Free algebras generated by symmetric elements inside division rings with involution

Javier Sánchez

joint with Vitor O. Ferreira and Jairo Z. Gonçalves

Departamento de Matemática - IME

Universidade de São Paulo, Brazil

Altencoa 6, San Juan de Pasto, August 11 - August 15, 2014

A D F A 同 F A E F A E F A Q A

- Vitor O. Ferreira, Jairo Z. Gonçalves and J. S., Free symmetric group algebras in division rings generated by poly-orderable groups, J. Algebra, **392** (2013), 69–84.
- Vitor O. Ferreira, Jairo Z. Gonçalves and J. S., Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras, arXiv:1406.3078 (2014).

(ロ) (同) (三) (三) (三) (○) (○)

- *Rings* and *algebras* are associative with 1.
- Morphisms, subrings, subalgebras and embeddings of these objects preserve 1.
- We also use *Lie algebras* and morphisms of Lie algebras.
- A domain is a nonzero ring that contains no zero divisors other than zero.
- A division ring or skew field is a nonzero ring such that every nonzero element is invertible.
- Free algebras k⟨X⟩ are supposed to be noncommutative, i.e. |X| ≥ 2.
 k⟨X⟩ is the set of polynomials where xy ≠ yx if x, y ∈ X, x ≠ y. For example, x²y ≠ yx² ≠ xyx.

- *Rings* and *algebras* are associative with 1.
- Morphisms, subrings, subalgebras and embeddings of these objects preserve 1.
- We also use *Lie algebras* and morphisms of Lie algebras.
- A domain is a nonzero ring that contains no zero divisors other than zero.
- A division ring or skew field is a nonzero ring such that every nonzero element is invertible.
- Free algebras k⟨X⟩ are supposed to be noncommutative, i.e. |X| ≥ 2.
 k⟨X⟩ is the set of polynomials where xy ≠ yx if x, y ∈ X, x ≠ y. For example, x²y ≠ yx² ≠ xyx.

- *Rings* and *algebras* are associative with 1.
- Morphisms, subrings, subalgebras and embeddings of these objects preserve 1.
- We also use *Lie algebras* and morphisms of Lie algebras.
- A domain is a nonzero ring that contains no zero divisors other than zero.
- A division ring or skew field is a nonzero ring such that every nonzero element is invertible.
- Free algebras k⟨X⟩ are supposed to be noncommutative, i.e. |X| ≥ 2.
 k⟨X⟩ is the set of polynomials where xy ≠ yx if x, y ∈ X, x ≠ y. For example, x²y ≠ yx² ≠ xyx.

- *Rings* and *algebras* are associative with 1.
- Morphisms, subrings, subalgebras and embeddings of these objects preserve 1.
- We also use *Lie algebras* and morphisms of Lie algebras.
- A domain is a nonzero ring that contains no zero divisors other than zero.
- A division ring or skew field is a nonzero ring such that every nonzero element is invertible.
- Free algebras k⟨X⟩ are supposed to be noncommutative, i.e. |X| ≥ 2.
 k⟨X⟩ is the set of polynomials where xy ≠ yx if x, y ∈ X, x ≠ y. For example, x²y ≠ yx² ≠ xyx.

Conjecture A (Makar-Limanov)

Let D be a division ring with center Z.

(A) If *D* is finitely generated (as a division ring) over *Z* and $[D:Z] = \infty$, then *D* contains a free *Z*-algebra

• If k < Z, *D* contains free *Z* algebras \Leftrightarrow *D* contains free k-algebras.

- If $[D:Z] = n < \infty$, then $D \hookrightarrow End_Z(D) = M_n(Z)$. The ring $M_n(Z)$ is P.I.
- A₁ = ⟨x, y | yx xy = 1⟩ is of polynomial growth, but its Ore division ring of fractions D₁ contains a free algebra.

Conjecture A (Makar-Limanov)

Let D be a division ring with center Z.

