
Sol-gel synthesis of magnetic TiO2
microspheres and characterization of their in
vitro heating ability for hyperthermia
treatment of cancer

著者 Liu Gengci, Kawashita Masakazu, Li Zhixia,
Miyazaki Toshiki, Kanetaka Hiroyasu

journal or
publication title

Journal of Sol-Gel Science and Technology

volume 75
number 1
page range 90-97
year 2015-07-01
URL http://hdl.handle.net/10228/5686

doi: 10.1007/s10971-015-3680-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/147426305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

1 
 

Sol-gel synthesis of magnetic TiO2 microspheres and characterization of their in 

vitro heating ability for hyperthermia treatment of cancer  

GENGCI LIU1*, MASAKAZU KAWASHITA1, ZHIXIA LI2, 

TOSHIKI MIYAZAKI3, HIROYASU KANETAKA4  
 

1 Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan 
  

2School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China 
 

3Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 
808-0196, Japan 

 
4 Liaison Center for Innovative Dentistry, Graduate Schools of Dentistry, Tohoku University, Sendai 980-8575, 

Japan 

 

*Corresponding author：GENGCI LIU E-mail: liugengci@ecei.tohoku.ac.jp 

  

mailto:liugengci@ecei.tohoku.ac.jp


 

2 
 

Abstract.  Common cancer treatments are invasive and lack specificity, leading to unwanted side 

effects. Because hyperthermia can kill cancer cells and damage proteins and structures within cells, it 

has been considered a novel, minimally invasive cancer treatment. However, many hyperthermia 

treatments cannot heat deep-seated tumors effectively and locally. Heat-generating, magnetic 

microspheres can help address this challenge. However, current research has not produced 

microspheres that can be sufficiently heated. We prepared magnetic titania (TiO2) microspheres by 

introducing magnetite nanoparticles (MNPs) into the sol-gel process during water-in-oil emulsion for 

in situ hyperthermia treatment of cancers. Two types of MNPs were used in this study: one type was 

synthesized by a chemical coprecipitation method, and the other type was commercially available 

MNPs. The obtained microspheres contained up to 46.7 wt% MNPs, and their saturation 

magnetization and coercive force were 34.2 emu/g and 103 Oe, respectively. The particles' in vitro 

heating efficiency in an agar phantom was measured in an alternating magnetic field of 300 Oe and 

100 kHz. The temperature increase of the agar phantom within 300 s was 4.5ºC for microspheres 

with MNPs that were synthesized by chemical coprecipitation and 53°C for microspheres with 

commercially available MNPs. The excellent heating efficiency of the microspheres may be 

attributed to the hysteresis losses of the magnetic particles. These microspheres are believed to be 

promising thermoseeds for hyperthermic treatment of cancer. 
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1. Introduction 

       Hyperthermia is a novel and minimally invasive type of cancer treatment in which body 

tissue is exposed to high temperatures (up to 43ºC) [1]. Tumor cells have difficulty in dissipating 

heat, because of their disorganized and compact vascular structure [2]. Research has shown that 

cancer cells can be damaged and killed at 43 ºC or higher, but normal cells are not damaged up to 

approximately 48 ºC [3]. Several methods of hyperthermia have been studied, and different types of 

external heat treatments for cancer have been attempted [4]. However, a major disadvantage of these 

techniques is that they cannot effectively heat deep-seated tumors. Magnetic microspheres with a 

diameter of 20–30 µm are potentially the only means of generating hyperthermia for deep-seated 

tumors without causing significant side effects in normal cells. Microspheres transported through the 

blood vessels can be entrapped in the capillary bed of the tumors. From their hysteresis loss and/or 

relaxation loss under an alternating current (AC) magnetic field，the microspheres can heat tumor 

cells locally [5-6]. In addition, the microspheres in the capillary bed of tumors can provide 

therapeutic effects through embolization, which would prevent the transport of blood and nutrition 

supply to the tumors [7]. 

