NIS Φ_{2} in Table 3, then we fix some attribute values which induce 7 rules.

Table 3. NIS Φ_{2} at the beginning.

$O B$	A	B	C	D
1	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
2	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
3	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
4	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
5	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
6	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
7	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
8	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$

(Step 1-1) In order to generate $(\operatorname{Imp} 1),(\operatorname{Imp} 2)$ and $(\operatorname{Imp} 3)$, we fix $[A, 3]$ and $[D, 1]$ in object $1 \in[1,4,5],[A, 1]$ and $[D, 2]$ in object $7 \in[3,7],[B, 2]$ and $[D, 2]$ in object $8 \in[6,7,8]$.
(Step 1-2) In order to generate inconsistency, we fix $[A, 2]$ and $[D, 1]$ in object $2,[A, 2]$ and $[D, 2]$ in object $6,[B, 1]$ and $[D, 1]$ in object $2,[B, 1]$ and $[D, 2]$ in object $3,[C, 1]$ and $[D, 1]$ in object $2,[C, 1]$ and $[D, 2]$ in object $3,[C, 2]$ and $[D, 1]$ in object $4,[C, 2]$ and $[D, 2]$ in object 6 .

Table 4. NIS Φ_{3} after the base step.

$O B$	A	B	C	D
1	$\{3\}$	$\{1,2\}$	$\{1,2\}$	$\{1\}$
2	$\{2\}$	$\{1\}$	$\{1\}$	$\{1\}$
3	$\{1,2,3\}$	$\{1\}$	$\{1\}$	$\{2\}$
4	$\{1,2,3\}$	$\{1,2\}$	$\{2\}$	$\{1\}$
5	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
6	$\{2\}$	$\{1,2\}$	$\{2\}$	$\{2\}$
7	$\{1\}$	$\{1,2\}$	$\{1,2\}$	$\{2\}$
8	$\{1,2,3\}$	$\{2\}$	$\{1,2\}$	$\{2\}$

After these two steps, we have Φ_{3} in Table 4. Since three implications ($\operatorname{Imp} 1$), (Imp 2) and ($\operatorname{Imp} 3$) appear in each derived $D I S$, they are also rules in the upper system. We have the next important fact.
(Fact 6) Any implication $\tau^{x}:[A, 1] \& C o n d i t i o n _p a r t ~ \Rightarrow[D, 2]$ in a derived $D I S$ $\phi \in D D\left(\Phi_{3}\right)$ is redundant for $(\operatorname{Imp} 1)$. Therefore, $\operatorname{accuracy}\left(\tau^{x}\right)=1.0$ holds in this ϕ. Any implication $\eta^{y}:[A, 1] \& C o n d i t i o n _p a r t \Rightarrow[D, 1]$ in a derived $D I S$ $\phi^{\prime} \in D D\left(\Phi_{3}\right)$ is inconsistent, because (Imp 1) also appears in this ϕ^{\prime}. Therefore, $\operatorname{accuracy}\left(\eta^{y}\right)<1.0$ holds in this ϕ^{\prime}. According to the above consideration, we do not have to pay any attention to any implication with a descriptor $[A, 1]$. The same holds for descriptors $[A, 3],[B, 2]$.

4.3 Recursive Steps Dilution: Dilution in a Set of Attributes

Similarly to the base step, we fix some attribute values for $(\operatorname{Imp} 4)$, $(\operatorname{Imp} 5)$, (Imp 6) and (Imp 7).
(Step 2-1) The attribute values of $(\operatorname{Imp} 4)$ and $(\operatorname{Imp} 5)$ are fixed in Φ_{3}. We fix $[B, 1]$ in object 4 and $[C, 2]$ in object 6 .

According to (Fact 6), we do not have to consider any implication including descriptors $[A, 1],[A, 3]$ and $[B, 2]$. It is enough to consider descriptors $[A, 2]$, $[B, 1],[C, 1]$ and $[C, 2]$. Then, we have 10 implications, where unexpected rules may exist.
(1) $[A, 2] \&[B, 1]==>[D, 1]$,
(2) $[A, 2] \&[B, 1]==>[D, 2]$,
(3) $[A, 2] \&[C, 1]==>[D, 1]$,
(4) $[A, 2] \&[B, 1]==>[D, 2]$,
(5) $[A, 2] \&[C, 2]==>[D, 1]$,
(6) $[A, 2] \&[C, 2]==>[D, 2]$,
(7) $[B, 1] \&[C, 1]==>[D, 1]$,
(8) $[B, 1] \&[C, 1]==>[D, 2]$,
(9) $[B, 1] \&[C, 2]==>[D, 1]$,
(10) $[B, 1] \&[C, 2]==[D, 2]$.
(Step 2-2) Here, (1) is $(\operatorname{Imp} 4),(3)$ is $(\operatorname{Imp} 5)$. They are obtainable in object 2. (6) is $(\operatorname{Imp} 6)$, which is obtainable in object 6. (9) is $(\operatorname{Imp} 7)$, and we fix $[B, 1]$ in object 4. According to (Fact 6), any of (2), (4), (5) and (10) does not satisfy $\operatorname{accuracy}\left(\tau^{x}\right)=1.0$ in any derived DISs. (7) in object 2 and (8) in object 3 are inconsistent in any derived DISs.

