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Abstract. This paper presents a method for probabilistic prediction of
chaotic time series. So far, we have developed several model selection
methods for chaotic time series prediction, but the methods cannot esti-
mate the predictable horizon of predicted time series. Instead of using
model selection methods employing the estimation of mean square pre-
diction error (MSE), we present a method to obtain a probabilistic pre-
diction which provides a prediction of time series and the estimation of
predictable horizon. The method obtains a set of plausible predictions
by means of using the similarity of attractors of training time series
and the time series predicted by a number of learning machines with
different parameter values, and then obtains a smaller set of more plau-
sible predictions with longer predictable horizons estimated by LOOCV
(leave-one-out cross-validation) method. The effectiveness and the prop-
erties of the present method are shown by means of analyzing the result
of numerical experiments.

Keywords: Probabilistic prediction · Attractors of chaotic time series ·
Leave-one-out cross-validation · Prediction of time series · Estimation of
predictable horizon

1 Introduction

This paper presents a method of probabilistic prediction of chaotic time series. So
far, we have developed several model selection methods for chaotic time series
prediction [1,2]. The method in [1] uses moments of predictive deviation as
ensemble diversity measures for model selection in time series prediction, and
achieves better performance from the point of view of mean square prediction
error (MSE) than the conventional holdout method. The method in [2] uses direct
multi-step ahead (DMS) prediction to apply the out-of-bag (OOB) estimate of
the MSE. However, both methods cannot be used for estimating the predictable
horizons of predicted time series but for estimating the MSE, which is owing
c© Springer International Publishing Switzerland 2015
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2 S. Kurogi et al.

mainly to the fact that the MSE is affected by short term predictability and
long term unpredictability of chaotic time series (see [2] for the analysis and [3]
for properties of chaotic time series).

Instead of using model selection methods employing the estimation of the
MSE, we present a method to obtain probabilistic prediction. Here, from [4],
we can see that the probabilistic prediction has come to dominate the science
of weather and climate forecasting. This is mainly because the theory of chaos
at the heart of meteorology shows that for a simple set of nonlinear equations
(or Lorenz’s equations shown below) with initial conditions changed by minute
perturbations, there is no longer a single deterministic solution and hence all
forecasts must be treated as probabilistic. From another perspective, the forecast
probabilities allow the user to take appropriate action within a proper under-
standing of the uncertainties. For probabilistic weather forecast, a number of
ensemble methods have been employed and progressed, where the forecast uncer-
tainties arised from perturbations to the initial conditions and model parameters
are examined.

In this article, we try to utilize learning machines for probabilistic prediction,
which indicates that forecast uncertainty arises from model uncertainty. We also
try to obtain a set of plausible predictions by means of using the similarity
of training time series and the time series predicted by a number of learning
machines with different parameter values. Furthermore, we introduce LOOCV
(leave-one-out cross-validation) method for estimating the predictable horizon
to obtain a smaller set of more plausible predictions. We show the method of
probabilistic prediction in Sect. 2, experimental results and analysis in Sect. 3,
and the conclusion in Sect. 4.

2 Probabilistic Prediction of Chaotic Time Series

2.1 Point Prediction of Chaotic Time Series

Let yt(∈ R) denote a chaotic time series for a discrete time t = 0, 1, 2, · · ·
satisfying

yt = r(xt) + e(xt), (1)

where r(xt) is a nonlinear target function of a vector xt = (yt−1, yt−2, · · · , yt−k)T

for the embedding dimension k generated by the delay embedding from a chaotic
differential dynamical system (see [3] for the theory of chaotic time series). Here,
yt is obtained not analytically but numerically, and then yt involves an error
e(xt) owing to an executable finite calculation precision. This indicates that
there are a number of plausible target functions r(xt) with allowable error e(xt).
Furthermore, the time series yt for numerical experiments shown below is one
of the time series generated from the original chaotic dynamical system with a
high precision, which we denote ground truth time series y

[gt]
t depending on the

necessity in the context.
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Probabilistic Prediction of Chaotic Time Series 3

Let yt:h = ytyt+1 · · · yt+h−1 denote a time series with the initial time t and the
horizon h. For a given and training time series ytg:hg(= y

[train]
tg:hg

), we are supposed
to predict succeeding time series ytp:hp for tp ≥ tg + hg. Then, we make the
training dataset D[train] = {(xt, yt) | t ∈ I [train]} for I [train] = {t | tg ≤ t <
tg + hg} to train a learning machine. After the learning, the machine executes
iterated prediction by

ŷt = f(x̂t) (2)

for t = tp, tp+1, · · · , recursively, where f(x̂t) denotes the prediction function of
x̂t = (xt1, xt2, · · · , xtk) whose elements are given by

xtj =
{

yt−j (t − j < tp)
ŷt−j (t − j ≥ tp). (3)

Here, we suppose that yt for t < tp is known for making the prediction ŷtp:hp
as

the initial state.