       To date, several groups have developed magnetite (Fe3O4)-containing glass ceramics for this 

purpose, including magnetite Fe3O4 in a matrix of β-wollastonite (β-CaSiO3) and Fe3O4 in a 

B2O3-free CaO–SiO2–P2O5 glassy phase [8-9]. However, none of the microspheres have been 

produced to have a diameter of 20−30 µm or have exhibited a high heat-generating ability. In our 

previous studies [10], we prepared magnetic SiO2 microspheres with a diameter of 20−30 µm using a 

sol-gel method, which showed a higher specific absorption rate. Titania (TiO2) might show better 

biocompatibility than SiO2. Actually, it has been reported that osteoblast differentiation is enhanced 
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on TiO2-coated scaffold than SiO2-coated scaffold [11] and TiO2-containing bone cement shows a 

good bone-bonding ability in vivo [12,13].We previously tried to prepare magnetic TiO2 

microspheres for hyperthermic treatment of cancer [14] and the particle size was controlled by 

optimizing the reaction conditions, i.e., the molecular ratio of the reactants and the stirring speed, but 

the content of magnetic materials was not sufficiently high, and the diameter of the microspheres was 

too small for embolic therapy.  

       In the present study, we prepared magnetic TiO2 microspheres with a high content of 

magnetite nanoparticles (MNPs) using a sol-gel process in a water-in-oil emulsion. The structure and 

magnetic properties of the resultant microspheres were characterized. We also measured the in vitro 

heating ability of the microspheres under an AC magnetic field.

 

2. Materials and methods 

It has been reported that MNPs show different heating behaviors depending on their size. 

Therefore, in this study, we used two different-sized particles: a) MNPs prepared by coprecipitation 

method (COP) [15] and b) commercially available MNPs (SA) (Sigma-Aldrich Corporation, St. 

Louis, USA). 

 
2.1 Preparation of TiO2 microspheres containing MNPs 

 The oil phase consisted of 54 g of kerosene, 4.5 g of sorbitan monooleate (span 80), and 1.5 g 

of sorbitan monostearate (span 60). The oil phase was placed in a water bath and heated to 30ºC for 

20 min while being stirred with a homogenizer at approximately 1,600 rpm. The MNPs (COP and 
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SA; 1 g or 2 g) were then introduced into the oil phase along with 4.2 mL of H2O while being 

vigorously stirred. The water phase, which consisted of 2.7 g of methanol (CH3OH), 4.5 g of 

titanium tetraisopropoxide (TTIP), and 3 g of diethanolamine (DEA) was added to the stirred 

solution. Then, the emulsification process began with 20 min at 30ºC, followed by 20 min at 40ºC 

and 2 h at 55ºC. The gel particles were separated by centrifugation at 3,000 rpm for 5 min and 

washed with ethanol four times. Then, the gel particles were dried at 36.5ºC for 12 h and at 150ºC for 

3 h. The dried gel particles were further heated to 500ºC at a slow rate (48ºC/h from room 

temperature to 500ºC), kept at 500ºC for 3 h, and allowed to cool in the same atmosphere. As a 

reference, we also prepared TiO2 microspheres without MNPs. Unless indicated, all reagents used 

were obtained from Wako Pure Chemical Industries, Osaka, Japan.  

      To explore optimal heating efficiencies, we prepared 4 types of magnetic TiO2 microspheres 

with different amounts (1 g or 2 g) and different types (COP or SA) of MNPs. Table 1 shows the 

compositions and characteristics of four different samples (COP-1g, COP-2g, SA-1g, and SA-2g) 

obtained from these procedures. 

 

2.2 Characterization of the samples  

The crystalline phase of the samples was verified by powder X-ray diffraction (XRD; 

Miniflex 600HDA, Rigaku, Japan) using the following settings: X-ray source, CuKα; X-ray power, 

40 kV, 15 mA; scanning rate, 2 θ = 10°/min. The average crystallite size of the MNPs was 

estimated using Scherrer's formula [16]. To estimate of the average oxidation state for iron in the 

microspheres, quantitative analysis by powder diffraction was performed using an integrated X-ray 

Powder Diffraction Software Package (PDXL; Rigaku, Version 2.1.3.4) with Whole Powder Pattern 
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Fitting (WPPF) [17-18], connected to ICDD-PDF-2. The particle sizes and crystal morphologies of 

the samples were observed using a scanning electron microscope (SEM; VE-8800, Keyence, Japan), 

transmission electron microscopy (TEM; CM200FEG, Philips, Netherlands) and particle size 

distribution analyzer (PSD; Microtrac HRA (9320-X100), Nikkiso, Japan). 