(A) If *D* is finitely generated (as a division ring) over *Z* and $[D:Z] = \infty$, then *D* contains a free *Z*-algebra

- If $\Bbbk < Z$, *D* contains free *Z* algebras \Leftrightarrow *D* contains free \Bbbk -algebras.
- If $[D:Z] = n < \infty$, then $D \hookrightarrow End_Z(D) = M_n(Z)$. The ring $M_n(Z)$ is P.I.
- A₁ = ⟨x, y | yx − xy = 1⟩ is of polynomial growth, but its Ore division ring of fractions D₁ contains a free algebra.

Conjecture A (Makar-Limanov)

Let D be a division ring with center Z.

(A) If *D* is finitely generated (as a division ring) over *Z* and $[D:Z] = \infty$, then *D* contains a free *Z*-algebra

- If $\Bbbk < Z$, *D* contains free *Z* algebras \Leftrightarrow *D* contains free \Bbbk -algebras.
- If $[D:Z] = n < \infty$, then $D \hookrightarrow End_Z(D) = M_n(Z)$. The ring $M_n(Z)$ is P.I.
- A₁ = ⟨x, y | yx − xy = 1⟩ is of polynomial growth, but its Ore division ring of fractions D₁ contains a free algebra.

Conjecture A (Makar-Limanov)

Let D be a division ring with center Z.

(A) If *D* is finitely generated (as a division ring) over *Z* and $[D:Z] = \infty$, then *D* contains a free *Z*-algebra

- If k < Z,
 D contains free Z algebras ⇔ D contains free k-algebras.
- If $[D:Z] = n < \infty$, then $D \hookrightarrow End_Z(D) = M_n(Z)$. The ring $M_n(Z)$ is P.I.
- A₁ = ⟨x, y | yx xy = 1⟩ is of polynomial growth, but its Ore division ring of fractions D₁ contains a free algebra.

Let \Bbbk be a field and A be a \Bbbk -algebra.

• **k**-involution on A is a k-linear map $*: A \to A$ satisfying

 $(ab)^{\star} = b^{\star}a^{\star}, \ \forall a, b \in A,$ and $(a^{\star})^{\star} = a, \ \forall a \in A.$

• An element $a \in A$ is said to be symmetric if $a^* = a$.

Question

Let D be a division \Bbbk -algebra with a \Bbbk -involution $\star : D \to D$.

(SA) If D satisfies conjecture (A), does D contain a free k-algebra generated by symmetric elements?

Definition

Let \Bbbk be a field and G a group. A group algebra is a ring:

• As a set $\mathbb{k}[G] = \{\sum_{x \in G} xa_x \mid a_x \in \mathbb{k} \text{ almost all } a_x = 0\}.$

• Sum:
$$\sum_{x \in G} xa_x + \sum_{x \in G} xb_x = \sum_{x \in G} x(a_x + b_x)$$

Multiplication:

$$ya_y \cdot zb_z = yza_yb_z$$
$$\sum_{y \in G} ya_y)(\sum_{z \in G} zb_z) = \sum_{x \in G} x(\sum_{yz=x} a_yb_z).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

If $G = \mathbb{Z}$, then $\Bbbk[G] = \Bbbk[t, t^{-1}]$.

Definition

Let \Bbbk be a field and G a group. A group algebra is a ring:

• As a set $\mathbb{k}[G] = \{\sum_{x \in G} xa_x \mid a_x \in \mathbb{k} \text{ almost all } a_x = 0\}.$

• Sum:
$$\sum_{x \in G} xa_x + \sum_{x \in G} xb_x = \sum_{x \in G} x(a_x + b_x)$$

Multiplication:

$$ya_y \cdot zb_z = yza_yb_z$$
$$\sum_{y \in G} ya_y)(\sum_{z \in G} zb_z) = \sum_{x \in G} x(\sum_{yz=x} a_yb_z).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

If $G = \mathbb{Z}$, then $\Bbbk[G] = \Bbbk[t, t^{-1}]$.

