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Notation

Rings and algebras are associative with 1.

Morphisms, subrings, subalgebras and embeddings of these
objects preserve 1.

We also use Lie algebras and morphisms of Lie algebras.

A domain is a nonzero ring that contains no zero divisors other
than zero.

A division ring or skew field is a nonzero ring such that every
nonzero element is invertible.

Free algebras k〈X〉 are supposed to be noncommutative, i.e.
|X| ≥ 2.
k〈X〉 is the set of polynomials where xy 6= yx if x, y ∈ X, x 6= y.
For example, x2y 6= yx2 6= xyx.
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A conjecture and a question

Conjecture A (Makar-Limanov)
Let D be a division ring with center Z.

(A) If D is finitely generated (as a division ring) over Z and
[D : Z] =∞, then D contains a free Z-algebra

If k < Z,
D contains free Z algebras⇔ D contains free k−algebras.

If [D : Z] = n <∞, then D ↪→ EndZ(D) = Mn(Z). The ring
Mn(Z) is P.I.
A1 = 〈x, y | yx− xy = 1〉 is of polynomial growth, but its Ore
division ring of fractions D1 contains a free algebra.
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Let k be a field and A be a k-algebra.

k-involution on A is a k-linear map ? : A→ A satisfying
(ab)? = b?a?, ∀a, b ∈ A, and (a?)? = a, ∀a ∈ A.

An element a ∈ A is said to be symmetric if a? = a.

Question
Let D be a division k-algebra with a k-involution ? : D → D.

(SA) If D satisfies conjecture (A), does D contain a free k-algebra
generated by symmetric elements?



Definition
Let k be a field and G a group. A group algebra is a ring:

As a set k[G] = {
∑

x∈G xax | ax ∈ k almost all ax = 0}.
Sum: ∑

x∈G

xax +
∑
x∈G

xbx =
∑
x∈G

x(ax + bx)

Multiplication:
yay · zbz = yzaybz

(
∑
y∈G

yay)(
∑
z∈G

zbz) =
∑
x∈G

x(
∑

yz=x

aybz).

Example
If G = Z, then k[G] = k[t, t−1].
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Example of ring with involution

Let k be a field

Example
If G is a group and k[G] denotes the group algebra of G over k

k[G] −→ k[G]∑
x∈G xax 7−→

∑
x∈G x

−1ax,

is a k-involution called the canonical involution of k[G].

Can we obtain a division ring with involution from this?



General situation

If R is a commutative ring:
Existence: A division ring of fractions exists iff R is a domain.
Uniqueness: Division rings of fractions are isomorphic

D1

∼=��R
) 	
77

� u

''
D2

Form of the elements: Elements of D are fractions r
s = s−1r

In general:
Domains not embeddable in division rings.
Domains with more than one division ring of fractions.
Expressions like r − s(t− uv−1w)−1x may not be simplified.

If we want k[G] to be a domain, G has to be torsion free:
If xn = 1, then (1− x)(1 + x+ · · ·+ xn−1) = 0.
Open problem: when is k[G] embeddable in a division ring?
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Malcev-Neumann series ring

Example

kZ = k[t, t−1] ↪→ k(t) ↪→ k((t)) =
{ ∑

i≥n

tiai | ai ∈ k, n ∈ Z
}

.

Definition
(G,<) is an ordered group if G is a group and < is a total order
such that for all x, y, z ∈ G

x < y ⇒ xz < yz x < y ⇒ zx < zy

(G,<) ordered group. k a field, k[G] the group algebra.

k[G] ↪→k((G,<))=
{
f=

∑
x∈G

xax | ax ∈ k, supp f is well ordered
}

k((G,<)) is a division ring, Malcev-Neumann series ring.

k(G) is the division ring generated by k[G] inside k((G,<)).
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Some results on group rings

Let k be a field.

If G is an orderable group, then k[G] is embeddable in the
division ring k((G)). [Malcev-Neumann]
Any division ring that contains k[G] must contain a free algebra
k〈X〉. [S.]

Theorem (Ferreira-Gonçalves-S.)
Let G be an orderable group and k[G] be the group algebra.

Let k(G) be the division ring generated by k[G] inside k((G)).

Then the canonical involution extends to k(G) and the following are
equivalent:

k(G) contains a free k-algebra freely generated by symmetric
elements with respect to the canonical involution.

