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Abstract 

 

In recent years, analyzing human motion and recognizing a performed action from 

a video sequence has become very important and has been a well-researched topic in the 

field of computer vision. The reason behind such attention is its diverse applications in 

different domains like robotics, human computer interaction, video surveillance, 

controller-free gaming, video indexing, mixed or virtual reality, intelligent 

environments, etc. There are a number of researches performed on motion recognition 

in the last few decades. The state of the art action recognition schemes generally use a 

holistic or a body part based approach to represent actions. Most of the methods provide 

reasonable recognition results, but they are sometimes not suitable for online or real 

time systems because of their complexity in action representation. In this thesis, we 

address this issue by proposing a novel action representation scheme. 

The proposed action descriptor is based on a basic idea that rather than detecting 

the exact body parts or analyzing each action sequence, human action can be 

represented by a distribution of local texture patterns extracted from spatiotemporal 

templates. In this study, we use a novel way of generating those templates. Motion 

History Image (MHI) merges an action sequence into a single template. However, 

having the problem in overwriting old information by a new one in the MHI, we use a 

variant named Directional MHI (DMHI) to diffuse the action sequence into four 

directional templates. And then we use the Local Binary Pattern (LBP) operator, but 

with a unique way, a rotated bit arranged LBP, to extract the local texture patterns from 

those DMHI templates. These spatiotemporal patterns form the basis of our action 

descriptor which is formulated into a concatenated block histogram to serve as a feature 

vector for action recognition. However, the extracted patterns by LBP tends to lose the 

temporal information in a DMHI, therefore we take a linear combination of the motion 

history information and texture information to represent an action sequence. We also use 

some variants of the proposed action representation that include the shape or pose 

information of the action silhouettes as a form of histogram. 
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We show that, by effective classification of such histograms, i.e., action 

descriptor, robust human action recognition is possible. We demonstrate the 

effectiveness of the proposed method along with some variants of the method over two 

benchmark dataset; the Weizmann dataset and KTH dataset. Our results are directly 

comparable or superior to the results reported over these datasets. Higher recognition 

rates found in the experiment suggest that, compared to complex representation, the 

proposed simple and compact representation can achieve robust recognition of human 

activity for practical use. Besides the recognition rate, due to the simplicity of the 

proposed technique, it is also advantageous with respect to computational load. 
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  Chapter 1

Introduction 

 Background 1.1

From the prehistoric times, humans have thrived to invent various tools and 

instruments to emulate or even outdo human activities. In this process, the invention of 

computers revolutionized industrial works, being more precise, far more efficient and 

faster than humans. But this remains limited to repetitive and algorithmic tasks only. 

Recently, a greater effort is put by the researchers to extend the capabilities of 

computers in perceptual tasks, that humans do instinctively. In this era of computer and 

information technology, it is expected that in near future intelligent robots will live side 

by side with humans to serve the people. 

Therefore, it is needed that such a robot should perform its actions with a human 

like degree of vision. We, humans, are able to recognize objects, scenes or environments 

most of the times independently and irrespective of the change of pose, variation of 

color or illumination. Researchers still battle to understand the underlying processes in 

the human brain or vision system that control these tasks. 

Broadly, robots can be taught in two opposite ways [1]: To tell the robot in detail 

about what it has to do or to give the robots some learning mechanism and let the robot  

consider what the pertinent action is. Former strategy is more common for the robots to 

operate in highly controlled environment to do some pre-specified tasks. But such an 

approach is not suitable for the situation when the robot needs to adapt to a new or 

changing scenario. Moreover, it is difficult to pre-program in detail and specify all the 

new situations the robot might encounter [2]. An example of this is the Honda robot 

[3,4] which took nearly 10 years to program it for the capabilities like walking, climbing 

stairs, manipulating objects. On the other hand, researches are going on to give some 

learning capabilities to the robot using some learning strategy such as reinforcement 
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learning [5,6] or genetic algorithm [7], but in practice the learning power is still limited 

[1,8]. 

In the recent days, developing a vision based robotic system has got more 

attention in the field of computer vision research. The most of the vision based systems 

are developed to detect human motion in a video and analyze the motion for the 

classification or recognition purpose. The reason of such bias towards developing 

human motion analysis systems is its diverse applications in different domains. The 

applications that exploit the potential of the action recognition can be roughly grouped 

into three titles, surveillance, interaction, and analysis [9,10].  

Surveillance applications cover some of the more classical types of problems 

related to automatic monitoring and understanding locations where a large number of 

people pass through. Vision based automatic recognition of abnormal or suspicious 

activity can replace or at least assist the operator in a security surveillance system.  

Visual cues are the most important mode of nonverbal communication. Interactive 

applications try to use those visual cues like human pose or motion parameters to 

control something. This could be interfaces to games, e.g., as seen in EyeToy [11], 

Virtual Reality, or more generally, Human–Computer Interfaces. Interactive 

environments such as smart rooms [12] that can react to a user’s gestures can benefit 

from vision based methods.  

Videos have become a part of our daily life due to the availability of cheaper 

camera systems and free video sharing websites. It has become necessary to develop 

efficient indexing and storage schemes to improve user experience. Analysis 

applications annotate videos by analyzing the contents for easy retrieval. Some other 

human action analysis applications can be automatic diagnostics of orthopedic patients, 

analysis and optimization of an athlete’s performances, recognizing humans based on 

behavioral cues such as human gait [13].  

 State of the Art 1.2

A generic action or activity recognition system includes the following major steps: 

(i) input video or sequence of images, (ii) extraction of concise low-to-mid level 
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features for action description, and (iii) high-level semantic interpretations [10]. Among 

them the most important step is the extraction of descriptors or image features that are 

discriminating enough with respect to human posture and motion for the quest of action 

classification. Existing action representation methods can broadly be categorized into 

two groups based on how they represent spatial or temporal structure of an action. 

Furthermore, spatial action representations can be of three types; body models, image 

models, and spatial statistics [14]. Temporal action representations can also be divided 

into three sub-types; grammars, templates and temporal statistics [14]. 

Body models - In each frame of the observed video, a 2D or 3D parametric 

estimate of the pose is recovered from a variety of available image features, and action 

recognition is performed based on such pose estimates. This is an intuitive and 

biologically-plausible approach to action recognition, which is supported by the  work 

on visual interpretation of biological motion [14,15]. 

Image models do not require the detection and labeling of individual body parts. 

They only need to detect a region of interest (ROI) centered around a person and then 

features are computed densely on a regular grid bounded by the detected region. Since 

silhouettes are insensitive to color, texture, or contrast changes, many image models use 

silhouettes and contours [16,17] of the agent performing an action [14]. 

Spatial statistics representations decompose the image/video into smaller regions, 

not linked to body parts or image coordinates. Instead, actions are recognized based on 

the statistics of local features from all regions. The method first detects interest points 

[18,19] in an image, mostly at corners or blob like structures as local descriptors and 

then assign each region to a set of preselected vocabulary-features. Later, for 

classification, the method computes bag of features (BOF) that count the occurrence of 

the vocabulary-features within an image [14]. 

Action grammars- These models group the feature observations into states, and 

learn the temporal transition between these states using some probabilistic models like 

Hidden Markov Model (HMM). This type of representation has been used for instance 

in [20,21,22]. 
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Rather than representing features and dynamics explicitly in a layered or 

sequential model, Action templates attempt to directly learn the appearance of complete 

temporal blocks of features. Most of the approaches that use templates are based on 

image models, such as [23,24] that build templates by stacking multiple silhouette 

images into a single volumetric representation [14]. 

Temporal statistic approaches attempt to build statistical models of the appearance 

of actions, without creating an explicit model of their dynamics. Typical examples are 

those methods that learn an appearance model of an action from a single characteristic 

keyframe [25,26] or from the histograms of (image, body or local) features over time 

[14]. Temporal bag of features has been used to represent sequences simply based on the 

frequency of feature occurrence over time [27,28,19,29]. 

 Problem Statement 1.3

The state of the art action recognition schemes described in Section 1.2 mainly 

use two approaches for action representation; holistic and part-based representations. 

Holistic representation (image model, action template) focuses on the whole human 

body and then tries to search distinctive characteristics such as contours or pose. Part-

based representations typically search for Space-Time Interest Points (STIPs) [18], and 

apply a robust description of the area around them and create a model [30]. Both 

approaches have their advantages and disadvantages. Holistic approaches are less 

amenable to action detection tasks because they do not have efficient methods for 

temporal segmentation and they do not generalize very well to incomplete or missing 

observations, e.g. occlusions. But otherwise, they are very simple and effective action 

representations, and in particularly attractive for action classification tasks because they 

straightforward integrate with powerful static classifiers such as support vector 

machines (SVM) or Adaboost [14]. Although part-based cases are better in case of 

partial occlusion, identifying individual body parts may cause overhead in total 

recognition time. Moreover, estimating parametric body models from images sometime 

uses special markers attached to the body, which makes them unsuitable for recognition 

tasks. On the other hand, marker-less systems are highly prone to false initialization 
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which limits their application. So, choosing the method will depend on the problem at 

hand needed to be solved. 

In brief, most of the action recognition methods provide reasonable recognition 

result, but they are sometimes not suitable for online or real time systems because of 

their complexity in action representation. In this thesis, we are going to address this 

issue by proposing a novel action representation scheme and to evaluate the scheme. 

The proposed descriptor follows the holistic approach along with a spatial statistic 

model for the feature vector generation of an action. 

 Scope and Objective 1.4

The focus of this study is on the design, development, and evaluation of a vision based 

human motion analyzing system. The problem in hand is the recognition of human 

actions based on video-to-video matching concept. The goal of action recognition is to 

classify a given motion query into one of the pre-specified action categories defined in 

the action dataset. 

The key objective of our research is to devise a simple and compact action 

representation scheme that can be applied to the recognition of different types of actions 

captured in different scenarios like indoor, outdoor, and variation in scale or worn 

cloths, etc. At the same time, our target is to keep the recognition time short enough for 

practical application while maintaining a higher accuracy. To realize the objective, our 

action descriptor is based on a basic idea that a human action descriptor can be 

represented as a distribution of local texture patterns extracted from a spatiotemporal 

template. To fulfil the purpose, rather than analyzing every frame or detecting the exact 

body parts, we are only interested in the distribution of those spatiotemporal patterns. In 

this research, we propose a novel way of constructing a spatiotemporal template that 

uses Directional Motion History Images (DMHI) and Local Binary Patterns (LBP). 

 Thesis Organization 1.5

The organization of the thesis is as follows: 
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In Chapter 2, we propose a novel method for the representation of human action 

which is based on the distribution of spatiotemporal texture pattern. Here, some related 

action representation methods are briefly described along with some variants of the 

proposed method. 

The experimental environment, data set, and action recognition results of the 

proposed representation scheme are presented in Chapter 3. In this chapter, we also 

present the comparison of recognition rates with some state of the art action recognition 

methods reported employing the same dataset. 

 The possible future direction of work on the proposed method and the concluding 

words about the method are stated in Chapter 4. 
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  Chapter 2

Action Representation and Recognition 

 Background 2.1

Recognizing a performed action from a video sequence is a well-researched topic 

in the field of computer vision due to its various applications. In order to recognize 

various human actions, an action must be described compactly by some convenient 

representations. Though each application domains have their individual demands, in 

general, representation methods should be robust enough to cope with various actions 

performed by different people with several possible body configurations such as view 

angles, clothing, speed or posture variation. Moreover, for practical use, the designed 

methods must have the capability of adaptation to various types of environments like 

illumination change [31,32]. 