After (Step 2-1) and (Step 2-2), we have Φ_{4} below.

Table 5. NIS Φ_{4} after the 2nd step.

$O B$	A	B	C	D
1	$\{3\}$	$\{1,2\}$	$\{1,2\}$	$\{1\}$
2	$\{2\}$	$\{1\}$	$\{1\}$	$\{1\}$
3	$\{1,2,3\}$	$\{1\}$	$\{1\}$	$\{2\}$
4	$\{1,2,3\}$	$\{1\}$	$\{2\}$	$\{1\}$
5	$\{1,2,3\}$	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$
6	$\{2\}$	$\{1,2\}$	$\{2\}$	$\{2\}$
7	$\{1\}$	$\{1,2\}$	$\{1,2\}$	$\{2\}$
8	$\{1,2,3\}$	$\{2\}$	$\{1,2\}$	$\{2\}$

In Φ_{4}, all 7 implications $(\operatorname{Imp} 1)$ to $(\operatorname{Imp} 7)$ are all obtainable. There is a conjunction of descriptors $[B, 1] \&[C, 1]$ which causes inconsistency, so we need to consider a conjunction of descriptors $[A, \ldots \&[B, 1] \&[C, 1]$. However, such conjunction is redundant, and we do not have to consider it. The following is the real execution. If there is an implication $\tau^{x}, \operatorname{maxsupp}\left(\tau^{x}\right)>0.1$ holds. Therefore, we set $\alpha=0.1$ instead of $\alpha>0$.

```
?-step1. /* Rule p=>q in }\mp@subsup{\Phi}{4}{}\mathrm{ under }\alpha=0.1 and \beta=1.0 *
File Name for Read Open: Phi4.pl.
SUPPORT:0.1, ACCURACY:1.0
===== Lower System ===============================================
    : : :
(Next Candidates are Remained) [[[1, 1], [4,2]],[[1,2], [4,1]], :::
===== Upper System ==============================================
[1] MAXSUPP=0.125, MAXACC=0.5
[2] MAXSUPP=0.375, MAXACC=1.0
[a,1] ==> [d,2] [3,7,8] /* (Imp 1) in }\mp@subsup{\phi}{1}{*/
[5] MAXSUPP=0.375, MAXACC=1.0
[a,3] ==> [d,1] [1,4,5] /* (Imp 2) in 加 */
[10] MAXSUPP=0.5, MAXACC=1.0
[b,2] ==> [d,2] [5,6,7,8] /* (Imp 3) in \phi 有 */
(Next Candidates are Remained) [[[1, 2], [4,1]],[[1,2],[4,2]], :::
EXEC_TIME=0.0 (sec)
?-step2. /* Rule p}\mp@subsup{p}{1}{&}\mp@subsup{p}{2}{}=>q\mathrm{ in }\mp@subsup{\Phi}{4}{}\mathrm{ under }\alpha=0.1 and \beta=1.0 *
===== Lower System ================================================
    : : :
(Next Candidates are Remained) [[[1,2], [2,1], [4, 1]], [[1,2], :::
===== Upper System ===============================================
[1] MAXSUPP=0.375, MAXACC=1.0
[a,2]&[b,1] ==> [d,1] [2,4,5] /* (Imp 4) in 的 */
[3] MAXSUPP=0.25, MAXACC=1.0
[a,2]&[c,1] ==> [d,1] [2,5] /* (Imp 5) in \phi 有 */
[6] MAXSUPP=0.375, MAXACC=1.0
[a,2]&[c,2] ==> [d,2] [5,6,8] /*(Imp 6) in \mp@subsup{\phi}{1}{*/}
[9] MAXSUPP=0.375, MAXACC=1.0
[b,1]&[c,2] ==> [d,1] [1,4,5] /*(Imp 7) in 的 */
(Next Candidates are Remained) [[[2,1],[3,1],[4,1]], :::
EXEC_TIME=0.0 (sec)
?-step3. /* Rule p}\mp@subsup{p}{1}{&}\mp@subsup{p}{2}{}&\mp@subsup{p}{3}{}=>q\mathrm{ in }\mp@subsup{\Phi}{4}{}\mathrm{ under }\alpha=0.1 and \beta=1.0 *
===== Lower System ===============================================
[1] MINSUPP=0.125, MINACC=0.333
    : : :
[4] MINSUPP=0.0, MINACC=0.0
(Lower System Terminated)
```

```
===== Upper System =================================================
(Upper System Terminated)
EXEC_TIME=0.0 (sec)
```