G is not abelian.



Universal enveloping algebra
Example
Let L be a Lie k-algebra, and U(L) its universal enveloping algebra.

U(L) −→ U(L)
x 7−→ −x, for all x ∈ L

is a k-involution called the principal involution of U(L).

U(L) embeds in a division ring D(L) (P. M. Cohn)

A more manageable construction of D(L) (A. I. Lichtman)

If L1 ≤ L, then D(L1) ⊆ D(L)

If U(L) is an Ore domain, then D(L) coincides with its Ore skew
field of fractions

The principal involution extends to a k-involution D(L)→ D(L)
(J. Cimpric̆)

If L is not abelian and char k=0, D(L) contains free algebras
k〈X〉 (A. I. Lichtman)
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General strategy

Let D be k-algebra that contains a free k-algebra k〈x, y〉.

Suppose there exists a morphism of k-algebras ϕ : R→ D such
that ϕ(a) = x and ϕ(b) = y.

Then the k-algebra generated by {a, b} is the free k-algebra
k〈a, b〉.

Problem: Any morphism of rings between division rings is
injective and thus an embedding.

Solution: Find a suitable subring T such that there exists
ϕ : T → D.
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Main result

From now on, k is a field of characteristic zero.

Theorem (Ferreira-Gonçalves-S.)
Let L be a nonabelian Lie k-algebra such that either L is residually
nilpotent or U(L) is an Ore domain.
Then D(L) contains a free algebra k〈X〉 generated by symmetric
elements with respect to the principal involution on D(L).
Moreover, in these cases, we give explicit symmetric elements that
generate the free k-algebra.

Structure of the proof:

Prove the existence of free algebras generated by symmetric
elements for the Lie k-algebra

H = 〈x, y | [x, [y, x]] = [y, [y, x]] = 0〉.

Prove the result for residually nilpotent Lie k-algebra.
Prove the result when U(L) is an Ore domain.
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Heisenberg Lie algebra

L. Makar-Limanov, G. Cauchon

k a field of characteristic zero.

σ : k(t)→ k(t) automorphism determined by σ(t) = t− 1.

k(t)[p;σ] =
{∑n

i=0 p
iai | ai ∈ k(t)

}
, where

ap = pσ(a), for all a ∈ k(t).

k(t)(p;σ) Ore classical ring of quotients of k(t)[p;σ].

Define

s = (t− 5

6
)(t− 1

6
)−1, u = (1− p2)(1 + p2)−1.

Then the k-algebra generated by the elements s+ s−1 and
u(s+ s−1)u−1 is a free k-algebra inside k(t)(p;σ).



Heisenberg Lie algebra H

H = 〈x, y | [x, [y, x]] = [y, [y, x]] = 0〉, define z = [y, x].

Υ : U(H) −→ k(t)(p;σ)
x 7→ p−1t
y 7→ p
z 7→ 1.

S = U(H) \ ker Υ is an Ore set of U(H).

Υ can be extended to a surjective morphism of k-algebras
Υ: S−1U(H)→ k(t)(p;σ).



Heisenberg Lie algebra H

Proposition (Ferreira-Gonçalves-S.)
Consider the Heisenberg Lie k-algebra

H = 〈x, y | [x, [y, x]] = [y, [y, x]] = 0〉.

Let U(H) be its universal enveloping algebra, and let D(H) be its
classical Ore division ring of fractions.
Define

z = [y, x], V =
1

2
z(xy + yx)z,

S =
(
V − 1

3
z3
)(
V +

1

3
z3
)−1

+
(
V − 1

3
z3
)−1(

V +
1

3
z3
)
,

T = (z + y2)−1(z − y2)S(z + y2)(z − y2)−1.
Then:

The elements S and T are symmetric with respect to the principal
involution on D(H), and they generate a free k-algebra of rank 2.



Residually nilpotent Lie algebra

R a ring with δ : R→ R a derivation.

R[x; δ] = {
∑n

i=0 x
iai | ai ∈ R}, where

ax = xa+ δ(a), for all a ∈ R.

Define tx = x−1, then

R[x; δ] ↪→ R((tx; δ)) =
{∑

i≥N

tixai | ai ∈ R
}
.



Residually nilpotent Lie algebra

H = 〈x, y | [x, [y, x]] = [y, [y, x]] = 0〉, z = [y, x].