Example of ring with involution

Let \Bbbk be a field

Example

If G is a group and $\Bbbk[G]$ denotes the group algebra of G over \Bbbk

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is a k-involution called the canonical involution of k[G].

Can we obtain a division ring with involution from this?

If R is a commutative ring:

- **Existence**: A division ring of fractions exists iff *R* is a domain.
- Uniqueness: Division rings of fractions are isomorphic

• Form of the elements: Elements of D are fractions $\frac{r}{s} = s^{-1}r$

In general:

- Domains not embeddable in division rings.
- Domains with more than one division ring of fractions.
- Expressions like $r s(t uv^{-1}w)^{-1}x$ may not be simplified.
- If we want k[G] to be a domain, G has to be torsion free:
 If xⁿ = 1, then (1 x)(1 + x + · · · + xⁿ⁻¹) = 0.
- Open problem: when is k[G] embeddable in a division ring?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

If R is a commutative ring:

- **Existence**: A division ring of fractions exists iff *R* is a domain.
- Uniqueness: Division rings of fractions are isomorphic

• Form of the elements: Elements of D are fractions $\frac{r}{s} = s^{-1}r$

In general:

- Domains not embeddable in division rings.
- Domains with more than one division ring of fractions.
- Expressions like $r s(t uv^{-1}w)^{-1}x$ may not be simplified.
- If we want $\mathbb{k}[G]$ to be a domain, G has to be torsion free: If $x^n = 1$, then $(1 - x)(1 + x + \dots + x^{n-1}) = 0$.
- Open problem: when is $\mathbf{k}[G]$ embeddable in a division ring?

If R is a commutative ring:

- Existence: A division ring of fractions exists iff *R* is a domain.
- Uniqueness: Division rings of fractions are isomorphic

• Form of the elements: Elements of D are fractions $\frac{r}{s}=s^{-1}r$

In general:

- Domains not embeddable in division rings.
- Domains with more than one division ring of fractions.
- Expressions like $r s(t uv^{-1}w)^{-1}x$ may not be simplified.
- If we want $\mathbb{k}[G]$ to be a domain, G has to be torsion free: If $x^n = 1$, then $(1 - x)(1 + x + \dots + x^{n-1}) = 0$.
- Open problem: when is k[G] embeddable in a division ring?

If R is a commutative ring:

- Existence: A division ring of fractions exists iff *R* is a domain.
- Uniqueness: Division rings of fractions are isomorphic

• Form of the elements: Elements of D are fractions $\frac{r}{s}=s^{-1}r$

In general:

- Domains not embeddable in division rings.
- Domains with more than one division ring of fractions.
- Expressions like $r s(t uv^{-1}w)^{-1}x$ may not be simplified.
- If we want $\mathbb{k}[G]$ to be a domain, G has to be torsion free: If $x^n = 1$, then $(1 - x)(1 + x + \dots + x^{n-1}) = 0$.
- Open problem: when is $\mathbb{k}[G]$ embeddable in a division ring?

If R is a commutative ring:

- Existence: A division ring of fractions exists iff *R* is a domain.
- Uniqueness: Division rings of fractions are isomorphic

• Form of the elements: Elements of D are fractions $\frac{r}{s}=s^{-1}r$

In general:

- Domains not embeddable in division rings.
- Domains with more than one division ring of fractions.
- Expressions like $r s(t uv^{-1}w)^{-1}x$ may not be simplified.
- If we want $\mathbb{k}[G]$ to be a domain, G has to be torsion free: If $x^n = 1$, then $(1 - x)(1 + x + \dots + x^{n-1}) = 0$.
- Open problem: when is $\Bbbk[G]$ embeddable in a division ring?