 

2.3 Magnetic properties measurement  

     The saturation magnetization (Ms) and coercive force (Hc) of the samples were measured 

using a vibrating sample magnetometer (VSM-5, Toei, Japan) in magnetic fields up to 10 kOe at room 

temperature at a frequency of 80 Hz. We assumed that the area of the hysteresis loop measured under 

the applied magnetic field (100 kHz, 300 Oe) was the same as that measured in a field of 300 Oe using 

the VSM. The heat generated by the samples was calculated using the following equation [19]: 

P = f ∫HdB× 10 –7,           (1) 

where f is the frequency (in Hz), H is the magnetic field strength (in Oe), and B is the magnetization 

(in emu) of a sample in an applied magnetic field. The term ∫HdB  is the area of the hysteresis loop 

in the applied magnetic field. Therefore, in our calculations, f = 100 kHz and the area of the 

hysteresis loop measured at 300 Oe using the VSM was substituted for f ∫HdB . 

 

2.4 In vitro heat-generating ability measurement 

      A sample (0.2 g) was dispersed into 3 mL of hot agar solution (agar content = 1.0 wt%) in a 

glass tube, and then the agar was solidified in cold water. The concentration of the sample in the agar 

phantom was 67 mg/mL. The glass tubes containing the samples were placed in an applied AC 

magnetic field of 100 kHz and 300 Oe, in accordance with our previous study [10]. The heat 
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generated by the samples was investigated by measuring the change in temperature of the agar 

phantom as a function of time using a fiber optic temperature sensor (TempSens, Opsens Inc., 

Canada).

 

3. Results and discussion 

3.1 Characterization and analysis (XRD, SEM, PSD)  

Figure 1 shows the XRD patterns of all the samples in comparison with those of COP and 

SA. Sharp diffraction peaks of COP and SA were ascribed to magnetite (Fe3O4; PDF: 19-0629) 

and/or maghemite (γ-Fe2O3; PDF: 39-1346). Sharp diffraction peaks of COP-1g, COP-2g, SA-1g, 

and SA-2g were ascribed to magnetite Fe3O4 and/or γ-Fe2O3, hematite (α-Fe2O3; PDF: 33-0664), and 

anatase-type TiO2 (PDF: 21-1272). These results indicate that magnetic nanoparticle-containing TiO2 

microspheres were obtained. The crystallite sizes of COP and SA was estimated to be 10.5 and 24.3 

nm, respectively. Figure 2 shows the analysis of the oxidation state of iron by WPPF. The γ-Fe2O3 

content of COP-Xg magnetic TiO2 microsphere samples was higher than that of SA-Xg (X: 1 or 2). A 

portion of the MNPs was oxidized to non-magnetic α-Fe2O3 because the heat treatment of the 

samples was conducted in air.  However, the lack of oxygen in the heating process would have 

inhibited crystallization of TiO2 in the microspheres [20]. Therefore, further work will be performed 

to obtain magnetic microspheres without hematite by applying heat treatment in an 

oxygen-controlled atmosphere. 

Figure 3 shows SEM photographs of SA-1g, SA-2g, COP-1g, and COP-2g. Irrespective of 

the MNP content and type, spherical microspheres with a diameter of approximately 8-10 μm were 

obtained by the present method. In the size distribution curves of the samples (Figure 4), there was 
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one apex in the range of 7 μm to 15 μm for the COP-1g, COP-2g, and SA-1g samples. Sample SA-2g 

showed a wider aggregate size distribution, possibly because of incomplete hydrolysis and 

polycondensation reaction of TTIP [14]. The obtained microspheres had a very rough surface, 

probably because because there were also some non-spherical and small spherical particles. However, 

the 8 μm microspheres were not large enough to be embolic agents. Particles with small sizes may 

travel too far from the point of interest and cause non-targeted embolization [21]. Hence, the next 

stage of our the research should focus on controlling the particle size to 20–30 μm by optimizing 

reaction conditions such as the molecular ratio of the reactants, the stirring speed, and the species and 

concentration of the surfactants. 

3.2 TEM characterization and analysis of magnetic nanoparticles  

Figure 5 shows TEM images of COP and SA. COP contained nearly spherical particles with 

a diameter of approximately 10-15 nm. SA was composed of cube-shaped particles with a few 

spherical particles sized approximately 30-40 nm. Because of the magnetic dipolar interactions of the 

nanoparticles [22-24], agglomeration of the particles occurred in both samples. Therefore, the 

observed results were slightly larger than the size calculated from the Scherrer’s equation. According 

to the reported values [25-26] for Fe3O4, the single domain particle size was roughly estimated to be 

80-150 nm. Therefore, according to the results calculated from Scherrer's formula and the 

observation results from the TEM images, the magnetic nanoparticles used in this experiment (COP 

and SA) consisted of single-domain particles.  