2.2 Probabilistic Prediction

For probabilistic prediction, we firstly make a number of predictions ŷtp:hp
or

y
[θm]
tp:hp

generated from (2) and (3) by means of learning machines with parame-
ter values θm ∈ Θ, where Θ indicates the set of parameter values of learning
machines. Here, we suppose that there are a number of plausible prediction func-
tions f(·) = f [θm](·) for the chaotic time series, and we have to remove implau-
sible ones. To have this done, we select the following set of plausible predictions
y
[θm]
tp:hp

,

Y
[Sth]
tp:hp

=
{

y
[θm]
tp,hp

∣∣∣∣ S
(
y
[θm]
tp,hp

, ytg :hg

)
≥ Sth

}
(4)

where

S
(
y
[θm]
tp,hp

, y
[train]
tg :hg

)
�

∑
i

∑
j a

[θm]
ij a

[train]
ij√∑

i

∑
j

(
a
[θm]
ij

)2
√∑

i

∑
j

(
a
[train]
ij

)2

(5)

denotes the similarity of two-dimensional attractor (trajectory) distributions
a
[θm]
ij and a

[train]
ij of time series y

[θm]
tp,hp

and y
[train]
tg:hg

, respectively, and Sth is a thresh-
old. Here, the two-dimensional attractor distribution, aij , of a time-series yt:h is
given by

aij =
t+h−1∑

s=t

1
{⌊

ys − v0

Δa

⌋
= i ∧

⌊
ys+1 − v0

Δa

⌋
= j

}
, (6)
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4 S. Kurogi et al.

where v0 is a constant less than the minimum value of yt for all time series and
Δa indicates a resolution of the distribution. Furthermore, 1{z} is an indicator
function equal to 1 if z is true, and to 0 if z is false, and �·� indicates the floor
function.

Next, we try to select predictions with longer predictable horizons from the
plausible predictions Y

[Sth]
tp:hp

. To have this done, let us calculate the predictable

horizon between two predictions y
[θm]
tp:hp

and y
[θn]
tp:hp

in Y
[Sth]
tp:hp

given by

h
(
y
[θm]
tp:hp

, y
[θ]
tp:hp

)
= max

{
h

∣∣ ∀s ≤ h ≤ hp; |y[θm]
tp+s − y

[θn]
tp+s| ≤ ey

}
(7)

where ey indicates the threshold of prediction error to determine the horizon.

Then, we have the mean of h
(
y
[θm]
tp:hp

, y
[θn]
tp:hp

)
between an prediction y

[θm]
tp:hp

and

the other predictions y
[θn]
tp:hp

in the set of plausible predictions, Y
[Sth]
tp:hp

, given by

h̃
[θm]
tp

=
1∣∣∣Y [Sth]

tp:hp

∣∣∣ − 1

∑
y
[θn]
tp:hp

∈Y
[Sth]

tp:hp
\{y

[θm]
tp:hp

}
h

(
y
[θm]
tp:hp

, y
[θn]
tp:hp

)
. (8)

where
∣∣∣Y [Sth]

tp:hp

∣∣∣ denotes the number of elements in Y
[Sth]
tp:hp

. Note that the above

method to obtain the horizon h̃
[θm]
tp

is based on the leave-one-out cross-validation

(LOOCV), and the prediction with a longer horizon h̃
[θm]
tp

is considered to provide

a “better” prediction in predicting all plausible predictions y
[θ]
tp:hp

∈ Y
[Sth]
tp:hp

on

average. Thus, we sort the predictable horizons by their lengths as h̃
[θσ(i)]
tp

≥
h̃

[θσ(i+1)]
tp

, where σ(i) denotes the order for i = 1, 2, · · · , |Y [Sth]
tp:hp

|. Let a subset of
plausible predictions with longer predictable horizons be

Y
[Hth,Sth]
tp:hp

=

⎧⎨
⎩y

[θσ(i)]

tp:hp

∣∣∣∣ i

|Y [Sth]
tp:hp

|
≤ Hth

⎫⎬
⎭ , (9)

where the threshold Hth (0 < Hth ≤ 1) indicates the ratio of the numbers of
elements in Y