 Related Works 2.2

There are several methods [33] introduced in the literature for representing and 

recognizing a broad class of motion or action patterns. The most used low level features 

for action representation are points, box, silhouette, blob, contour, volume, and so on. 

Bobick and Davis [34,35] used motion energy images (MEI) and motion history images 

(MHI) for the first time as temporal templates to represent human actions. They extract 

silhouettes from a single view and combine the differences between subsequent frames 

of an action sequence. This results in a binary MEI which indicates where motion 

occurs. On the other hand, MHI  is constructed where pixel intensities are a recency 

function of the silhouette motion. Recognition was done by using seven Hu moments. 

They have developed a virtual aerobics trainer that can watch and respond to the user as 

she/he performs the workout [32]. Fig. 2.1(a) shows MHI and MEI templates of an arm 

stretching exercise movement. Weinland et al. used multiple cameras to build motion 
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history volumes (MHV) which is an extension of the MHI [34] to 3D. Action 

classification was performed by aligning the volumes using Fourier transforms on the 

cylindrical coordinate system around the medial axis [36,37]. Fig. 2.1(b) shows MHVs 

of some actions such as - sit, walk, kick, punch. Related 3D approaches have been 

introduced by Blank et al. [23,38] and Yilmaz and Shah [24] who used time as the third 

dimension to form space-time shapes in the (x,y,t) space. These shapes were matched  

 

 
Frame 0 Frame 35 Frame 70 MHI MEI 

(a) 

 

(b) 

 
(c) 

Figure 2.1 State of the art action templates (a) motion history images (MHI) 

[39]  (© IEEE, 2001), (b) motion history volumes (MHV) [36] (© Elsevier, 

2006), and (c) space–time shapes [23] (© IEEE, 2005). 
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using features from Poisson equations and geometric surface properties, respectively 

[32]. Fig. 2.1(c) shows space-time shapes of  jumping-jack, walking and running actions 

and solution to the Poisson equation on those shapes. Even though the shapes appear 

similar to MHVs, it is viewed from a single camera, whereas MHV needs multiple 

camera views. 

A histogram is a very popular statistic used in computer vision research. Many 

researchers [31,40,41] use histogram to represent their descriptors. Freeman and Roth 

[41] used orientation histograms for hand gesture recognition. Recently, Dalal and 

Triggs [42] used histograms of oriented gradients (HOGs) for human detection in 

images, which is found to be quite effective [40].  

Ikizler and Duygulu use a pose descriptor named as Histogram-of-Oriented-

Rectangles (HOR) for representing and recognizing human actions. They represent each 

human pose in an action sequence by oriented rectangular patches extracted over the 

human silhouette, and form a spatial oriented histograms to represent the distribution of 

these rectangular patches [40,43]. They used different classifiers like nearest neighbor, 

support vector machine, and dynamic time warping for the matching purpose. Fig. 

2.2(a) shows an illustration of how the Histogram-of-Oriented-Rectangles are 

computed.  

Kellokumpu et al. [31,44] extracted a histogram of local binary pattern (LBP) 

from MHI and MEI as static texture to represent action [32]. They also used another 

dynamic texture descriptor using LBP-TOP [45], which extracts LBP information from 

three orthogonal planes (xy, xt, and yt), i.e. they also include the time dimension for 

LBP extraction. They used HMMs to model the temporal behavior of action and hence 

to recognize them. Fig. 2.2(b) presents the dynamic texture descriptor generation 

process used by Kellokumpu et al. [31]. Yau et al. [46] used MHI to represent the 

temporal information of the mouth, which is generated using accumulative frame 

differencing of the video. The MHIs are decomposed into wavelet sub-images using 

discrete Stationary Wavelet Transform (SWT). Artificial neural network (ANN) with 

back propagation learning algorithm is used for classification. Kumar et al. [47] also 

used MHI and ANN for hand gesture classification [48]. 
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Huang, et al. [49] represented a human action as a histogram of oriented gradient 

(HOG) [42] computed from MHI. First, they generated MHI by differential images from 

successive frames of a video, then HOG features were computed and supplied to a 

support vector machine (SVM) for action classification. 

In the basic MHI method, old motion information can be wiped out by new 

motion information (from the later motion sequence). This overwriting surely causes 

poor recognition rate for natural motions that have complex nature and overlapping 

motion (e.g., sitting down and then standing up). To counter the problem, Ahad et al. 

[50] employs a variant of MHI called Directional MHI (DMHI) to represent a human 

action. They measure the optical flow from successive frames and partition the flow into 

four directions which are later used to compute the MHI. They also used Hu moments 

for the recognition purpose.  

 

 
 (a) 

 
(b) 

Figure 2.2 Existing feature extraction methods (a) histogram of oriented 

rectangles (HOR) [43] (© Springer, 2007), (b) dynamic feature histogram of 

Kellokumpu et al. [31] (©Springer, 2009). 
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Some methods such as [34,35] did not use any benchmark dataset to show the 

efficiency of their descriptors. Some other methods are not suitable for real-time 

recognition such as the HOR descriptor presented by Ikizler and Duygulu [40] which 

takes approximately one second per frame only for the rectangle extraction phase. Since 

Kellokumpu et al. used a volume based descriptor [31], it is also inexpedient for online 

recognition applications. In their descriptor, they have to wait for the next few frames to 

extract the LBP-TOP of a particular frame. 

 The Proposed Action Representation Method 2.3

Motivated by the previous works, we propose a simple and compact action 

representation method, which is presented in this section, for practical recognition 

problems. Fig. 2.3 shows the flowchart of the proposed method, which is self-

descriptive. We first extract the foreground from an input video sequence. We assume 

that the video contains a predefined action performed by a human. We do not apply any 

human detection algorithm, because detecting a human in an image or in a video itself is 

an indepedentent research topic and fall outside of this research context. We then 

compute the directional motion template, specifically DMHI, and apply a LBP operator 

to extract the texture patterns in the DMHI. We also extract shape information from the 

silhouette of some selected frames. Later, the action region in a template is determined 

and partitioned. To generate the feature vector for each block, we compute histogram of 

those patterns. The histograms of all the blocks are then put together along with shape 

information to form an action descriptor. We use this descriptor to train a classifier if it 

is for a training video, otherwise we use the trained classifier to recognize the performed 

action.  

 Foreground Extraction 2.3.1

The sample videos in the action dataset we use are taken by a stationary camera. 

So, without constructing any complex background model, we simply take the absolute 

difference of the current frame with the static background frame and Otsu method of 

thresholding [51] is performed to get a binary foreground mask. Besides, before this  
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Figure 2.3 Outline of the proposed action recognition method. 

 

process all the frames are passed through a Gaussian filter to reduce the effect of noise. 

Fig.2.4 shows a simple graphical illustration of the foreground extraction method. 

However, performing the subtraction of the background in a grayscale or RGB color 

space loses some foreground information for the action dataset in hand. Fig.2.4(c) 

shows some example of an extracted foreground in RGB color space using background 

subtraction and Otsu thresholding. Certainly it fails to extract leg part of the body which 
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is very important for this particular sidewalk action. This is because the color difference 

or contrast between the leg part and the background is very small and the Otsu method 

suppresses the value to zero. This may be overcome by using a manual threshold value 

lower than the Otsu threshold. But choosing a single manual threshold that works fine 

with all the video in the dataset is quite difficult, and sometimes produce more noisy  

 

 
Frame 1 

 
Frame 15 

 
Frame 40 

 (a)  

 

 
(b) 

 

  
(c) 

 

  
(d) 

 

Figure 2.4 Simple illustration of foreground extraction (a) input frames, (b) 

background frame, (c) extracted foregrounds using the RGB color space, (d) 

extracted foregrounds using Lab color space and Eq. (2.1) – Eq. (2.6). 
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outcomes. Hence, rather than simple subtraction, we do all the processing in Lab color 

space and use Eqs. (2.1)-(2.6) in this process of foreground extraction, Fig. 2.4(d) shows 

the extracted foreground by this method. 

The meanings of the used abbreviations in the equations are as follows: Dft is the 

absolute difference of the current frame ft, and the background frame fbg, L, a, b are the 

pixel intensity of Df in the Lab color space, ˆ
tfgm is the single channel intermediate 

frame where nonzero intensity represents the foreground, and after applying the Otsu 

threshold, we get mfgt which is a binary frame containing the foreground mask of size 

ht×wt. The suffix t means the frame at time t, and (x,y) is the spatial position of a pixel in 

a frame. We use this mfgt to get the actual foreground frame ffgt. The constants in Eq. 

(2.2) and Eq. (2.3) are experimentally determined. The method explained here is a little 

bit details of that presented in [52]. However, it is to be noted that any other method that 

extracts the silhouette of the subject will work just fine. 

 

( , ) ( , ) ( , )t t bgDf x y f x y f x y= −          (2.1) 

( , ) 0.25 ( , ) 0.6 ( , ) 0.15 ( , )t t t ta x y L x y a x y b x y= + +        (2.2) 

( , ) 0.2 ( , ) 0.2 ( , ) 0.6 ( , )t t t tb x y L x y a x y b x y= + +        (2.3) 

2 2 2ˆ ( , ) ( , ) ( , ) ( , )
tfg t t tm x y L x y a x y b x y= + +        (2.4) 

( )ˆ
t tfg fgm OtsuThreshold m=            (2.5) 

( , ) if ( , ) 1
( , )

0 otherwise
t

t

t fg
fg

f x y m x y
f x y

== 


        (2.6) 

 The Motion Template 2.3.2

We have used Directional Motion History Image (DMHI) as a spatiotemporal 

template. As we mentioned earlier, the DMHI [50,53], is an extension of the basic 

Motion History Image (MHI) [34] which splits the motion into four different directions 

and then generates MHI for each direction. A MHI is a much effective representation of 

human motion, since it infuses several image sequences into only one template. In the 
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MHI, the temporal information is specified by the pixel intensity and thereby keeps 

track of motion information. The MHI uses a pixel intensity function H τ(x,y,t) to 

compute the temporal history of motion at a particular time t. The function can be 

represented in a simple form, as in Eq. (2.7) with an update function Ψ(x,y,t). 

 

if  ( , , ) 1
( , , )

max( , ( , , 1) otherwise
Ψ x y t

H x y t
H x y tt

t

t
δ

=
=  0 − − )

      (2.7) 

1 if ( , , )
( , , ) 

0 otherwise
D x y t threshold

Ψ x y t
≥

= 


         (2.8) 

( , , ) ( , ) ( , )
t tfg fgD x y t m x y m x y

±D
= −         (2.9) 

 

Here, x, y, and t show the position and time; the update function Ψ(x,y,t) signals the 

presence of motion in the current frame f(x,y); τ decides the temporal duration of a MHI, 

e.g., in terms of the number of frames or in terms of time (second / millisecond); and δ 

is the decay parameter whose value is 1 in the original MHI [34], and D(x,y,t) gives the 

absolute difference between pixels of current silhouette or foreground mask with the 

 

t = 60 

   

t = 30 

   
 δ = 1.0 δ = 1.5 δ = 2.0 

Figure 2.5 Effect of t and δ in calculating the MHI template of a walking 

action. 
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silhouette of a step time difference Δ. This update function is called for every new video 

frame analyzed in the sequence. The result found by this computation is a grayscale 

image where brighter pixels represent more recent motion. Fig. 2.5 shows the MHI of a 

walking action with various values of t and δ. Here, we can see that higher values of δ 

quickly remove the earlier trail of motion sequence, whereas τ controls the duration of 

an action, i.e., how long duration of a particular action will be taken into consideration 

for computing the MHI. The joint effect of τ and δ determines how many levels of 

quantization the MHI will have; a combination of a large τ and a small δ yields a 

smooth and continuous gradient, whereas a large τ and large δ provide a more discrete 

quantization of motion.  