In step 1, we obtained three implications ($\operatorname{Imp} 1)$, ($\operatorname{Imp} 2)$ and $(\operatorname{Imp} 3)$ in the upper system. In step 2, we obtained four implications (Imp 4) to (Imp 7) in the upper system. In step 3, we obtained no implications. In view of the above results, we have the following:
$\left\{\tau \mid \tau\right.$ is either a possible rule or a certain rule in $\left.\Phi_{4}\right\}=\left\{\tau \mid \tau\right.$ is a rule in $\left.\phi_{1}\right\}$.
This means that Φ_{4} and ϕ_{1} are equivalent in rule generation, and they are satisfying the formalization of Figure 3. Each tuple of ϕ_{1} stores the actual values, therefore we should not open ϕ_{1}. However, it may be possible to open Φ_{4}, because some attribute values are diluted. Especially, the tuple of object 5 is completely diluted.

5 Concluding Remarks

We have proposed a framework of information dilution, which depends on the research on RNIA (Rough Non-deterministic Information Analysis) and NISApriori algorithm. This is an attempt to apply information incompleteness and $R N I A$ to the randomization and the perturbation in privacy-preserving [2].

We investigated the formal algorithm of diluting a $D I S$ and its implementation. In Figure 1, we unexpectedly obtained that rules in $D I S_{16}$ and Φ_{1} are the same under support ≥ 0.5 and accuracy ≥ 0.6. In this paper, we handled the most simple case support >0 and accuracy $=1.0$. The procedure proposed in this paper is a preliminary work towards more general cases.

In Φ_{4} and $\phi_{1}, 13$ attribute values are diluted for totally 32 attribute values. The ratio is about $1 / 3$. We figure that this ratio is depending on the number of rules and total number of objects. Furthermore, (Fact 6) seems very important. If most descriptors are fixed in the base step, the number of implications are reduced in the recursive steps. Like several variations of reduction with several constraints, there may be several variations of information dilution.

Acknowledgment

The authors would be grateful for anonymous referees for their useful comments.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules, In : Proc. of $V L D B$, pp.487-499 (1994).
2. Aggarwal, C., Yu, P.: Privacy-Preserving Data Mining, Advances in Database Systems 34, Springer (2008).
3. Grzymała-Busse, J.: A new version of the rule induction system LERS, Fundamenta Informaticae 31, pp.27-39 (1997).
4. Grzymała-Busse, J., Rząsa, W.: A local version of the MLEM2 algorithm for rule induction, Fundamenta Informaticae 100, pp.99-116 (2010).
5. Lipski, W.: On semantic issues connected with incomplete information data base, ACM Trans. DBS. 4, pp.269-296 (1979).
6. Lipski, W.: On databases with incomplete information, Journal of the ACM 28, pp.41-70 (1981).
7. Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information, International Journal of General Systems 42(6), pp.546-571 (2013).
8. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information, Theoretical Computer Science 29, pp.27-39 (1984).
9. Pawlak, Z.: Rough Sets, Kluwer Academic Publishers (1991).
10. RNIA software logs: http://www.mns.kyutech.ac.jp/~sakai/RNIA
11. Sakai, H., Ishibashi, R., Nakata, M.: On rules and apriori algorithm in nondeterministic information systems, Transactions on Rough Sets 9, pp.328-350 (2008).
12. Sakai, H., Okuma, H., Nakata, M.: Rough non-deterministic information analysis: Foundations and its perspective in machine learning, Smart Innovation, Systems and Technologies 13, Springer, Chapter 9, pp.215-247 (2013).
13. Sakai, H., Okuma, H., Wu M., Nakata, M.: Rough non-deterministic information analysis for uncertain information, The Handbook on Reasoning-Based Intelligent Systems, World Scientific, Chapter 4, pp.81-118 (2013).
14. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, In: Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, Kluwer Academic Publishers, pp.331-362 (1992).