Malcev-Neumann series ring

Example

$$\mathbb{k}\mathbb{Z} = k[t, t^{-1}] \hookrightarrow \mathbb{k}(t) \hookrightarrow \mathbb{k}((t)) = \Big\{ \sum_{i \ge n} t^i a_i \mid a_i \in \mathbb{k}, \ n \in \mathbb{Z} \Big\}.$$

Definition

• (G, <) is an ordered group if G is a group and < is a total order such that for all $x, y, z \in G$

$$x < y \Rightarrow xz < yz$$
 $x < y \Rightarrow zx < zy$

• (G, <) ordered group. k a field, k[G] the group algebra.

$$\mathbb{k}[G] \hookrightarrow \mathbb{k}((G, <)) = \left\{ f = \sum_{x \in G} x a_x \mid a_x \in \mathbb{k}, \text{ supp } f \text{ is well ordered} \right\}$$

・ コット (雪) (小田) (コット 日)

k((G, <)) is a division ring, Malcev-Neumann series ring.

• k(G) is the division ring generated by k[G] inside k((G, <)).

Malcev-Neumann series ring

Example

$$\mathbb{k}\mathbb{Z} = k[t, t^{-1}] \hookrightarrow \mathbb{k}(t) \hookrightarrow \mathbb{k}((t)) = \Big\{ \sum_{i \ge n} t^i a_i \mid a_i \in \mathbb{k}, \ n \in \mathbb{Z} \Big\}.$$

Definition

• (G, <) is an ordered group if G is a group and < is a total order such that for all $x, y, z \in G$

$$x < y \Rightarrow xz < yz$$
 $x < y \Rightarrow zx < zy$

• (G, <) ordered group. k a field, k[G] the group algebra.

$$\Bbbk[G] \hookrightarrow \Bbbk((G, <)) = \left\{ f = \sum_{x \in G} x a_x \mid a_x \in \Bbbk, \text{ supp } f \text{ is well ordered} \right\}$$

 $\Bbbk((G,<))$ is a division ring, Malcev-Neumann series ring.

• k(G) is the division ring generated by k[G] inside k((G, <)).

Some results on group rings

Let \Bbbk be a field.

- If G is an orderable group, then $\Bbbk[G]$ is embeddable in the division ring $\Bbbk((G))$. [Malcev-Neumann]
- Any division ring that contains k[G] must contain a free algebra k⟨X⟩.

Theorem (Ferreira-Gonçalves-S.)

Let *G* be an orderable group and $\Bbbk[G]$ be the group algebra.

Let $\Bbbk(G)$ be the division ring generated by $\Bbbk[G]$ inside $\Bbbk((G))$.

Then the canonical involution extends to $\Bbbk(G)$ and the following are equivalent:

- 𝑘(*G*) contains a free 𝑘-algebra freely generated by symmetric elements with respect to the canonical involution.
- G is not abelian.

Universal enveloping algebra

Example

Let L be a Lie \Bbbk -algebra, and U(L) its universal enveloping algebra.

 $\begin{array}{rcl} U(L) & \longrightarrow & U(L) \\ x & \longmapsto & -x, & \text{ for all } x \in L \end{array}$

is a k-involution called the principal involution of U(L).

- U(L) embeds in a division ring $\mathfrak{D}(L)$ (**P. M. Cohn**)
- A more manageable construction of $\mathfrak{D}(L)$ (A. I. Lichtman)
- If $L_1 \leq L$, then $\mathfrak{D}(L_1) \subseteq \mathfrak{D}(L)$
- If U(L) is an Ore domain, then $\mathfrak{D}(L)$ coincides with its Ore skew field of fractions
- The principal involution extends to a \Bbbk -involution $\mathfrak{D}(L) \to \mathfrak{D}(L)$ (J. Cimprič)
- If *L* is not abelian and char $k=0, \mathfrak{D}(L)$ contains free algebras $k\langle X \rangle$ (A. I. Lichtman)

Universal enveloping algebra

Example

Let L be a Lie \Bbbk -algebra, and U(L) its universal enveloping algebra.