[Hth,Sth]
tp:hp

and Y
[Sth]
tp:hp

, or Hth =
∣∣∣Y [Hth,Sth]

tp:hp

∣∣∣ / ∣∣∣Y [Sth]
tp:hp

∣∣∣. Now, we derive
the probability p(yt) of the prediction yt for tp ≤ t < tp + hp as

p (vi ≤ yt < vi+1) =
1∣∣∣Y [Hth,,Sth]

tp:hp

∣∣∣
∑

θ∈Θ
[Hth,,Sth

]

1

{⌊
y
[θ]
t − v0

Δv

⌋
= i

}
, (10)

where Θ[Hth,,Sth ] is the set of parameters θ of learning machines which have gener-
ated the time series y

[θ]
tp:hp

∈ Y
[Hth,,Sth]
tp:hp

, and Δv is a constant representing the res-
olution of yt, and vi = iΔv +v0 for i = 0, 1, 2, · · · . Note that the probability p(yt)
depends on the threshold Hth. Namely, the probability p(vi ≤ yt ≤ vi+1) indi-
cates how much the plausible predictions in Y

[Hth,Sth]
tp:hp

take the values in between
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Probabilistic Prediction of Chaotic Time Series 5

vi and vi+1, where Y
[Hth,Sth]
tp:hp

consists of Hth × |Y [Sth]
tp:hp

| predictions with longer

predictable horizons among all plausible predictions in Y
[Sth]
tp:hp

. As a special case

for Hth =
∣∣∣Y [Sth]

tp:hp

∣∣∣−1

, we have Y
[Hth,Sth]
tp:hp

consisting of only one prediction y
[θσ(1)]

tp:hp

with the longest predictable horizon h̃
[θ]
tp

which we assume the most plausible
prediction and we call it representative prediction among plausible predictions.
By means of the above probabilistic prediction, we hope that the representa-
tive prediction y

[θσ(1)]

tp:hp
has a longer predictable horizon in predicting the ground

truth time series y
[gt]
t . Furthermore, we would like to tune Hth

(
>

∣∣∣Y [Sth]
tp:hp

∣∣∣−1
)

to provide more conservative and safe probabilistic prediction so that p(yt) may
have a positive value for the ground truth yt = y

[gt]
t . Then, after the tuning of

Hth, we can provide an expected predictable horizon ĥ
[θσ(1)]
tp

of the representative

prediction y
[θσ(1)]

tp:hp
in predicting the ground truth time series y

[gt]
tp:hp

by

ĥ
[θσ(1)]
tp

= max
{

h
∣∣ ∀s ≤ h,∀y

[θ]
tp:hp

∈ Y
[Hth,Sth]
tp:hp

; |y[θσ(1)]
tp+s − y

[θ]
tp+s| ≤ ey

}
. (11)

3 Numerical Experiments and Analysis

3.1 Experimental Settings

We use the Lorenz time series, as shown in Fig. 1 and [2], obtained from the
original differential dynamical system given by

dxc

dtc
= −σxc + σyc,

dyc

dtc
= −xczc + rxc − yc,

dzc

dtc
= xcyc − bzc, (12)

for σ = 10, b = 8/3, r = 28. Here, we use tc for continuous time and t (=
0, 1, 2, · · · ) for discrete time related by tc = tT with sampling time T . We have
generated the time series y(t) = xc(tT ) for t = 1, 2, · · · , 5, 000 from the initial
state (xc(0), yc(0), zc(0)) = (−8, 8, 27) with T = 25ms via Runge-Kutta method
with 128 bit precision of GMP (GNU multi-precision library). As a result of
preliminary experiments as shown in [2], y(t) for each duration of time less than
1,200 steps (= 30 s/25 ms) in Fig. 1, or yt0:1200 for each initial time t0 = 0, 1, 2, · · ·
with initial state (x(t0), y(t0), z(t0)), is supposed to be correct, while cumulative
computational error may increase exponentially after the duration.