To create a DMHI, a moving region is initially tracked using a dense optical flow 

algorithm from successive frames that generally produces a vector denoting the 

horizontal (x-direction) and vertical (y-direction) motion of an object (Fig. 2.6(c)). Each 

of these horizontal and vertical motions are further rectified to positive and negative 

directions (Fig. 2.6(d)) and then a threshold is applied that results in four update 

functions denoting the directions right, left, up, and down. Fig. 2.6 shows the process of 

creating update functions. Fig. 2.6(a) shows two successive image frames of jumping 

jack action, Fig. 2.6(b) shows the direction and magnitude of the obtained dense optical 

flow in RGB color image (left-side). In the RGB image of dense flow, similar color 

means similar direction and higher saturation of the color denotes higher magnitude of 

the flow. We also present conventional sparse representation of the flow in Fig. 2.6(b) 

(right-side) just for better understanding of the flow.  

The update functions found in the above mentioned process are simply binary 

images representing different directional motion regions. These update functions are 

then used in Eq. (2.7) to generate directional MHIs. So, for a DMHI, Eq. (2.7) becomes 

the one as given in Eq (2.10), where the four different directions are denoted by   ∈ 

{ right(+x), left(−x), up(+y), down(−y)}.  

 
if  ( , , ) 1( , , )

max( , ( , , 1) otherwise
Ψ x y tDMHI x y t

DMHI x y tt
t

t

δ

 == 
0 − − )





              (2.10) 
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Figure 2.6 Creating directional update function (a) two successive frames, 

(b) dense optical flow (leftward), a sparse presentation of the dense flow 

(rightward), (c) optical flow divided into x and y direction, (d) flow is 

further split into positive and negative direction, (e) directional update 

functions found after applying a threshold to the flows. 

(d) 
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Fig. 2.7 presents some example DMHIs of a jumping jack and a sidewalk action. 

Though it is not quite clear from Fig. 2.7(a), we can find that the Left and Right MHI 

only encapsulate the leftward and rightward motion of the hands. The encapsulation of 

directional motion is more evident in Fig. 2.7(b), since the motion in the performed 

action is mostly in a leftward direction. We can see that the Left MHI encapsulates 

almost all the motion information, and the Right MHI contains almost nothing. During 

side walk, bouncing upward and downward motions are captured by the Up MHI and 

Down MHI that can also be seen in Fig. 2.7(b). 

 

Jumping 

jack 

    
(a) 

Side 

walk 
 

Left MHI 
 

Right MHI 
 

Up MHI 
 

Down MHI 

(b) 

Figure 2.7 Example of DMHIs (a) jumping jack, (b) side walk action. 

 Extraction of Spatiotemporal Texture 2.3.3

Local Binary Pattern (LBP) is a self-similarity measure that was first introduced 

by Ojala et al. [54,55]. Due to its computational simplicity, efficiency and invariance to 

monotonic gray scale changes, it has become popular and has found horizons in various 

computer vision applications [56,57]. A detailed LBP related bibliography can be found 

online [58].  

A texture T in a local 3×3 neighborhood of a monochrome texture image can be 

represented as the joint distribution of the gray levels of the nine image pixels (Eq. 2.11) 

having a spatial layout of the neighborhood as in Fig. 2.8 [54]. 
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0 1 2 3 4 5 6 7 8( , , , , , , , , )T p g g g g g g g g g=                 (2.11) 

 

 
Figure 2.8 Original LBP layout of eight pixels in a 3x3 neighborhood. 

 

As the first step towards gray scale invariance the gray value of the center pixel 

(g0) is subtracted from the gray values of the surrounding pixels resulting Eq. (2.12). 

Assuming the gi − g0 (i = 1, 2, …, 8) are independent of g0, which allows to factorize the 

Eq. (2.12) into Eq. (2.13). The distribution p(g0) describes the overall luminance, which 

unrelated to local image texture. By discarding it the Eq. (2.13) becomes Eq. (2.14). The 

invariance is achieved with respect to the scaling of the gray scale by considering just 

the signs of the differences instead of their exact values that yields Eq. (2.15) where s(x) 

is defined by Eq. (2.16). Formulating the Eq. (2.15) slightly differently the expression 

for a LBP operator with 3×3 neighborhood can be written as Eq. (2.17). 

 

0 1 0 2 0 8 0( , , ,...., )T p g g g g g g g= − − −                 (2.12) 

0 1 0 2 0 8 0( ) ( , ,..., )T p g p g g g g g g≈ − − −                 (2.13) 

1 0 2 0 8 0( , ,..., )T p g g g g g g≈ − − −                  (2.14) 

( )1 0 2 0 8 0( ), ( ),..., ( )T p s g g s g g s g g≈ − − −                 (2.15) 

1,  0
( )

0,  0
x

s x
x

≥
=  <

                   (2.16)

8
1

0 0
1

( ) ( ) 2i
i

i
LBP g B g g −

=

= − ×∑                  (2.17) 

Simply stating, the LBP operator describes the local texture pattern of an image 

with a binary code, which can be obtained by taking a threshold of neighboring pixels  
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Figure 2.9 Example output of the original 3×3 LBP operator. 

 

.  

Figure 2.10 Circularly symmetric neighbor sets for LBP with different P 

and R [55] (© IEEE, 2002). 

 

with the gray value of their center pixel. Fig. 2.9 shows an example output of the 

original LBP operator. 

The original LBP operator used a 3×3 neighborhood, however, a generalized 

multiscale LBP operator can be defined as in Eqs. (2.18) - (2.19) with equally spaced 

sampling points P on a circular neighborhood with radius R. The layout of the 

neighborhood is shown in Fig. 2.10. In the following equations, gc is the intensity of the 

center pixel and gi (i = 0, 1, …, P-1) are the intensities of the sampling points derived 

from neighboring pixels by interpolation. 

 
1

0
( ) ( ) 2

P
i

c i c
i

LBP g s g g
−

=

= − ×∑                    (2.18) 

1 if  
( )

0 otherwise
x threshold

s x
≥

= 


                  (2.19) 

 

In this research, we use a LBP operator with 3×3 neighborhood for the simplicity 

like the original one to extract texture information from the templates. But we use a 
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different arrangement of LBP bit position or layouts for different DMHIs, called as 

rotated bit arrangements. This is to give more strength to the pattern of a particular 

direction. Fig. 2.11(a) shows the binary values of the neighboring pixels for a basic LBP 

operator (extracted from Fig. 2.9), Fig. 2.11(b)-2.11(e) shows how we use the LBP bit 

arrangements for different DMHIs. Consider Fig. 2.11(b): Arrangement of bit positions 

is chosen in such a way that it will give more emphasis on the leftward motion. Other 

arrangements are chosen to have similar effects [48,59,32]. From Fig. 2.11, we can see 

that the same binary output (Fig. 2.11(a)) of the LBP operator can be assigned to a 

different decimal pattern value by rotating the bit arrangements, i.e., choosing a 

different starting and ending position for least and most significant bit, respectively. The 

generated LBPs corresponding to the DMHIs of a side walk (shown in Fig. 2.7(b)) are  

 

 

Figure 2.11 Illustration of different LBP bit arrangements. 

 

 
Left LBP image  

 
Right LBP image 

 
Up LBP image 

 
Down LBP image 

Figure 2.12 Example of LBP images corresponding to the DMHIs of a side 

walk action. 
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presented in Fig. 2.12. Since we use 3×3 neighborhood, the LBP value in decimal 

ranges from 0-255 that is shown as a grayscale image, i.e., the intensity of an LBP 

image denotes a pattern number. 

 Selective Snippets 2.3.4

We choose some frames containing the foreground mask from all the mfgt within 

the DMHI time duration, t, of the performed action: We define those frames as selective 

snippets. We select only three frames as snippets and extract the pose information of the 

action in the form of a histogram (explained in Section 2.3.6) and call it as shape feature 

[52]. To select the snippets, we determine the minimum bounding rectangle of the 

foreground mask in every mfgt and choose the frames with the property in Eq. (2.20) – 

Eq. (2.23). 

 

1
[0,1,..., ]

arg max( )t t
t

t h w
t∈

= ×                    (2.20) 

2
[0,1,..., ]

arg max t
tt

ht wt∈

 =  
 

                   (2.21) 

1 2

1 2

1 22 2
3

1 2 2

if 

max( , ) (mod ) otherwise

t t

t t

t t
t

t t

t

t t

+

− −

 − >=  +  

               (2.22) 

1 2 3  ;  , ,
kk fgS m k t t t= =                   (2.23) 

 

Here, ht, and wt are the height and width of the bounding rectangle of the foreground 

mask in frame mfgt at time t. St1 is the snippet with the pose covering the maximum area 

in the frame, St2 is the snippet with the pose having the narrowest possible area, and 

St3 is simply an in-between snippet of St1 and St2. We choose first two frames with a 

basic intuition that the pose with maximum covering area and pose with minimum 

covering area provide some distinctive information for classification. The third 

frame is chosen only to make the shape information more robust. Fig. 2.13 displays 

the snippets, containing the foreground mask, selected for shape feature extraction.  
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St1 ← max(h×w) St2 ← max(h/w) St3 ← middle 

Figure 2.13 The snippets selected for the extraction of shape feature. 

 Finding Action Region  2.3.5

Sometimes extracted foreground contains some noise which is passed to the 

motion templates. Hence, for better recognition results, we determine the region in the 

template where the action is performed. Since we collect the texture statistics in a block 

basis, this also helps to alleviate the translational effect. To find a tight bounding area 

around the action region, we use MEI. The MEI is deduced by accumulating all the 

DMHIs to a single image and then taking the image with a threshold equal to zero [34]. 

Eq. (2.24) shows the formula to calculate MEI, where DMHIt
  is defined in Eq. (2.10). 

An example of MEI of a hand waving action is shown in Fig. 2.14(a). MEI sometimes 

contains holes within the action region. Then they are filled up and a hole filled MEI, 

called HFMEI, is created. In the hole filling process, a simple algorithm is used. For a 

pixel in a hole, we search for four non-hole pixels in four different directions (straight-

left, straight-right, straight-up, and straight-down). If they develop, there will be a 

change in the hole pixel to non-hole pixel, otherwise it is better to leave it as it was, the 

details of the hole filling method can be found in [60]. Fig. 2.14(b) shows the HFMEI 

after hole filling process.  

Then we try to find the minimum extent in the x-axis having the maximum ratio 

(which we call the information ratio) of non-zero pixels in that extent and the total 

number of non-zero pixels. For this purpose, we first determine the distribution of the 

information ratios for all possible extent combinations. Fig. 2.14(e) shows the 

information ratio distribution of the hole filled MEI in the x-axis. To express the 

information ratio mathematically, let us first consider that HFMEI is an image with M 

rows and N columns, and HFMEI(x,y) is either zero or one, since it is a binary image.  
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1 ( , , ) 0
( , , )

0

         DMHI x y t
MEI x y t

otherwise

t
t ∀

 >= 







    (2.24) 

 

 
(a)  

 
(b) 

 
(c)  

 
(d) 

    
(e) (f) (g) (h) 

Low  High    

 
(i) 

 
(j) 

Figure 2.14 Images used to determine the action region (a) the MEI, (b) 

hole filled MEI (HFMEI), (c) vertical projection of HFMEI, (d) cumulative 

distribution of the vertical projected frequency, (e) distribution of 

information ratio, (f) density distribution, (g) multiplied density-information 

ratio distribution, (h) thresholded density-information highlighting the 

center, (i) initial x-extent, (j) final bounding box for the action region. 