 $\begin{array}{rccc} U(L) & \longrightarrow & U(L) \\ x & \longmapsto & -x, & \text{ for all } x \in L \end{array}$

is a k-involution called the principal involution of U(L).

- U(L) embeds in a division ring $\mathfrak{D}(L)$ (**P. M. Cohn**)
- A more manageable construction of $\mathfrak{D}(L)$ (A. I. Lichtman)
- If $L_1 \leq L$, then $\mathfrak{D}(L_1) \subseteq \mathfrak{D}(L)$
- If U(L) is an Ore domain, then $\mathfrak{D}(L)$ coincides with its Ore skew field of fractions
- The principal involution extends to a k-involution $\mathfrak{D}(L) \to \mathfrak{D}(L)$ (J. Cimprič)
- If L is not abelian and char $k=0, \mathfrak{D}(L)$ contains free algebras $k\langle X \rangle$ (A. I. Lichtman)

• Let *D* be \Bbbk -algebra that contains a free \Bbbk -algebra $\Bbbk \langle x, y \rangle$.

- Suppose there exists a morphism of k-algebras φ: R → D such that φ(a) = x and φ(b) = y.
- Then the k-algebra generated by {a, b} is the free k-algebra k⟨a, b⟩.
- Problem: Any morphism of rings between division rings is injective and thus an embedding.
- Solution: Find a suitable subring T such that there exists *φ*: T → D.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Let *D* be \Bbbk -algebra that contains a free \Bbbk -algebra $\Bbbk \langle x, y \rangle$.
- Suppose there exists a morphism of k-algebras φ: R → D such that φ(a) = x and φ(b) = y.
- Then the k-algebra generated by {a, b} is the free k-algebra k⟨a, b⟩.
- Problem: Any morphism of rings between division rings is injective and thus an embedding.
- Solution: Find a suitable subring T such that there exists $\varphi: T \to D$.

- Let *D* be \Bbbk -algebra that contains a free \Bbbk -algebra $\Bbbk \langle x, y \rangle$.
- Suppose there exists a morphism of k-algebras φ: R → D such that φ(a) = x and φ(b) = y.
- Then the k-algebra generated by $\{a, b\}$ is the free k-algebra $\Bbbk\langle a, b\rangle$.
- Problem: Any morphism of rings between division rings is injective and thus an embedding.
- Solution: Find a suitable subring *T* such that there exists $\varphi: T \to D$.

- Let *D* be \Bbbk -algebra that contains a free \Bbbk -algebra $\Bbbk \langle x, y \rangle$.
- Suppose there exists a morphism of k-algebras φ: R → D such that φ(a) = x and φ(b) = y.
- Then the k-algebra generated by $\{a, b\}$ is the free k-algebra $\Bbbk\langle a, b\rangle$.
- Problem: Any morphism of rings between division rings is injective and thus an embedding.
- Solution: Find a suitable subring *T* such that there exists $\varphi: T \to D$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let *D* be \Bbbk -algebra that contains a free \Bbbk -algebra $\Bbbk \langle x, y \rangle$.
- Suppose there exists a morphism of k-algebras φ: R → D such that φ(a) = x and φ(b) = y.
- Then the k-algebra generated by $\{a, b\}$ is the free k-algebra $\Bbbk\langle a, b\rangle$.
- Problem: Any morphism of rings between division rings is injective and thus an embedding.
- Solution: Find a suitable subring *T* such that there exists $\varphi: T \to D$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main result

From now on, \Bbbk is a field of characteristic zero.

Theorem (Ferreira-Gonçalves-S.)

Let *L* be a nonabelian Lie \Bbbk -algebra such that either *L* is residually nilpotent or U(L) is an Ore domain. Then $\mathfrak{D}(L)$ contains a free algebra $\Bbbk\langle X\rangle$ generated by symmetric elements with respect to the principal involution on $\mathfrak{D}(L)$. Moreover, in these cases, we give explicit symmetric elements that generate the free \Bbbk -algebra.