3.3 Magnetic properties of samples 

Figure 6 shows the magnetization curves of SA-1g, SA-2g, COP-1g, COP-2g, COP, and SA 

measured at 10 kOe. The magnetic properties of the obtained samples are summarized in Table 2. 
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Both COP and SA showed hysteresis loops in their respective magnetization curves, indicating the 

ferrimagnetic nature of the Fe3O4 particles. The Ms was determined by the magnetization curves 

under the applied field of 10 kOe. The COP composed of smaller MNPs exhibited a smaller Ms than 

SA, probably because of surface spin disorder [27] caused by cation redistribution or the formation 

of spin glass-like structure in the near-surface layers. The decrease in particle size causes an 

increasing proportion of spin disordered surface layers [28]. Thus, smaller particles possess lower 

magnetization. The Ms of SA-1g and SA-2g was 21.5 and 34.2 emu/g, respectively, which was lower 

than that of the starting SA (73.2 emu/g). The Ms of COP-1g and COP-2g was 5.7 and 10.2 emu/g, 

respectively, which was lower than that of the starting COP (64.8 emu/g). There are three possible 

explanations for the decrease in Ms of SA-1g, COP-1g, SA-2g, and COP-2g. The first is simply 

related to the content of MNPs in the microspheres. The amount of MNPs per unit weight of 

microspheres decreased when the amount of MNPs used in the synthesis decreased. The second 

reason is that the mass of the TiO2 shell is much larger than that of the MNPs inside. However, TiO2 

does not exhibit magnetic properties, which leads to a lower density of magnetic components in the 

SA-1g, COP-1g, SA-2g, and COP-2g. The third reason is that the coating layer on the MNPs 

weakens the superexchange interaction between the magnetic moments on iron ions and induces spin 

disorder on the surface of nanoparticles, which results in a lower Ms compared to that of the starting 

MNPs [29-30]. The coercive force is significantly influenced by the crystal dimensions. The Hc of 

SA (98.0 Oe) was approximately five times higher than that of COP (16.9 Oe). Similar results of 

other MNPs have been reported and attributed to their domain structures [31]. The Hc of SA-1g and 

SA-2g was 100 and 103 Oe, respectively, which was almost equal to that of the starting SA (98.0 Oe). 

The Hc of COP-1g and COP-2g was 22.2 and 21.1 Oe, respectively, which was also slightly higher 
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than that of the starting COP (16.9 Oe). The coercive force showed little difference from the starting 

magnetic nanoparticles (SA and COP) in the present experiment because of the following two 

opposite effects: the TiO2 shell encapsulating the magnetite particles screens and decreases the 

magnetic dipole coupling interactions between neighboring magnetic nanoparticles [32], thereby 

reducing the coercivity value from hysteresis loop measurements. In contrast, magnetite Fe3O4 in the 

starting magnetic nanoparticles was partially converted to γ-Fe2O3 during the sol–gel synthesis 

procedure. The γ-Fe2O3 converted from Fe3O4 is likely to be larger than Fe3O4. For a single-domain 

particle, the value of Hc increases with increasing particle size [33]. These factors could lead to an 

increase in coercivity value. In this experiment, these two effects appeared to neatly balance each 

other. 

 From the ratio of the Ms of the samples to that of the starting MNPs (Table 2), the content 

of MNPs in the SA-1g, COP-1g, SA-2g, and COP-2g was calculated to be 29.4, 8.4, 46.7, and 15.7 

wt%, respectively. MNPs generated from COP showed poor dispersibility in water and hence were 

lost as residue in the beaker. In contrast, SA MNPs did not have such a problem. Therefore, the MNP 

contents of SA-1g, and SA-2g were higher than those of COP-1g and COP-2g. 

3.4 In vitro heat-generating ability of samples 

To prevent evaluation errors and to obtain absolute heating measurements, the specific 

absorption rate (SAR) of each sample was analyzed based on the in vitro heat generation of samples. 