 

We compute the vertically projected frequency of non-zero pixels nzfv(i), in the 

HFMEI using Eq. (2.25), Fig.2.14(c) shows an example image. Then the cumulative 

frequency distribution cfv(i), is calculated using Eq. (2.26), a cumulative distribution of 
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the  vertical projection histogram is presented in Fig. 2.14(d). Then we use Eq. (2.27) to 

compute the information ratio in x-axis IRX(x,y). The distribution of information ratio, 

shown in Fig. 2.14(e), is a square matrix where each column means the start position of 

the extent, i.e., the x value in IR matrix denotes left side (lp) of the extent. Similarly, 

row (the y value) stands for end position (right side, rp) of the extent. The cross point of 

(x,y) in the matrix represents the information ratio IRX(x,y) in that extent. As this matrix 

is a symmetric matrix, we only use the lower triangle of the matrix. 

 
1

0
( ) ( , )   ;  0,..., 1 

M

v
y

nzf i HFMEI i y i N
−

=

= = −∑                 (2.25) 

0,                                    0
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=
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             (2.26)
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             (2.27) 
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1

X X

X

DST x y DST lp rp
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=

= = − <
− +

             (2.28) 

 

The information ratio distribution is further divided by their corresponding extent 

length to get per unit information or information density, DSTX(x,y), of the extent using 

Eq. (2.28). The density distribution is then normalized using min-max normalization 

(See Fig. 2.14(f)) and multiplied to the information ratio distribution (Fig. 2.1(g)). Then 

we take a threshold at the 90th percentile on the multiplied density-information 

distribution which results in an area with the maximum possible information with the 

minimum extent. We find the center of that area (Fig. 2.14(h)) and use the x value as left 

(lp) and y as a right position (rp) of the extent. Fig. 2.14(i) shows the initial extent found 

in this process. However, this extent sometimes loses some information. So we adjust 

the (lp, rp), which helps the utilized region to expand. But this adjustment is within the 

10 percent of the initially determined extent length on each side. We then determine the 
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topmost and bottom most pixels within that extent and use their ordinate (y) values as 

top (tp) and bottom position (bp) for the bounding rectangle of the action region. Fig. 

2.14(j) presents an example of bounding rectangle showing only the action region, 

excluding the noisy area in the MEI. The explained finding action region method was 

first described in [61]. 

 Feature Vector Generation 2.3.6

An image texture can be described by its intensity distribution. We use a popular 

statistic, a histogram, to represent an action. We use two variant methods for feature 

vector generation. The first method is using only the LBP image to extract the texture 

distribution along with the selected snippets. The second method uses both the motion 

templates (DMHIs) and LBP images. In the second cases we take the linear combination 

of DMHI and LBP texture distribution along with shape information from MEI. As we 

mentioned earlier, we compute the feature vector only from the action region. 

2.3.6.1 Feature Vector from LBP images and Snippets 

The determined action regions of the LBP images are partitioned into p×q disjoint 

blocks. For each block, we compute a LBP histogram splitting the entire pattern ranges 

(256 patterns) into r equal sized bins. Fig. 2.15 shows an example of how the histogram 

is generated for a single block. After that, all these block histograms are multiplied by a 

weight (See Eq. (2.29)) and concatenated together in a raster scanning fashion to forman 

image histogram. Since an intensity histogram loses spatial information, rather than  

 

 
Figure 2.15 Computation of a block histogram. 
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Figure 2.16 Generation of a feature vector from LBP images and snippets 

(a) LBP images where action regions are partitioned into 4×4 blocks, (b) 

concatenated block intensity (pattern) histograms of the LBP images, (c) 

block nonzero pixel frequency distribution of the selected snippets, (d) 

selective snippets partitioned into 8×4 blocks, (e) the feature vector 

composed of the concatenated histograms of all the LBP images and the 

snippets. 

 

computing a single global histogram of an image, we calculate block histograms to 

encapsulate some spatial information into the feature vector. These histograms of all the 
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images are again concatenated together and normalized using L2 norm to constitute an 

action descriptor. This histogram created from LBP images can be individually treated 

as a feature vector during action recognition. We use the abbreviation RLBPD_H to 

denote this histogram, since we use rotated layout for LBP operator to extract the 

patterns from different DMHIs. 

However, along with the LBP histogram, we also use shape feature of the action 

represented as a histogram of selective snippets. In this case, we partition the action 

region of the selected snippets into a constant 8×4 blocks. Since snippets are simply 

binary images, we then find the non-zero pixel distribution of the blocks which yields 

the histogram for the selected snippets (shortened as SELSN_H). The snippet histogram 

is then put together with LBP histogram to form a larger feature vector which is 

assigned an acronym RLBPD_SELSN_H, whose meaning is obvious. It is a  histogram 

of LBP and selective snippets. Here, we use a control parameter γ (0 or 1) to make the 

snippet histogram optional in the action descriptor (RLBPD_SELSN_H) and thereby 

measure its importance in a recognition rate. Fig. 2.16 illustrates the construction of a 

feature vector for representing an action. The algorithm presented next explains the 

details of the steps necessary for computation of the feature vector. 

 
Algorithm: CreateFeatureVector 

Input: LBP images, Li, i = 0, 1, 2, 3 and selective snippets Sj, j = 0, 1, 2 of an 

action 

Initialization: Find the bounding box denoting the action region 

LBP histogram H1 ≔ 0 

Snippets histogram H2 ≔ 0 

For each Li  (for1) 

Partition the action region into p×q disjoint blocks 

LBP Image histogram LIHi ≔ 0 

For each block bk, k = 0, 1, …, p×q-1  (for2) 

Calculate weight wti for the block 

BHk ≔ LBP histogram of bk splitting the pattern’s range (0 – 255) into r 

equal sized bins  
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BHk ≔ BHk ×wti 

LIHi ≔ LIHi || BHk, concatenate BHk with LIHi  

End (for2) 

H1 ≔ H1 || LIHi , concatenate LIHi with H1 

End (for1) 

H1 ≔ L2_norm (H1) 

For each Sj  (for3) 

Partition the action region into 8×4 disjoint blocks 

Snippet Image histogram SIHj ≔ 0 

For each block bl, l = 0, 1, …, 31 (for4) 

fl ≔ Count non-zero pixel frequency of bl 

SIHj ≔ SIHj || fl , concatenate fl with SIHi  

End (for4) 

H2 ≔ H2 || SIHj , concatenate SIHj with H2 

End (for3) 

H2 ≔ L2_norm (H2) 

Output: Feature vector, FV ≔ H1 || (H2×γ),  γ = 0 or 1, concatenate H1 with H2. 

 

In the above algorithm, || is a concatenation operator, i.e., histograms are put side-

by-side to form a larger histogram. The weight wti for each block is calculated using Eq. 

(2.29), where, NPBi is the number of non-zero pixels (each pixel is a pattern) in block i, 

and NPA means the number of non-zero pixels in the action region, and ε is a constant 

(≈0) useful for no action scene. Here, wti is always greater than or equal to one and the 

sum of the inverse of the weights equals to one. Eq. (2.30) gives the maximum possible 

number of dimensions of the feature vector RLBPD_SELSN_H, where p×q is the 

number of blocks; r is the number of bins. 

 

1 ,    0,1,..., 1
1 Bi

A

i NP
NP

wt i p q
ε+

= = × −
−

                (2.29) 

( )_ _ 4 8 4 3   RLBPD SELSN HDim p q r= × × × + × ×                (2.30) 
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2.3.6.2 Feature Vector from DMHIs, LBP images and MEI 

We use the histogram of both the DMHI and LBP images as well as the MEI to 

represent an action. In this case we create a histograms for LBP images (RLBPD_H) 

exactly as it is described in section 2.3.6.1. For DMHIs we go with similar fashion, i.e., 

action regions in the DMHIs are partitioned into p×q blocks, compute weighted block 

intensity histograms, and concatenate all the block histograms of the DMHIs into a 

single histogram (abbreviated as DMHI_H). These RLBPD_H and DMHI_H can be 

individually treated as a feature vector for recognition. However, we take the linear  

 

 
Figure 2.17 Generation of a feature vector from DMHIs, LBP images and 

MEI (a)-(b) block intensity histograms of DMHIs and LBP images, (c) 

DMHI histogram, (d) LBP histogram, (e)-(f) the MEI and the heat map of 

the blocks’ non-zero pixel distribution, (g) linearized heat map – the MEI 

histogram, (h) the feature vector– component wise addition of (c) and (d) is 

concatenated with (g) (© IJICIC, 2015). 

 (a) 

 wt0  wt15 

 (h) 

 
α β = 
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combination, i.e., a component wise addition of those histograms using Eq. (2.31) to 

generate the final feature vector for DMHI-LBP histogram representation (shortened as 

D_RLBPD_H).  

Moreover, we use the MEI to have some shape information about the performed 

action. In this case, we partition the action region of MEI into 2p×2q blocks, and find 

the non-zero pixel distribution of the blocks which yields a MEI histogram (in short, 

MEI_H) as shown in Fig. 2.17 (g). The MEI_H is used to form a variety of 

D_RLBPD_H named as D_RLBPD_MEI_H by using Eq. (2.32).  

Fig. 2.17 graphically illustrates the feature vector generation process explained 

above [61]. Weight wti ≥ 1 for each block is calculated using the same Eq. (2.29) used 

before. Eq. (2.31) gives the feature vector of D_RLBPD_H, where, 0 ≤ α  ≤ 1, and 

1β α= − . Clearly, α  = 0 or 1 means D_RLBPD_H becomes RLBPD_H or DMHI_H, 

respectively. Eq. (2.32) gives D_RLBPD_MEI_H, where || is a concatenation operator, 

again for α = 0 or 1, D_RLBPD_MEI_H becomes RLBPD_MEI_H or DMHI_MEI_H 

respectively. Eqs. (2.33) and (2.34) give the number of dimensions in the feature vector. 

 
D_RLBPD_H DMHI_H RLBPD_Hα β= × + ×                     (2.31) 

 ||D_RLBPD_MEI_H D_RLBPD_H MEI_H=                (2.32) 

4D_RLBPD_HDim p q r= × × × .                        (2.33) 

4 2 2MEI_HD_RLBPD_Dim p q r p q= × × × + ×                      (2.34) 

 Action Recognition 2.4

The task of recognition is considered as the final or long term goal of a motion or 

action analysis system. It is a kind of classification problem whose purpose is to classify 

the captured action as one of the several types of the learned actions. The past 

approaches of action recognition can be roughly classified into two groups: One group 

extracts a global feature descriptor from a video sequence [17,19,28] and assign a single 

label to the entire video. This method employs temporal characteristics for recognition. 

The methods based on this approach process either spatiotemporal data or temporal pose 



32 
 

estimated data. The other group extracts feature descriptor for each frame and assigns an 

action label to them [23,62,63]. This approach usually compares pre-stored information 

with the current image. The information may be templates [64], transformed templates 

[65], normalized silhouettes [66], or postures [67]. However, in both cases, a local label 

for the first approach can be obtained, if required, by extracting feature set until the 

desired frame is to be labeled. Similarly, a global label for the second approach is 

usually obtained by simple voting methods. In this research, we go with the first 

approach. 

The recognition of an action can be performed at various levels of abstraction. 

Depending on the constraints and the requirements of specific applications, the 

recognition schemes are analyzed and the most suitable one is selected. Thus different 

recognition schemes and distance metrics are adopted in different works [68]. We focus 

on actions and do not explicitly consider context, such as the environment, interactions 

between persons or objects. These approaches fall outside the scope of this research. 

Moreover, we consider only full-body movements, this excludes the work on gesture 

recognition and other limb extraction based approaches. 