We use y0:2000 for training a learning machine, and execute multistep
prediction of ytp:hp with the initial input vector xtp = (y(tp − 1), · · · , y(tp − k))
for prediction start time tp = 2000 + 100i (i = 0, 1, 2, · · · , 19). As a learning
machine, we use CAN2 (see A and [5] for details), where the model complex-
ity is the number of units, N , or the number of piecewise linear regions for
approximating the target function r(·). We show the results with the embedding
dimension k = 8 and we use the parameter of the learning machines as θ = N .
We set the thresholds as Sth = Hth = 0.8.
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6 S. Kurogi et al.
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Fig. 1. Lorenz time series y(t) for t = 0, 1, 2, · · · , 4999, or the ground truth time series

y
[gt]
0:5000.

For probabilistic prediction, we firstly make a number of predictions y
[θ]
tp:hp

by
means of usingCAN2swith different number of units as θ = N = 10, 12, · · · , Nmax,
where we use Nmax = 250 = 2000/k, because CAN2 employs N piecewise lin-
ear regions and each piecewise linear region requires more than k independent
data from 2000 − k data in the training dataset D[train] = {(xt, yt)|t = k =
8, k + 1, · · · , 1999}.

3.2 Results and Analysis

In order to intuitively see how the present method works, we show examples of
obtained representative prediction y

[θσ(1)]

tp:hp
and the probability p(yt) in Fig. 2(a),

(b) and (c). In order to see how the probability p(yt) is obtained, the superim-
posed plausible predictions y

[θ]
tp:hp

∈ Y
[Hth,Sth]
tp:hp

are shown in Fig. 2(d), (e) and (f).
Now, let us examine the present method step by step. Firstly, in Fig. 3, we

show the attractor distributions of (a) training and (b) predicted time series and
(c) the similarity vs. prediction steps. From (c), we can see that the similarity of
the attractors changes with the increase of prediction steps, and hp = 1000 seems
necessary for the convergence of the change. This indicates that the similarity
have to be calculated after this period much bigger than predictable horizons
whose mean values are less than 300 as shown in Fig. 4(a) explained below. This
finding should be noted because usual methods for time series prediction (e.g.
[1–4]) do not examine the property of the prediction after the predictable horizon
so much.

Next, we have examined predictable horizons h, ĥ, h̃, hS and h∗ as shown
in Fig. 4(a). Here, h indicates the predictable horizon achieved by the represen-
tative prediction, ĥ the expected predictable horizon (see (11)), h̃ the LOOCV
predictable horizon (see (8)), hS the predictable horizon achieved by the learn-
ing machine which has generated the largest similarity of attractors, and h∗

the longest predictable horizon among the horozons achieved by the learning
machines for all N . We can see that h∗ has achieved longer predictable horizons
than others on average while h∗ as well as h and hS cannot be obtained until the
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Probabilistic Prediction of Chaotic Time Series 7

Fig. 2. (a), (b) and (c) show the grand truth time series y
[gt]
tp:hp

(thickest line), repre-

sentative prediction y
[θσ(1)]

tp:hp
(2nd thickest line) and the probability p(yt) with positive

values (gray area enveloped by thin lines) for tp = 2000, 3000 and 4000, respectively,
and hp = 1000. By means of a close look at the difference between the thickest, the
second thickest and thin lines growing greater than ey = 5 in (a), (b) and (c), we can
see that the pairs of expected and actual predictable horizons of the representative

prediction y
[θσ(1)]

tp:hp
are (ĥ

[θσ(1)]

tp
, h

[θσ(1)]

tp
) = (102, 121), (92,234), (118,278) for tp = 2000,

3000 and 4000, respectively. (d), (e) and (f) show superimposed plausible predictions

y
[θ]
tp:hp

∈ Y
[Hth,Sth]

tp:hp
for tp = 2000, 3000 and 4000, respectively.

ground truth is obtained. We can see that the estimated predictable horizon ĥ
is smaller than or equal to the actual predictable horizon h achieved by the rep-
resentative prediction, and the mean is 〈ĥ〉 = 82 [steps] while 〈h〉 = 156 [steps].
This result of estimation can be said conservative and safe, and is obtained by
using Hth = 0.8. By means of using Hth = 0.2, we have 〈ĥ〉 = 152 [steps] nearer
to 〈h〉 = 156 [steps], but there are a number of ĥ bigger than h. This indi-
cates that we can tune Hth for the necessary degree of conservativeness in the
estimation of predictable horizon.