Structure of the proof:

• Prove the existence of free algebras generated by symmetric elements for the Lie k-algebra

$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle.$$

- Prove the result for residually nilpotent Lie k-algebra.
- Prove the result when U(L) is an Ore domain.

Main result

From now on, \Bbbk is a field of characteristic zero.

Theorem (Ferreira-Gonçalves-S.)

Let *L* be a nonabelian Lie \Bbbk -algebra such that either *L* is residually nilpotent or U(L) is an Ore domain. Then $\mathfrak{D}(L)$ contains a free algebra $\Bbbk\langle X\rangle$ generated by symmetric elements with respect to the principal involution on $\mathfrak{D}(L)$. Moreover, in these cases, we give explicit symmetric elements that generate the free \Bbbk -algebra.

Structure of the proof:

• Prove the existence of free algebras generated by symmetric elements for the Lie k-algebra

$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle.$$

- Prove the result for residually nilpotent Lie k-algebra.
- Prove the result when U(L) is an Ore domain.

Main result

From now on, \Bbbk is a field of characteristic zero.

Theorem (Ferreira-Gonçalves-S.)

Let *L* be a nonabelian Lie \Bbbk -algebra such that either *L* is residually nilpotent or U(L) is an Ore domain. Then $\mathfrak{D}(L)$ contains a free algebra $\Bbbk\langle X\rangle$ generated by symmetric elements with respect to the principal involution on $\mathfrak{D}(L)$. Moreover, in these cases, we give explicit symmetric elements that generate the free \Bbbk -algebra.

Structure of the proof:

 Prove the existence of free algebras generated by symmetric elements for the Lie k-algebra

$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle.$$

- Prove the result for residually nilpotent Lie k-algebra.
- Prove the result when U(L) is an Ore domain.

Heisenberg Lie algebra

L. Makar-Limanov, G. Cauchon

- k a field of characteristic zero.
- $\sigma : \mathbf{k}(t) \to \mathbf{k}(t)$ automorphism determined by $\sigma(t) = t 1$.

•
$$\mathbb{k}(t)[p;\sigma] = \left\{\sum_{i=0}^{n} p^{i}a_{i} \mid a_{i} \in \mathbb{k}(t)\right\}$$
, where
 $ap = p\sigma(a)$, for all $a \in \mathbb{k}(t)$.

• $k(t)(p;\sigma)$ Ore classical ring of quotients of $k(t)[p;\sigma]$.

Define

$$s = (t - \frac{5}{6})(t - \frac{1}{6})^{-1}, \quad u = (1 - p^2)(1 + p^2)^{-1}.$$

Then the k-algebra generated by the elements $s+s^{-1}$ and $u(s+s^{-1})u^{-1}$ is a free k-algebra inside $\Bbbk(t)(p;\sigma).$

Heisenberg Lie algebra H

٠

•
$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle$$
, define $z = [y, x]$.

$$\begin{array}{cccc} \Upsilon \,:\, U(H) & \longrightarrow & \Bbbk(t)(p;\sigma) \\ & x & \mapsto & p^{-1}t \\ & y & \mapsto & p \\ & z & \mapsto & 1. \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $\mathfrak{S} = U(H) \setminus \ker \Upsilon$ is an Ore set of U(H).

• Υ can be extended to a surjective morphism of \Bbbk -algebras $\Upsilon \colon \mathfrak{S}^{-1}U(H) \to \Bbbk(t)(p;\sigma).$

Heisenberg Lie algebra H

Proposition (Ferreira-Gonçalves-S.)