Given an unseen action sequence, the recognition of human action becomes the 

process of motion classification. Recently, many different approaches have been used 

for action recognition. Some approaches directly match new sequences to training 

sequences or action prototypes. These methods do not explicitly model the variations in 

the temporal domain. A subcategory is that of discriminative classifiers that does not 

match, but rather classify the motion representation directly. There are some grammars 

and graphical models based classification methods that have a state-space character and 

model temporal variation implicitly. For action classification, in this research we use 

two classifiers, namely k-Nearest Neighbor algorithm, and Support Vector Machine 

(SVM). These classifiers actually fall in the first approach of direction recognition 

method. 

 k-Nearest Neighbor algorithm 2.4.1

In pattern recognition, the k-Nearest Neighbor algorithm (or k-NN for short) is a 

simple, non-parametric method used for classification and regression [69]. In the 
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training phase, the k-NN algorithm merely stores all the available training examples, 

mostly defined as a vector in a multidimensional feature space, and their class labels. In 

the classification phase, k is supplied as a user-defined constant – usually a small 

number, and an unlabeled vector (a query or test point) is classified by assigning the 

label which is the most frequent among the k training samples nearest to that query 

point. k-NN classifies new cases based on a similarity measure (e.g., distance 

functions). If k = 1, then the test point is simply assigned to the class of its nearest 

neighbor [70]. 

The ability of k-NN to cope with the variations in a performed action depends on 

the motion representation that is used, and the distance metric that is applied. In our 

research, we use five different distance metrics [71]. Considering the feature vector of 

an action as a point in a multidimensional space, we use popular Euclidean distance and 

Manhattan distance metric to measure the similarity between two points. Let, two vector 

p = (p
1
, p

2
, ..., p

n
) and q = (q

1
, q

2
,..., q

n
) are two points in multidimensional space, then 

Eq. (2.35), and Eq. (2.36) defines the Euclidean and Manhattan distance respectively 

between these points. Besides these, since the feature vector of an action is actually a 

histogram, considering them as a discrete probability distribution, we use three other 

histogram similarity measuring methods, namely Chi-square distance, Bhattacharyya 

distance, and Pearson’s correlation coefficient. Let two histograms be denoted by Hi, 

and Hj, each with n bins. Then Eq. (2.37) and Eq. (2.38) define the Chi-square and 

Bhattacharyya distance, respectively. Eq. (2.39) defines the correlation coefficient, 

where iH , jH denotes the mean of their corresponding histogram. For all the distance 

measure except correlation coefficient, lower distance between two feature points or 

histograms means closer or more similar they are. On the other hand, for correlation 

coefficient, it is reverse, i.e., higher measures denote more similarity. 
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 Support Vector Machine 2.4.2

Support Vector Machines are state-of-the-art large margin classifiers which have 

recently gained popularity within visual pattern recognition [72,73] and many other 

applications [28]. SVMs fall into the category of discriminative classifiers that 

distinguish between classes without explicitly modeling each. The action representation 

is simply regarded as a feature vector. Linear support vector machines learn a 

hyperplane in a feature space that is described by a weighted combination of support 

vectors. We present a brief review on a SVM here. For more details, refer to [74,75].  

Consider the problem of separating a set of training data (x1, y1), (x2, y2), ... 

(xm,ym) into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1,+1} is a class 

label. If we assume that the two classes can be separated by a hyperplane  w⋅x + b = 0 

in some high dimensional space, and that we have no prior knowledge about the data  

 

 
Figure 2.18 A support vector machine showing the separating hyperplane.  
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distribution, then the optimal hyperplane is the one which maximizes the margin 

[28,75]. Simply stating, SVM tries to find a hyperplane that maximizes the between 

class distance, and the marginal points or vectors of each class are called support 

vectors. 

Fig. 2.18(a) shows that we can find as many hyperplanes as we wish to separate 

the two classes, but SVM determines the optimal one as shown in Fig. 2.18(b), where H 

is the optimal hyperplane, and support vectors are those which align with H1, and H2. 

SVMs have often been used in [28,40,76]. SVM needs the feature vector to be of a fixed 

length; for example, a histogram of code-words over a sequence of frames. Since our 

action descriptor also has a fixed size, SVMs are a suitable choice for action 

classification. 

  Summary 2.5

In this chapter, we concentrate on the different forms of action representations 

employed in recent years. At first, we present a detailed survey on human motion 

representation methods and its various challenges. We also describe, in detail, about two 

variants of the proposed action representation method, i.e., how we extract significant 

information for the task of human motion recognition. We also discuss about a number 

of issues concerning human motion recognition and explain about the classifiers that 

have been adopted in our work.  
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  Chapter 3

Experiments and Results 

 Experiments 3.1

 Dataset 3.1.1

We evaluate the performance of the proposed method by experimenting with two 

popular benchmark database: First one is the Weizmann action dataset [23], and the 

second one is KTH [28,77,78,62,79] action dataset. The reason of using benchmark 

datasets is that, we can easily and directly compare our results to other approaches 

reported in the literature. 

 

    

Bend Jack Jump Pjump 

   
 

Run Side Skip Walk 

 

  

 

 Wave1 Wave2  

Figure 3.1 Sample frames of the different actions from Weizmann dataset. 
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The Weizmann dataset consists of 90 sample videos showing nine different 

people, each performing 10 natural actions such as “bend”, “jumping-jack” (“jack”), 

“jump-forward-on-two-legs” (“jump”), “jump-in-place-on-two-legs” (“pjump”), “run”,  

“gallop-side-ways” (“side”), “skip”, “walk,” “wave-one-hand” (“wave1”), and “wave-

two-hands” (“wave2”). Fig.3.1 illustrates some sample frames of the Weizmann action 

dataset. 

 

 Scn0 Scn1 Scn2 Scn1 

Box 

    

Hand 
Wave 

    

Hand 
Clap 

    

Walk 

    

Run 

    

Jog 

    
Figure 3.2 Sample frames of the KTH dataset along with different capturing 

conditions. 
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The KTH dataset consists of 600 sample videos of six different actions: “Boxing”, 

“Hand waving”, “Hand clapping”, “Walking”, “Running”, and “Jogging”. These actions 

are performed by 25 people in four different scenarios; outdoors (Scn0), outdoors with 

zooming, i.e., scale variations (Scn1), outdoors with variation in clothing (Scn2), and 

indoors (Scn3). For Walking, Running, and Jogging actions, we trim the video 

sequences so that the person always remains in view. 

In the literature, KTH dataset has been treated either as one large set with strong 

intra-subject variations, or as four independent scenarios, which are trained and tested 

separately (i.e., four visually dissimilar databases, which share the same classes). We 

use both alternatives in our experiment. 

 Classifier Training and Testing Method 3.1.2

Cross validation is a common technique for estimating the performance of a 

classifier. One of the main reasons for using cross-validation instead of using the 

conventional validation (e.g., partitioning the data set into two sets of 70% for training 

and 30% for test) is that the error (e.g., Root Mean Square Error) on the training set in 

the conventional validation is not a useful estimate of model performance and thus the 

error on the test data set does not properly represent the assessment of model 

performance. This may be because there is not enough data available or there is not a 

good distribution and spread of data to partition it into separate training and test sets in 

the conventional validation method. In these cases, a fair way to properly estimate 

model prediction performance is to use cross-validation as a powerful general 

technique. In summary, cross-validation combines (averages) measures of fit (prediction 

error) to correct for the optimistic nature of training error and derive a more accurate 

estimate of model prediction performance [80]. 

In our experiment, we use stratified k-fold (k = 10) cross validation method to test 

the classifier. The original dataset is randomly partitioned into k equal sized subset in 

such a way that each partition resembles the global distribution of the dataset. Of the k 

subsets, a single subset is retained as the validation data for testing the model, and the 

remaining k − 1 subsets are used as training data. The cross-validation process is then 

repeated k times (the folds), with each of the k subsets used exactly once as the 
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validation data. The k results from the folds are then averaged to produce a single 

estimation. Fig. 3.3 shows an example iteration of k-fold cross validation. 

 
Figure 3.3 Example of stratified k-fold cross validation method. 

 

During k-nearest neighbor classification there is no training phase, but for SVM 

classification, the multiclass action classification problem is reduced down to binary 

classification one. To recognize k action classes, we train a bank of k linear one-vs-rest 

and kC2 linear one-vs-one binary SVMs, each with identical weights. During the test, 

final decision is made on a max polling method, i.e., an unknown action is labeled with 

the class that gets the maximum votes by those SVM classifiers. We deliberately keep 

the classification part simple. One alternative would be to use multi-class SVM or to use 

a non-linear kernel for the SVM. However, using non-linear kernel yields very little 

improvement due to the high dimension of the feature vector. 

 Evaluation Terminology 3.1.3

The correctness of a classification can be evaluated by computing the number of 

correctly recognized class examples (true positives), the number of correctly recognized 

examples that do not belong to the class (true negatives), and examples that either were 

incorrectly assigned to the class (false positives) or that were not recognized as class  
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Table 3.1 Confusion matrix for binary classification. 

  Classified as 

  Positive Negative 
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(TP) 
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(FP) 

True Negative 

(TN) 

 

examples (false negatives). These four counts constitute a confusion matrix shown in 

Table 3.1 for the case of the binary classification. 

For multi-class classification, we use the following performance measures for 

each individual class Ci, i = 0, 1, …, l, and the assessment is defined by TPi, FNi, FPi, 

TNi [81] and then compute the macro average performance measure i.e. take the average 

of the same measures calculated for Ci. 

 

Precision 

Precision is defined as the ratio of correctly recognized actions among the total number 

of actions that are recognized correctly or incorrectly. Eq. (3.1) defines the precision of 

class i, and Eq. (3.2) gives an average per-class precision of the data class labels with 

those of classifiers. 

 

100%i
i

i i

TPPrecision
TP FP

= ×
+

        (3.1) 

1

1 l

i
i

Avg. Precision Precision
l =

= ∑         (3.2) 

 

Recall 

Recall is defined as the percentage of successfully recognized actions among the total 

number of relevant actions n the dataset. Eq. (3.3) defines the recall of class i, and Eq. 

(3.4) gives an average per-class recall of a classifier to identify class labels. 
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False Positive Rate (FPR) 

FPR is a measure of how often the classifier assigns a class label to an action when it 

does not belong to that class, i.e., it is the ratio of incorrectly recognized actions among 

all the test actions other than that action. Mathematically it is expressed by the Eqs. 

(3.5) and (3.6). 

 

100%i
i

i i
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= ×
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         (3.5) 
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= ∑          (3.6) 

 

Recognition Rate 

The overall recognition rate or the balanced accuracy of the classifier is defined as the 

percentage of successfully recognized actions among the total number of actions. It can 

be defined by Eq. (3.7).  

 

. 100%Number of correct recognitionRecog Rate
Total no. of test actions

= ×      (3.7) 

 

F Score 

F score is the weighted harmonic mean of the precision and recall. We use a macro 

averaged F score, given by Eq. (3.8) to evaluate the classifier. 

 

2 . .
. .

Avg Precision Avg RecallFscore
Avg Precision Avg Recall
× ×

=
+

       (3.8) 
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 Experimental Parameters and Abbreviations 3.1.4

For tracking the optical flow, dense Gunnar Farneback [82] algorithm is used and 

a flow threshold of ±1 pixel is used to separate the x and y directional flow into right 

(+x), left (−x), up (+y), and down (−y) directions. We use temporal duration, t = 0.9 

second and decay parameter, δ = 1 (as it was in the original) in Eq. (2.10), i.e., only 0.9 

second frames are used to create DMHI templates. Each DMHI is used to calculate the 

LBP image, where 3×3 neighborhood and threshold =1 are used for Eqs. (2.18) and 

(2.19). We use the same values for the parameters (p, q) used to partition the action 

region into blocks during feature vector generation.  We use p = q = 2, 4, 6 when 

experimenting with Weizmann dataset and for KTH dataset we use  p = q = 2, 4, 6, 8. 