Next, we can see that h has achieved better result than hS . This indicates that
the effectiveness of the LOOCV predictable horizon h̃ embedded in the present
method. The relationship between h̃ and h for all plausible predictions Y

[Sth]
tp:hp

at
tp = 2000 are shown in Fig. 4(b), where we can see that there are a number of
data on or near the line h̃ = h while there are data far from the line. As a result,
we have the correlation between h̃ and h being 0.197, which does not indicate
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8 S. Kurogi et al.
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Fig. 3. (a) shows two dimensional training attractor distribution a
[train]
ij and (b) shows

the predicted distribution a
[θ]
ij for θ = N = 172 at t = 2999 with S

(
y
[θ]
tp,hp

, y
[train]
tg :hg

)
=

S
(
y
[θ]
2000,1000, y

[train]
0:2000

)
= 0.85. Here, note that N = 172 has generated the representative

prediction shown in Fig. 2(a). The resolution of the distributions is Δa = (vmax −
v0)/40 = (18.5 − (−18.5))/40 = 0.925. (c) shows the similarity S

(
y
[θ]
2000,1000, y

[train]
0:2000

)

vs. prediction steps for each θ = N = 10, 12, · · · , 250 for the increase of prediction
steps. The predictions y

[θ]
tp:hp

= y
[θ]
2000:1000 for θ = N =10, 12, 14, 16, 20, 56, 58, 64, 132,

160, 162, 164 are removed because S
(
y
[θ]
tp,hp

, y
[train]
tg :hg

)
< Sth = 0.8.

Fig. 4. (a) Predictable horizons h, ĥ, h̃, hS and h∗ (see the text for details) vs. tp. The
averages are 〈h〉 = 156, 〈ĥ〉 = 82, 〈h̃〉 = 139, 〈hS〉 = 118 and 〈h∗〉 = 273 [steps]. (b)

shows the relationship between h̃ and h for plausible predictions Y
[Sth]

tp:hp
at tp = 2000.

(c) shows the correlations r(h̃, h) and r(S, hS) vs. tp.

high relationship. From Fig. 4(c), we can see that the correlation between h̃ and
h, which we denote r(h̃, h), is big for some tp and not so big for other tp. On the

other hand, the correlation between the similarity S = S
(
y
[θ]
tp,hp

, y
[train]
tg :hg

)
and

the predictable horizon hS derived from S, which we denote r(S, hS), is much
smaller than r(h̃, h). These results indicate that h̃ may be more effective than
S for selecting the predictions achieving longer predictable horizons but it does
not work for some predictions.
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Probabilistic Prediction of Chaotic Time Series 9

4 Conclusion

We have presented a method of probabilistic prediction of chaotic time series.
The method obtains a set of plausible predictions by means of using the similarity
of attractors of training and the predicted time series. It also obtains a smaller
set of more plausible predictions with longer LOOCV predictable horizon. We
have shown the effectiveness and properties of the method by means of analyzing
the result of numerical experiments. We have also shown that the measure of
LOOCV predictable horizon is more effective than the similarity measure to
select longer actual predictive horizon, but it does not have worked for some
predictions. We would like to examine and analyze it in detail and develop more
reliable method in our future research studies.

Appendix

A CAN2

The CAN2 (competitive associative net 2) is an artificial neural net for learning
efficient piecewise linear approximation of nonlinear function by means of the
following schemes (See [?] for details): A single CAN2 has N units. The jth unit
has a weight vector wj � (wj1, · · · , wjk)T ∈ R

k×1 and an associative matrix (or a
row vector) M j � (Mj0,Mj1, · · · ,Mjk) ∈ R

1×(k+1) for j ∈ IN � {1, 2, · · · , N}.
The CAN2 after learning the training dataset Dn = {(xi, yi)|yi = r(xi)+ ei, i ∈
In} approximates the target function r(xi) by ŷi = ỹc(i) = M c(i)x̃i, where
x̃i � (1,xT

i )T ∈ R
(k+1)×1 denotes the (extended) input vector to the CAN2,

and ỹc(i) = M c(i)x̃i is the output value of the c(i)th unit of the CAN2. The
index c(i) indicates the unit who has the weight vector wc(i) closest to the
input vector xi, or c(i) � argmin

j∈IN

‖xi − wj‖. The above function approximation

partitions the input space V ∈ R
k into the Voronoi (or Dirichlet) regions Vj �

{x
∣∣ j = argmin

i∈IN

‖x − wi‖} for j ∈ IN , and performs piecewise linear prediction

for the function r(x). AQ1
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