Consider the Heisenberg Lie k-algebra

$$H=\langle x,y\mid [x,[y,x]]=[y,[y,x]]=0\rangle.$$

Let U(H) be its universal enveloping algebra, and let $\mathfrak{D}(H)$ be its classical Ore division ring of fractions. Define

$$z = [y, x], \quad V = \frac{1}{2}z(xy + yx)z,$$

$$S = \left(V - \frac{1}{3}z^3\right)\left(V + \frac{1}{3}z^3\right)^{-1} + \left(V - \frac{1}{3}z^3\right)^{-1}\left(V + \frac{1}{3}z^3\right),$$

$$T = (z + y^2)^{-1}(z - y^2)S(z + y^2)(z - y^2)^{-1}.$$

Then:

 The elements S and T are symmetric with respect to the principal involution on D(H), and they generate a free k-algebra of rank 2.

• R a ring with $\delta \colon R \to R$ a derivation.

•
$$R[x; \delta] = \{\sum_{i=0}^{n} x^{i} a_{i} \mid a_{i} \in R\}$$
, where
 $ax = xa + \delta(a)$, for all $a \in R$.

• Define
$$t_x = x^{-1}$$
, then

$$R[x;\delta] \hookrightarrow R((t_x;\delta)) = \Big\{ \sum_{i \ge N} t_x^i a_i \mid a_i \in R \Big\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•
$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle, \ z = [y, x].$$

- $U(H) = \mathbb{k}[z][y][x; \delta_x] \hookrightarrow \mathbb{k}((t_z))((t_y))((t_x; \delta_x)).$
- Let *L* be a Lie \Bbbk -algebra generated by $\{u, v\}$. Define w = [v, u]. Suppose that there exists a morphism of Lie algebras

$$L \to H, \quad u \mapsto x, \ v \mapsto y.$$

Let N be the kernel. Thus $L/N \cong N$. Then

 $U(L) = U(N)[w; \delta_w][v; \delta_v][u; \delta_u] \hookrightarrow U(N)((t_w; \delta_w))((t_v; \delta_v))((t_u; \delta_u)).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Augmentation map $\varepsilon : U(N) \to k$, $n \mapsto 0$ for all $n \in N$.

•
$$H = \langle x, y \mid [x, [y, x]] = [y, [y, x]] = 0 \rangle, \ z = [y, x].$$

- $U(H) = \mathbb{k}[z][y][x; \delta_x] \hookrightarrow \mathbb{k}((t_z))((t_y))((t_x; \delta_x)).$
- Let *L* be a Lie \Bbbk -algebra generated by $\{u, v\}$. Define w = [v, u]. Suppose that there exists a morphism of Lie algebras

$$L \to H, \quad u \mapsto x, \ v \mapsto y.$$

Let N be the kernel. Thus $L/N \cong N$. Then

 $U(L) = U(N)[w; \delta_w][v; \delta_v][u; \delta_u] \hookrightarrow U(N)((t_w; \delta_w))((t_v; \delta_v))((t_u; \delta_u)).$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Augmentation map $\varepsilon : U(N) \to \mathbb{k}$, $n \mapsto 0$ for all $n \in N$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Theorem (Ferreira-Gonçalves-S.)

Let $H = \langle x, y \mid [[y, x], x] = [[y, x], y] = 0 \rangle$ be the Heisenberg Lie k-algebra and let L be a Lie k-algebra generated by two elements u, v. Suppose that there exists a Lie k-algebra homomorphism

$$L \to H, \ u \mapsto x, \ v \mapsto y.$$
 (1)

Let w = [v, u], $V = \frac{1}{2}w(uv + vu)w$, and consider the following elements of $\mathfrak{D}(L)$:

$$S = (V - \frac{1}{3}w^3)(V + \frac{1}{3}w^3)^{-1} + (V - \frac{1}{3}w^3)^{-1}(V + \frac{1}{3}w^3)^{-1}(V +$$

$$T = (w + v^2)^{-1}(w - v^2)S(w + v^2)(w - v^2)^{-1}.$$

Then:

 The elements S and T are symmetric with respect to the principal involution on D(L) and they generate a free k-algebra of rank 2.

In a residually nilpotent Lie \Bbbk -algebra, the Lie subalgebra L generated by two noncommuting elements u, v satisfies the condition (1).