The number of histogram bins, are = 8, 16, 32 is used for the both datasets.  For the 

linear combination parameterα, we use values from 0 to 1, with a discrete step increase 

of 0.1. When using k - nearest neighbor classifier, we use the nearest neighbor 

parameter k = 5. 

Although we have explained two methods for action representation in Section 

2.3.6, we performed the experiment with some close variants of the method described in 

Section 2.3.6.1 and present the comparative results. For example, rather than using four 

DMHI, we can create a single MHI and then extract the textures from MHI with similar 

manner presented in Section 2.3.6.1. The representation methods used in the experiment 

are:  

(i) Histogram of LBP image created from MHI (LBPM_H),  

(ii) LBPM_H along with the randomly selected snippets  histogram 

(LBPM_RNDSN_H),  

(iii) LBPM_H along with the selective snippets (as described in Section 2.3.4)  

histogram (LBPM_SELSN_H),  

(iv) Histogram of rotated bit arranged LBP image created from DMHI 

(RLBPD_H),  

(v) RLBPD_H with random snippets histogram (RLBPD_RNDSN_H), 

(vi) RLBPD_H with selective snippets histogram (RLBPD_SELSN_H), 
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(vii) Histogram of constant bit arranged LBP image created from DMHI 

(CLBPD_H),  and its variants CLBPD_SELSN_H. 

All these methods named above are used only when experimenting on Weizmann 

dataset and with a SVM classifier. In case of random snippets, rather than selecting the 

snippets based on any information (as described in Section 2.3.4), we simply choose 

three snippets within the DMHI time durationt just in a random order.  

In section 2.3.6.2 we propose a variant action representation method which is 

employed during the experiment using the KTH dataset. The abbreviations used for that 

representation are: 

(i) Histogram of rotated bit arranged LBP image created from DMHI 

(RLBPD_H),  

(ii) Histogram created from DMHI (DMHI_H) (details in Section 2.3.6.2), 

(iii) Histogram extracted from MEI (MEI_H) as a shape feature (details in 

Section 2.3.6.2), 

(iv) A linear combination of RLBPD_H and DMHI_H is shortened as 

D_RLBPD_H 

(v) D_RLBPD_H along with MEI histogram (D_RLBPD_MEI_H), 

 Recognition Results 3.2

As we mentioned earlier, we use two benchmark action dataset for the 

experiment, the following section describes the results obtained on those datasets. 

 Results on Weizmann Dataset 3.2.1

3.2.1.1 Results using k-NN Classifier 

Fig. 3.4 shows the recognition rate obtained for the proposed action representation 

method RLBPD_SELSN_H by using k-NN classifier (k = 5) on the Weizmann dataset 

with different number of blocks, bins and distance or similarity measures. The results, 

presented here, are the average of three runs, i.e., the experiment is performed thrice, 

and each run consists of 10-fold cross validation. We notice that in all cases, using  
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Figure 3.4 Recognition rates by using the k-NN classifier on Weizmann 

dataset for the representation RLBPD_SELSN_H with various numbers of 

blocks, distance metric, and (a) 8 bins, (b) 16 bins, (c) 32 bins. 
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Manhattan distance produces better results than other distance measures for same p, q, r 

values. The best found recognition rate is 88.52% for Manhattan distance, however, for 

all the cases, the overall recognition rate is below 90%.  

Fig. 3.5 presents the k-fold iteration results found by k-NN classifier for the 

proposed method for specific p = q = 4, r = 16 values. In each iteration, the same 

training set and test set are used for k-NN classifier with different distance measurement  
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Figure 3.5 Recognition rates of RLBPD_SELSN_H representation found 

by the k-NN classifier for different k-fold iteration. 
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Figure 3.6 Relation between the number of blocks and histogram bins of 

RLBPD_SELSN_H with Manhattan distance for the k-NN classifier. 
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methods. We find that in almost every iteration Manhattan distance outperforms the 

other measuring methods. 

Fig. 3.6 shows the effect of number of blocks and number of histogram bins on 

recognition rate. The relation is shown in Fig. 3.6 for a specific distance measure, 

Manhattan distance, in k-NN classification. We notice that the classifier generates 

almost identical result for 2×2 blocks with different bins. However, for a constant bin 

number, increasing the number of partition blocks does not always increase the 

recognition rate, rather it falls out, e.g., the recognition rate with 32 bins in Fig. 3.6. 

Table 3.2 shows the confusion matrix of RLBPD_SELSN_H representation for 

the best recognition rate found by the k-NN classifier. The results are for Manhattan  

 

Table 3.2 Confusion matrix for RLBPD_SELSN_H representation on 

Weizmann dataset using Manhattan distance and the k-NN classifier. 
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Bend 1 0 0 0 0 0 0 0 0 0 

Jack 0 1 0 0 0 0 0 0 0 0 

Jump 0 0 0.83 0 0 0.09 0.07 0 0 0 

Pjump 0 0 0 1 0 0 0 0 0 0 

Run 0 0 0 0 1 0 0 0 0 0 

Side 0 0 0.11 0 0 0.83 0 0.06 0 0 

Skip 0 0 0.06 0 0.54 0 0.39 0.01 0 0 

Walk 0 0 0 0 0.13 0.07 0 0.80 0 0 

Wave1 0 0 0 0 0 0 0 0 1 0 

Wave2 0 0 0 0 0 0 0 0 0 1 
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distance with p = q = 4, and r = 16. Here, the recognition rate is scaled down to one. All 

actions except for skipping the recognition rate are above 80%. Most of the skipping 

actions are labeled as running, because the skipping poses have very subtle difference 

from the running poses.  

Table 3.3 shows the per-class and their macro averaged precision, recall, and FPR 

for k-NN classifier with Manhattan distance, and p = q = 4, and r = 16. Again we notice 

that the classifier provides maximum possible recall for running action, i.e., the 

classifier recognizes all the test running actions accurately, but the precision or 

consistency of recognition is low, which can also be seen by the FPR value. On the 

other hand, even if the classifier provides low recall for skipping action, but the 

precision is quite high. Since walking action bears similar poses with running action, we 

can see the recall of the walking action is in a little bit lower side (better seen in Table 3.2, 

 

Table 3.3 Per-class precision, recall, and FPR of RLBPD_SELSN_H on 

Weizmann dataset using Manhattan distance and the k-NN classifier. 

 Precision [%] Recall [%] FPR [%] 

Bend 100 100 0 

Jack 100 100 0 

Jump 83.33 83.33 1.85 

Pjump 100 100 0 

Run 60 100 7.41 

Side 83.33 83.33 1.8 

Skip 84 38.89 0.82 

Walk 91.49 79.63 0.82 

Wave1 100 100 0 

Wave2 100 100 0 

    
Average 90.22 88.52 1.28 
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where some walking actions are recognized as running). The macro averaged F score 

for the recognition results presented in Table 3.3 is 89.4. 

3.2.1.2 Results using SVM Classifier 

Fig. 3.7 shows the correct recognition rate of different representation methods, 

mentioned in section 3.1.4, for different number of blocks and bins using SVM 

classifier on Weizmann dataset. For all the cases, RLBPD_SELSN_H representation 

shows a better accuracy than other action representation methods having similar 

parameter values (same p, q, r values). We find that including the shape feature (i.e., a 

snippet histogram) in action representation greatly improves the recognition rate for 

LBPM_SELSN_H, but in case of RLBPD_SELSN_H, the impact is more for lower 

number of blocks. However, in all cases, including the shape feature increases overall 

performance. Also in Fig.3.7, increasing the number of bins and blocks does not linearly 

increase the accuracy, rather after some point it starts to fall down (e.g., 6×6 blocks and 

8, 16 bins). The best found recognition rate is 95.37%, which is observed for 

RLBPD_SELSN_H with p = q = 4 and r = 16 bins. The result found by SVM classifier 

is higher than that of k-NN classifier that reports an accuracy of 88.52%.  

Fig. 3.8 presents the comparison of using rotating bit arrangement (as it is 

described in Section 2.3.3) for creating different LBP images with that of a constant bit 

arrangement. Here CLBPD_H means histogram of constant bit arranged LBP image 

created from DMHI, i.e., histograms are created in similar fashion presented in Section 

2.3.6.1. But we use a single layout of LBP neighborhood for all the DMHIs to extract 

the texture pattern. We find that in every combination of p, q, and r values, RLBPD_H 

(or its variant that includes shape information as a form of snippet histogram) performs 

better than CLBPD_H which justify our claim presented in section 2.3.3. This is 

because, if the same actions performed in leftward or rightward direction (e.g., walk, 

run, side-walk), the rotated arrangement of LBP tends to produce similar pattern values 

in the left or the right LBP image. These images in turn yield a histogram which is more 

consolidated and helps in better classification. The same thing also applies to upward or 

downward actions [52]. The average improvement of recognition rates by using rotated 

bit arranged LBP are 4.61% and 2.45% for without using and with using SELSN_H. 
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Figure 3.7 Correct recognition rates using the SVM classifier on Weizmann 

dataset for different representations with various numbers of blocks and (a) 

8 bins, (b) 16 bins, (c) 32 bins. 
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Figure 3.8  Performance comparison of using rotated and constant arranged 

bits for LBP image creation using SVM classifier on Weizmann dataset. 

 
Table 3.4 shows the confusion matrix of RLBPD_SELSN_H representation for 

the best result using SVM classifier on Weizmann dataset. Here also recognition rates 

are scaled down to one for a better viewing. Like k-NN classifier, the classifier gives 

poor result for skipping actions. But SVM classifier provides much better recognition 

rate, 76%, compared to k-NN classifier (where it was 39% only). This time, the 

recognition rates of all the actions except for skipping are approximately 90% or above. 

As we mention earlier, in Weizmann dataset, some frames of the skipping poses have 

very subtle difference from the running poses, which is very difficult to distinguish even 

by a human. Therefore the classifier puts some skipping actions as running ones. 

Table 3.5 shows the per-class and their macro averaged precision, recall, and FPR 

of RLBPD_SELSN_H representation for the SVM classifier with p = q = 4, and r = 16. 

Here we notice that the SVM classifier provides a recall for running action which is 

lower than the k-NN classifier, but better precision or true positive accuracy. We can 

also see from the table that, both skipping and walking actions generate improved recall 

as well as precision values than before. The overall per-class FPR is also reduced by 

using the SVM classifier. The macro averaged F score for the recognition results 

presented in Table 3.5 is 95.38.   
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Table 3.4 Confusion matrix for RLBPD_SELSN_H representation on 

Weizmann data set using the SVM classifier. 
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Bend 1 0 0 0 0 0 0 0 0 0 

Jack 0 1 0 0 0 0 0 0 0 0 

Jump 0 0 0.87 0 0 0.04 0.09 0 0 0 

Pjump 0 0 0 1 0 0 0 0 0 0 

Run 0 0 0 0 0.91 0 0.04 0.05 0 0 

Side 0 0 0 0 0 1 0 0 0 0 

Skip 0 0 0.04 0 0.18 0 0.76 0.02 0 0 

Walk 0 0 0 0 0 0 0 1 0 0 

Wave1 0 0 0 0 0 0 0 0 1 0 

Wave2 0 0 0 0 0 0 0 0 0 1 

 

Table 3.6 summarizes the best recognition rates found by our experiment with 

different action representations as well as the best results reported by other methods in 

the literature on Weizmann dataset. The presented best result of the proposed 

RLBPD_SELSN_H representation is for the parameter p, q = 4, and r = 16. We include 

the results of both classifiers (k-NN, and SVM) we experiment with. All the methods 

use a SVM classifier except the one shown in parenthesis. These results are just 

indicative only, since different authors used a different number of frames for the feature 

vector generation or different types of classifiers and even different testing method like 

leave-one-out. 
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Some researchers perform their experiments with 9 actions from Weizmann 

dataset excluding the skipping action. We also do the same only for the proposed 

RLBPD_SELSN_H representation, since this representation method gives the best 

performance for all 10 actions. The best average recognition rate found by the proposed 

method for 9 actions is also presented in the Table 3.6 (parenthesized in some cases). 