U(H) = k[z][y][x; δx] ↪→ k((tz))((ty))((tx; δx)).

Let L be a Lie k-algebra generated by {u, v}. Define w = [v, u].
Suppose that there exists a morphism of Lie algebras

L→ H, u 7→ x, v 7→ y.

Let N be the kernel. Thus L/N ∼= N . Then

U(L) = U(N)[w; δw][v; δv][u; δu] ↪→ U(N)((tw; δw))((tv; δv))((tu; δu)).

Augmentation map ε : U(N)→ k, n 7→ 0 for all n ∈ N .
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Residually nilpotent Lie algebra
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Residually nilpotent Lie algebra

Theorem (Ferreira-Gonçalves-S.)
Let H = 〈x, y | [[y, x], x] = [[y, x], y] = 0〉 be the Heisenberg Lie
k-algebra and let L be a Lie k-algebra generated by two elements
u, v. Suppose that there exists a Lie k-algebra homomorphism

L→H, u 7→ x, v 7→ y. (1)

Let w = [v, u], V = 1
2w(uv + vu)w, and consider the following

elements of D(L):

S = (V − 1

3
w3)(V +

1

3
w3)−1 + (V − 1

3
w3)−1(V +

1

3
w3),

T = (w + v2)−1(w − v2)S(w + v2)(w − v2)−1.

Then:
The elements S and T are symmetric with respect to the principal
involution on D(L) and they generate a free k-algebra of rank 2.

In a residually nilpotent Lie k-algebra, the Lie subalgebra L generated
by two noncommuting elements u, v satisfies the condition (1).



U(L) is an Ore domain
Theorem (Ferreira-Gonçalves-S.)
Let L be a Lie k-algebra such that its universal enveloping algebra
U(L) is an Ore domain, and let D(L) be its classical Ore division ring
of fractions.
Let u, v ∈ L such that the Lie subalgebra generated by them is of
dimension at least three. Define

w = [u, v], V =
1

2
w(uv + vu)w,

S =
(
V − 1

3
w3
)(
V +

1

3
w3
)−1

+
(
V − 1

3
w3
)−1(

V +
1

3
w3
)
,

T = (w + u2)−1(w − u2)S(w + u2)(w − u2)−1.

Then:
The elements S and T are symmetric with respect to the
principal involution on D(L) and they generate a free k -algebra
or rank two.

If the dimension of the Lie subalgebra generated by u and v is of
dimension two, use the result by Cauchon.



U(L) is an Ore domain
Technique by A. I. Lichtman

Can suppose that L is generated by two elements u, v.

Obtain a filtration of U(L):

k = U0(L) ⊆ U−1(L) ⊆ · · · ⊆ U−n(L) ⊆ · · ·

U−n(L) = k− subspace gen. products of ≤ n elements from {u, v}.

Obtain a filtration of L:

L−n = L ∩ U−n(L).

gr(U(L)) ∼= U(gr(L)) =⇒ gr(U(L)) a domain

Filtration induces a valuation ϑ : U(L)→ Z ∪ {∞}

Can be extended to a valuation ϑ : U(L)[t, t−1]→ Z ∪ {∞}

T = {f ∈ U(L)[t, t−1] | ϑ(f) ≥ 0},
T0 = {f ∈ U(L)[t, t−1] | ϑ(f) > 0}



U(L) is an Ore domain

Valuation ϑ : U(L)[t, t−1]→ Z ∪ {∞}
T = {f ∈ U(L)[t, t−1] | ϑ(f) ≥ 0},
T0 = {f ∈ U(L)[t, t−1] | ϑ(f) > 0}

T/T0
∼=−→ U(gr(L)) ∼= gr(U(L))

ut+ T0 7→ ū
vt+ T0 7→ v̄

wt2 + T0 7→ w̄

U(L) Ore domain⇒ T , U(gr(L)) are Ore domains.
Let D(L)(t) and ∆ be the Ore ring of fractions of T and U(gr(L))
respect.
gr(L) is a non commutative residually nilpotent Lie k-algebra
Let S = T \ T0 is an Ore subset of T .
S−1T −→ U(gr(L)), ut 7→ ū, vt 7→ v̄, wt2 7→ w̄.
When we perform the operations to obtain the free algebra in
S−1T ⊆ D(L)(t), amazingly enough the elements are in D(L).



Muchas gracias