U(L) is an Ore domain

Theorem (Ferreira-Gonçalves-S.)

Let *L* be a Lie \Bbbk -algebra such that its universal enveloping algebra U(L) is an Ore domain, and let $\mathfrak{D}(L)$ be its classical Ore division ring of fractions.

Let $u, v \in L$ such that the Lie subalgebra generated by them is of dimension at least three. Define

$$w = [u, v], \quad V = \frac{1}{2}w(uv + vu)w,$$
$$= \left(V - \frac{1}{3}w^3\right)\left(V + \frac{1}{3}w^3\right)^{-1} + \left(V - \frac{1}{3}w^3\right)^{-1}\left(V + \frac{1}{3}w^3\right)^{-1}$$
$$T = (w + u^2)^{-1}(w - u^2)S(w + u^2)(w - u^2)^{-1}.$$

Then:

S

 The elements S and T are symmetric with respect to the principal involution on 𝔅(L) and they generate a free k -algebra or rank two.

If the dimension of the Lie subalgebra generated by u and v is of dimension two, use the result by **Cauchon**.

U(L) is an Ore domain Technique by A. I. Lichtman

- Can suppose that *L* is generated by two elements *u*, *v*.
- Obtain a filtration of *U*(*L*):

$$\mathbb{k} = U_0(L) \subseteq U_{-1}(L) \subseteq \cdots \subseteq U_{-n}(L) \subseteq \cdots$$

 $U_{-n}(L) = \mathbb{k}$ - subspace gen. products of $\leq n$ elements from $\{u, v\}$.

Obtain a filtration of L:

$$L_{-n} = L \cap U_{-n}(L).$$

- $\operatorname{gr}(U(L)) \cong U(\operatorname{gr}(L)) \implies \operatorname{gr}(U(L))$ a domain
- Filtration induces a valuation $\vartheta: U(L) \to \mathbb{Z} \cup \{\infty\}$
- Can be extended to a valuation $\vartheta \colon U(L)[t,t^{-1}] \to \mathbb{Z} \cup \{\infty\}$

•
$$T = \{f \in U(L)[t, t^{-1}] \mid \vartheta(f) \ge 0\},\ T_0 = \{f \in U(L)[t, t^{-1}] \mid \vartheta(f) > 0\}$$

(ロ)、

U(L) is an Ore domain

• Valuation $\vartheta : U(L)[t, t^{-1}] \to \mathbb{Z} \cup \{\infty\}$

•
$$T = \{f \in U(L)[t, t^{-1}] \mid \vartheta(f) \ge 0\},\ T_0 = \{f \in U(L)[t, t^{-1}] \mid \vartheta(f) > 0\}$$

$$\begin{array}{rccc} T/T_0 & \xrightarrow{\cong} & U(\operatorname{gr}(L)) \cong \operatorname{gr}(U(L)) \\ ut + T_0 & \mapsto & \bar{u} \\ vt + T_0 & \mapsto & \bar{v} \\ wt^2 + T_0 & \mapsto & \bar{w} \end{array}$$

- U(L) Ore domain $\Rightarrow T$, $U(\operatorname{gr}(L))$ are Ore domains.
- Let $\mathfrak{D}(L)(t)$ and Δ be the Ore ring of fractions of T and $U(\operatorname{gr}(L))$ respect.
- gr(L) is a non commutative residually nilpotent Lie k-algebra
- Let $\mathfrak{S} = T \setminus T_0$ is an Ore subset of T.
- $\mathfrak{S}^{-1}T \longrightarrow U(\operatorname{gr}(L)), ut \mapsto \bar{u}, vt \mapsto \bar{v}, wt^2 \mapsto \bar{w}.$
- When we perform the operations to obtain the free algebra in $\mathfrak{S}^{-1}T \subseteq \mathfrak{D}(L)(t)$, amazingly enough the elements are in $\mathfrak{D}(L)$.

Muchas gracias

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