Though the recognition rate found from the proposed method is not the best compared 

to other methods, the achieved accuracy is reasonable enough and quite fast (See Table 

3.11 for computational time) for practical application. 

  

Table 3.5 Per-class precision, recall, and FPR of RLBPD_SELSN_H 

representation on Weizmann dataset using a SVM classifier. 

 Precision [%] Recall [%] FPR [%] 

Bend 100 100 0 

Jack 100 100 0 

Jump 95.92 87.04 0.41 

Pjump 100 100 0 

Run 83.05 90.74 2.06 

Side 96.43 100 0.41 

Skip 85.42 75.93 1.44 

Walk 93.10 100 0.82 

Wave1 100 100 0 

Wave2 100 100 0 

    
Average 95.39 95.37 0.51 
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Table 3.6 Comparison of the recognition rate of the proposed method to 

other methods reported based on Weizmann Dataset. 

 Reference No. of 
Actions used 

Recognition 
Rate [%] 

Proposed 

method and its 

variants 

LBPM_H 10 67.96 

LBPM_RNDSN_H 10 79.81 

LBPM_SELSN_H 10 90.37 

RLBPD_H 10 90.74 

RLBPD_ RNDSN_H 10 92.04 

RLBPD_ SELSN_H  10, (9) 95.37, (98.96) 

RLBPD_ SELSN_H (k-NN) 10 88.52 

CLBPD_ H  10 89.63 

CLBPD_ SELSN_H 10 93.33 

Archived in 

literature 

Kelllokumpu et al. [31] 10, (9) 98.9, (100)  

Scovanner et al. [83] 10 82.6 

Boiman and Irani [84] 9 97.5 

Neibles and Fei-Fei [62] 9 72.8 

Wang and Suter [17] 10 97.8 

Campos et al. [85] 10 96.7 

Ikizler and Duygulu [40] 9 100  

 

 Results on KTH Dataset 3.2.2

Each action video sequence is preprocessed to extract the foreground. In this 

phase, we extract the morphological gradient of the current frame which serves as a 

foreground mask. This mask generally contains lots of noise which is minimized by 
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using the information of the previous frame. The method used here is a simplified 

version of the method presented in [86] which provides enough information for 

reasonable recognition. In case of KTH dataset, we only use a SVM classifier, so all the 

results presented in this section are obtained from a SVM classifier. Besides, all the 

presented results are average of at least two runs of the experiment. 

Fig. 3.9 shows the correct classification rate (averaged on 6 actions of KTH 

dataset) of the proposed method D_RLBPD_MEI_H  (described in Section 2.3.6.2) for 

different representation with various numbers of blocks and bins where one large set is 

considered as the data set. Abscissa of the graphs denotes different action representation 

methods with discrete values of α with a step difference 0.1 of Eq. (2.31), i.e., the 

leftmost results are for RLBPD_MEI_H, the rightmosts are for DMHI_MEI_H, and the 

in-between results are for D_RLBPD_MEI_H representation. In Fig. 3.9, for all cases 

RLBPD_MEI_H action representation method produces better accuracy than its 

corresponding (same p, q, r values) DMHI_MEI_H representation. But for 

D_RLBPD_MEI_H representation, the curves show that its accuracy increases up to a 

certain value of α (0.3-0.5) and then goes down again, i.e., the linear combination of the 

aforementioned representation method improves the accuracy. We obtain a maximum 

recognition rate of 95.6% for D_RLBPD_MEI_H representation. LBP operator 

highlights the patterns or texture lying in DMHI but loses the recency of motion. Hence, 

mixing a certain amount of DMHI_H information to the RLBPD_H gives better 

accuracy than RLBPD_H alone.  

Also in Fig. 3.9, almost all cases, for a constant number of blocks, the higher 

number of bins produces better results. However, the reverse is not true. It can be better 

understood from Fig. 3.10 which shows the relation between the number of blocks and 

histogram bins for D_RLBPD_MEI_H with only for a specific α = 0.4. It is clear from 

the Fig. 3.10 that partitioning the action region into more blocks does not improve the 

overall recognition rate for a specific number of bins. 

Fig. 3.11 presents the average performance increase or gain in classification 

accuracy of D_RLBPD_MEI_H over D_RLBPD_H representation, i.e. the importance 

of using shape information as a form of MEI histogram. Keeping each p, q, r parameter 
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Figure 3.9 Recognition rates for different representation on KTH dataset 

with various numbers of bins and (a) 2×2, (b) 4×4, (c) 6×6, (d) 8×8 blocks. 
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Figure 3.10 Relation between the number of blocks and histogram bins for 

D_RLBPD_MEI_H with α = 0.4 on KTH dataset. 
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Figure 3.11 Average performance gain of D_RLBPD_MEI_H over 

D_RLBPD_H on KTH dataset. 

 
values constant, the performance gain is measured using Eq. (3.9). The R.R along with 

the suffixes in Eq. (3.9) means the Recognition Rate (defined by Eq. (3.7)) for that 

specific parameter values given in the suffixes. We can see from Fig. 3.11 that, using the 

MEI_H along with D_RLBPD_H improves the performance significantly only in a 

lower number of blocks (e.g. 2×2 blocks). But, if we increase the number of blocks, 

there is no substantial gain of using MEI_H or sometimes the gain is even negative [61]. 
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Figure 3.12 Scenario-wise recognition rate of D_RLBPD_MEI_H with p, q 

= 4, r = 32 (a) recognition rate for different scenarios, (b) comparison of the 

average of scenario-wise results with that of all scenario dataset taken as 

one large dataset. 
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As we mentioned earlier that actions in the KTH dataset are recorded in four 

different scenarios, we perform the experiment considering them as an individual 

dataset. Fig. 3.12 (a) presents the recognition results for different representation 

methods when the classifier is trained and tested on the action performed at different 

scenarios with p, q = 4, r =32. We find that for all α values, the indoor (Scn3) and the 

outdoor (Scn0) scenarios provide better results than the outdoor with zooming (Scn1) 

and clothing (Scn2) variations. The best found results are 94.67%, 86.35%, 87.67%, and 

97.35% for Scn0, Scn1, Scn2, and Scn3, respectively. It is obvious that using different 

clothing may hide some part of the body and consequently the action pose becomes 

different (e.g., long overcoat may hide some leg portion). Similarly, zooming the camera 

while performing an action, sometimes overwrites some motion information. However, 

the results are still above 85% for scn1 and scn2 in the best case (α = 0.3). Fig. 3.12 (b) 

shows the comparison of the average scenario-wise results with the result found from 

the experiment taking all scenario-wise datasets as a large single dataset for same p, q, r 

values. Clearly, the classifier provides better performance for the large single dataset, 

and we can say that the classifier learns better when there are some variation within the 

class. 

The confusion matrix of D_LBPD_MEI_H representation for the best found result 

on the KTH dataset with parameters p,q = 4, r = 32, α = 0.4 is presented in Table 3.7. 

The recognition rate is above 90% in all actions except jogging. Jogging action has very 

subtle difference between walking and running, and it varies with the person performing 

the action. Therefore the classifier puts some jogging actions as walking or running 

action. However, the accuracy of jogging is among the top compared to some other 

methods [28]. 

Table 3.8 shows the per-class and their macro averaged precision, recall, and FPR 

of D_RLBPD_MEI_H representation with p,q = 4, r = 32, α = 0.4. Here we notice that 

the recall and precision for running and jogging action are a little bit poor compared to 

other actions. This is because the inter-class variation between running and jogging 

actions in the dataset is sometimes quite indifferent. Considering a pretty large dataset, 

the classifier learns well that can be seen from the overall macro averaged per-class FPR 
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which is below 1%. The best case F score of the classifier for the recognition results 

presented in Table 3.8 is 95.59. 

 

Table 3.7 Confusion matrix of D_RLBPD_MEI_H representation with p, q 

= 4, r = 32, α = 0.4 on KTH dataset. 
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Box 99 0 0 1 0 0 

HandW 0 100 0 0 0 0 

Clap 0 0 100 0 0 0 

Walk 1 0 0 97.5 0 1.5 

Run 0 0 0 0 90.5 9.5 

Jog 0 0 0 1 12.5 86.5 

 

Table 3.8 Per-class precision, recall, and FPR of D_RLBPD_MEI_H 

representation on KTH dataset. 

 Precision [%] Recall [%] FPR [%] 

Box 99 99 0.20 

HandWave 100 100 0.00 

Clap 100 100 0.00 

Walk 97.99 97.50 0.40 

Run 87.86 90.50 2.50 

Jog 88.72 86.50 2.20 

    
Average 95.60 95.58 0.88 
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Though we mentioned in feature vector generation (Section 2.3.6) that we 

partition an action region into disjoint p×q blocks, but during an experiment with KTH 

dataset we use 25% block overlapping to see the result.  Fig. 3.13(a) shows the 

recognition rate of D_RLBPD_MEI_H representation for different bins and p,q 

parameter values. We only present the best accuracies found for particular bins and p,q. 

The values that produce those results are shown on top of the histogram bars in Fig. 

3.13(a). For this case, we observed the best possible recognition rate 95.17%, which 

does not surpass the result of the disjoint partitioning case (95.6%), rather block 

overlapping increases the feature vector dimension. Fig 3.13(b) shows an example of 

how the action region is partitioned into overlapping blocks. For the parameter, p,q, the 

number of blocks we can get for disjoint and overlapping partition are given by Eq. 

(3.10) and Eq. (3.10), respectively. Since block overlapping increases feature vector 

dimension, we use smaller p, q values during the experiment. 

 
. ( , )DJNo Blk p q p q= ×        (3.10) 

. ( , ) ( 1) ( 1)OVNo Blk p q p q p q= × + − × −      (3.11) 
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 (b) 

Figure 3.13 Results for overlapping blocks (a) best recognition rate for 

D_RLBPD_MEI_H with α value on top of the bar, (b) how the blocks are 

overlapped for a parameter value p,q = 4. 
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All the recognition rate mentioned above are per video result, however we apply 

our D_RLBPD_MEI_H representation to generate per frame recognition result. In this 

case we randomly choose 72 videos among the 600 videos in KTH dataset. Though 

videos are chosen randomly, we make a constraint that for each action class there are at 

least two videos for each of the four recording scenarios (outdoor, outdoor with cloth, 

outdoor with scale, indoor). These video frames were used to test with the already 

trained SVM classifiers (we have 10 classifiers, since we use 10-fold cross validation). 

These test frames are absolutely new to any of the 10 classifiers, since they are not used 

in the training phase at all. The best per frame average recognition rate, we found, is 

86.42% with p,q = 8, r = 16, α = 0.2. However, using the  ensemble decision of the 

classifiers, the recognition rate improves to 87.05%. Table 3.9 presents the per frame 

recognition rate for each action class and the number frames used in the testing process. 

Here, again, we can see that most of the confusion occurs with running and jogging 

action and thereby producing  a low accuracy for each of them. 

Table 3.10 summarizes the best experimental recognition rate of different action 

representation methods. Here, DMHI_MEI_H and RLBPD_MEI_H results are for 

p=q=6/4, r=16/32 and RLBPD_MEI_H results are for p,q = 4, r = 32, α = 0.4. The 

table also includes the best result reported on literature by other state of the art methods 

 

Table 3.9 Frame level recognition rate of D_RLBPD_MEI_H on KTH 

dataset. 

 
No. of Frames 

Tested 
Recognition 

Rate [%] 

Box 300 100.0 

HandWave 300 84.7 

Clap 300 99.7 

Walk 295 89.5 

Run 150 62.7 

Jog 215 68.4 
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on KTH dataset. It is worthy to mention that, these results are not directly comparable. 

Since, different authors used different classifiers even different testing method such as 

leave-one-out or different dataset splitting techniques. Overall, the result found by the 

proposed method is among the top-listed results that have been reported in the literature 

regarding KTH dataset. 

 

Table 3.10 Comparison of accuracy of the proposed method to other state of 

the art methods reported based on KTH dataset. 

 Reference Recognition 
Rate [%] 

Proposed  

DMHI_MEI_H 92.0 

RLBPD_MEI_H 93.5 

D_RLBPD_MEI_H 95.6 

D_RLBPD_MEI_H 
 (per frame) 87.1 

Archived in 
literature 

Schuldt et al. [28] 71.7 

Masumitsu et al. [87] 79.9 

Ke et al. [77] 80.9 

Dollar et al. [19] 81.2 

Niebles et al. [88] 81.5 

Ikizler et al. [40] 89.4 

Schindler [63] 90.1 

Wong et al. [79] 91.6 

Maninis et al. [89] 93.5 

Kellokumpu et al. [31] 93.8 

Kim et al. [78] 95.3 
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 Computational Time 3.3

The run time of the method can be parted in two phases. First being the time to 

create the spatiotemporal templates, and the second is the feature vector generation and 

testing time, which depend on the values of p, q, r and α. Table 3.11 shows the average 

of per frame computational times (in milliseconds) of different phases for 

RLBPD_SELSN_H representation over Weizman dataset. The feature vector generation 

and testing times in Table 3.11 are for best recognition rate parameters p, q = 4, r = 16 

and a frame size of 144×180 pixels. Table 3.12 presents the per frame execution time of 

the proposed D_RLBPD_MEI_H representation with parameter values p=q=4, r=32, 

α=0.4 and a frame size of 120×160 pixels. It should be noted that the experiment is 

done on a machine with a processor Intel® Core™ i7-3770, CPU speed 3.40 GHz, and 

memory 8GB. We implement the program in Microsoft Visual Studio 2010, and 

OpenCV 2.4.8 without applying any code optimization method. Moreover, it is worthy 

to mention that the total time reported in Table 3.11 and Table 3.12 excludes the 

foreground extraction time, since we are only interested in the action representation and 

recognition time. We are unable to compare the computational time of the proposed 

descriptor, since most of the state of the art methods does not report on their computa- 

 
Table 3.11 Per frame computational time (in milliseconds) of the 

RLBPD_SELSN_H method on Weizmann dataset. 

Template creation time Feature vector 
generation time Testing time Total time 

30.94 2.6 2.3 35.84 

 

Table 3.12 Evaluation on the per frame execution time (in milliseconds) of 

the proposed D_RLBPD_MEI_H method on KTH dataset. 

Template creation time Feature vector 
generation time 

Testing 
time 

Total 
time DMHI LBP image MEI & action Region 

19.49 6.67 3.83 10.0 5.95 45.94 
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tional times, except the HOR [40] that takes approximately one second per frame only 

for rectangle extraction phase which is far slower than the proposed one. We can see 

from the tables that in both cases the template creation time is almost identical, but 

D_RLBPD_MEI_H takes a little bit longer time than RLBPD_SELSN_H for feature 

vector generation and testing. This is obvious because, during the feature vector 

generation, D_RLBPD_MEI_H needs one extra step to combine the DMHI_H and 

RLBPD_H. Another reason is that the times are average of all possible p,q,r values: 

Actually,  p,q = 2,4,6,8 in case of D_RLBPD_MEI_H, whereas RLBPD_SELSN_H 

uses p,q = 2,4,6. 

 Example of Recognition  3.4

In this section we present some action sequences in the form of image frames 

recognized by the SVM classifier for both Weizmann and KTH dataset for visual 

inspection. We label the actual action class and the recognized class on the image frame 

in blue and red color respectively. 

Fig. 3.14 on the next page shows some samples of recognized action from 

Weizmann dataset. We can see from the figure that some sequences are misclassified; 

for example, running as walking, or skipping as running. 

Fig. 3.15 shows some samples of recognized action from KTH dataset. Here also, 

we can notice that some jogging sequences are wrongly recognized as walking action. 
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Frame13 Frame 30 Frame 40 Frame 48 

    
Frame 1 Frame 20 Frame 29 Frame 42 

    
Frame 1 Frame 8 Frame 18 Frame 32 

    
Frame 2 Frame 10 Frame 17 Frame 35 

    
Frame 2 Frame 20 Frame 30 Frame 43 

Figure 3.14. Example of recognized action sequences from Weizmann 

dataset (continue to next page). 
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Frame 2 Frame 20 Frame 32 Frame 47 

    
Frame 2 Frame 11 Frame 18 Frame 25 

    
Frame 3 Frame 30 Frame 47 Frame 65 

    
Frame 1 Frame 19 Frame 29 Frame 42 

    
Frame 2 Frame 30 Frame 58 Frame 68 

Figure 3.14 Example of recognized action sequences from Weizmann 

dataset (continued from previous page). 
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Frame 34 Frame 41 Frame 49 Frame 55 

    
Frame 26 Frame 37 Frame 38 Frame 50 

    
Frame 42 Frame 47 Frame 55 Frame 64 

    
Frame 45 Frame 56 Frame 62 Frame 69 

    
Frame 12 Frame 16 Frame 21 Frame 23 

    
Frame 23 Frame 29 Frame 34 Frame 46 

Figure 3.15 Example of recognized action sequences from KTH dataset. 
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 Summary 3.5

In this chapter we have presented the details of how the experiment is performed, 

what evaluation methods are used, what were the dataset, etc. We have also presented 

the detail experimental results of the proposed action representation methods described 

in Chapter 2 along with some variants of it.  The comparative results on action 

recognition rate with other state of the art methods were also presented. We found that 

the SVM classifier performs better than the k-NN classifier. Though the proposed action 

representation method fails in some cases, but in overall the average recognition rate is 

around the top list compared to existing methods. 
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  Chapter 4

Conclusion 

 Thesis summary 4.1

In this thesis, we have approached to the problem of human action recognition 

from a texture descriptor perspective and proposed a novel descriptor that represents a 

human action as a histogram of LBP images created from DMHIs, i.e., a histogram of 

spatiotemporal texture.  Our pose-descriptor is found to be simple and effective. 

We create a temporal template from an action sequence as a form of DMHI. We 

then extract the spatiotemporal patterns that are present in the DMHI. We use a new idea 

of rotated bit arranged LBP for different DMHIs to extract the patterns. We formulate 

the patterns into histograms that serve as an action descriptor or a feature vector. Since 

the LBP tends to lose the temporal information in the DMHI, we combine the motion 

history information and texture information of an action sequence and found better 

results. We also use some variants that include the shape or pose information of the 

action. In this case, we choose some silhouettes of an action to extract the pose 

information.  Rather than any temporal information we just use the size of the silhouette 

to select them.  All the details of the proposed action representation method and the 

classifiers used for recognition are narrated in Chapter 2. 

We show that by effective classification of such histograms, i.e., an action 

descriptor, robust human action recognition is possible. We demonstrate the 

effectiveness of our method over two benchmark dataset; the Weizmann dataset and 

KTH dataset. Our results are directly comparable/superior to the results presented over 

these datasets. We use a simple k-NN classifier and a SVM classifier for recognizing the 

actions. Though the SVM classifier performs better than the k-NN classifier, in both 

cases we have achieved reasonable recognition rates. Along with the proposed method, 

we experiment with some other similar methods: For example, rather than using DMHI, 
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we use MHI as a temporal template and extract the distribution of spatiotemporal 

texture from it. All the experimental results with various experimental parameters, with 

different evaluation methods, and the results of other existing methods are described in 

Chapter 3.  

The novelty of this study is that we introduce an action descriptor that uses the 

distribution of texture patterns which exist in a temporal template like DMHI. To the 

best of our knowledge, this is a new method for representing an action. Moreover, we 

introduce a new way of creating a LBP image by using the rotated arrangement of LBP 

bits for different directional MHIs. The main objective is to describe an action as simple 

as possible with enough information for quick and reasonable classification. It has been 

shown that, without constructing any complex model, the proposed simple and compact 

descriptor performs well on different actions and the recognition rate is promising 

enough for practical use compared to the state of the art methods. Besides the 

recognition rate, the proposed technique is also advantageous with respect to 

computational load. 

 Discussion 4.2

The matching methods we present in this study suggest that we may not need a 

perfect modeling of the dynamics of human actions in order to reach satisfactory results. 

Our experiments show that the spatiotemporal textures of an action sequence 

encapsulate enough useful information for the action itself: Therefore, one can start with 

a good temporal template, before going into the details of dynamics. 

Although we have achieved satisfactory performance for our proposed recognition 

system, there are, of course, some limitations in the current system. A more 

sophisticated foreground extraction method might increase the robustness of the 

recognition system. Especially in the KTH dataset, the contrast between foreground and 

background is very low; and hence, we observed that most of the misperception occurs 

due to the imperfect extraction of foregrounds. However, even with the noisy 

foreground information, our method reaches higher recognition rates, which means that 

the method is robust to noise. Since we only use the texture information of the action 
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region, we notice that, correct localization of the action region greatly affects the overall 

performance.  Though we find that the descriptors that use the information from the 

DMHI template performs better than others, we observe that LBPM_SELSN_H (see 

Section 3.1.4 for elaboration) representation that extract texture distribution only from 

one MHI image performs quite well, too. We did not incorporate any direct mechanism 

for scale and rotation invariance or view point changes. However, our method 

successfully recognizes the actions with scale and view point changes which are present 

in KTH dataset. Actually, we always partition the action region in a constant number of 

blocks rather than fixed size blocks just to have some benefit for scale variation. 

 Future Scope of Works 4.3

This study is performed with a dataset having generic action classification 

problem. However, the method can easily be incorporated into some real life 

applications like gaming or human computer interaction without using any controller 

such as mouse, trackball, joystick, etc. The potential of the proposed method can also be 

applied to other related domains like a patient’s activity monitoring system or automatic 

labeling of video sequences in a video dataset [61,52].   

The application of the descriptor to more complex actions or scenarios could be 

other possible future work. The system is subjected to be comprehensively investigated 

in order to be practically implemented in crowded scenarios. The descriptor may be 

applied to achieve view invariant results by capturing the action from multiple camera 

views. The proposed method may be incorporated with a human detection system to 

recognize multiple persons’ activities. The proposed scheme uses  a fixed duration 

template to recognize video based recognition, therefore it performs poorly on per fame 

recognition. The scheme may be applied with a time window based templates to classify 

per frame actions for an improved results. However, this will probably increase the 

computational time, so, the decision is to be made on the nature of the recognition 

problem. Including the action performing speed could be a good choice to better 

separate the dynamic actions like walking, jogging and running.  
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