Figure 7 shows the time-dependent temperature curves of the agar phantom under a magnetic field of 

100 kHz and 300 Oe. The temperature increases (ΔT) of the agar phantom at 10 min were 0.8, 7.8, 

and 8.3ºC for SA-1g, COP-1g, and COP-2g, respectively. The ΔT of the agar phantom at 6 min was 

63.3ºC for SA-2g.  
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As described in section 2.3, we assumed that the area of the hysteresis loop measured under 

the applied magnetic field (100 kHz, 300 Oe) was the same as that measured in a field of 300 Oe 

using the VSM. Figure 8 shows the magnetization curves of the SA-1g, SA-2g, COP-1g, COP-2g, 

COP, and SA measured at 300 kOe. The irregularities in the magnetization curves may be attributed 

to the presence of different magnetic phases of Fe3O4 and γ-Fe2O3. The heat generated by the 

samples (heat generation: P) calculated for all the samples is also listed in Table 3. 

From the increase in temperature, the value of SAR was calculated using the following 

equation [34]: 

t
T

m

mC
SAR

ample

i
ii

∆
∆

=
∑

s
,                       (2) 

      where Cimi is the heat capacity of each component whose temperature is increased in the 

applied magnetic field (Cagar = 4.2 J/g K, Cmagnetite = 0.62 J/g K, and Ctitania = 0.69 J/g K) [35]. The 

term ∆T/∆t is the largest gradient of the time-dependent temperature curve. The values of SAR 

calculated for all the samples are also listed in Table 3.  

It is speculated that hysteresis loss mainly contributes to the heat generation of SA-1g and 

SA-2g because the SAR value of SA-1g (6.3 W/g) and SA-2g (18.3 W/g) was lower than the heat 

generation (P) (SA-1g: 16.3 W/g, SA-2g: 21.3 W/g) calculated from the area of hysteresis loop. We 

believe that the hysteresis loss provided substantial heating power, but the TiO2 shell had a negative 

influence on heat transfer and thus reduced heating efficiency. In contrast, the values of SAR of 

COP-1g (2.5 W/g) and COP-2g (1.9 W/g) were higher than P (COP-1g: 0.3 W/g, COP-2g: 0.3 W/g). 

Magnetite nanoparticles with a single-domain structure can be heated by relaxation loss under an 

alternating magnetic field [36]. However, in this experiment, the power loss resulting from relaxation 
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was insufficient, probably because the starting COP primarily contained particles with a diameter of 

10 nm as observed in the TEM image (Figure 5), which is similar to the single-domain size. The Néel 

relaxation loss and Brownian relaxation loss are associated with the magnetic moment rotations of 

the entire group of particles and among the individual particles, respectively. Each relaxation time is 

given by the following equations (3), (4), and (5) [37-38]:  

kT
KV

N exp0ττ =
                              (3) 

kT
RH

B

34πητ =
                              (4) 

BN

BN
eff ττ

τττ
+

=
                               (5) 

where Bτ  is the Brownian relaxation time, Nτ  is the Néel relaxation time, 0τ is the time constant 

( 0τ = 10-9 s), k is Boltzmann’s constant, K is the anisotropy constant (K = 1.35 × 104 J/m), T is the 

temperature (T = 293 K), V is the particle volume (m3), η is the viscosity (0.858 g/ms) [39], and RH is 

the radius of the particle. The heat dissipation by relaxation loss is given by the following equation 

[40]: 

2
2

00 )2(1
2

eff

eff

f
f

fHP
τπ
τπ

χπµ
+

=
           (6) 

where χ0 is the AC magnetic susceptibility and H is the field amplitude (A/m). From calculations 

using Equation 3-6 at our given frequency, ω/2π =100 kHz, we estimated that Fe3O4 nanoparticles 

with a diameter of 14–25 nm would have power dissipation by relaxation loss under an alternating 

magnetic field of 100 kHz [41]. As discussed previously, Fe3O4 in the starting magnetic nanoparticles 

was partially converted to γ-Fe2O3 in the magnetic microsphere sample during the sol–gel synthesis 

procedure. The particle size of γ-Fe2O3 did not meet the criteria of being within 14–25 nm. Therefore, 
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the power loss resulting from relaxation decreased greatly. It is expected that microspheres with 

excellent heating capability can be obtained when Fe3O4 nanoparticles with the ideal size of 14–25 

nm are used. However such Fe3O4 nanoparticles are not commercially available. They might be 

chemically synthesized [42], but they are often unstable in aqueous medium. Further study is needed 

to synthesize TiO2 microspheres containing MNPs with the ideal particle size. 

 

4. Conclusion 

Magnetic TiO2 microspheres with a diameter of 7-15 µm were obtained by directly 

introducing pre-formed magnetic MNPs into a sol-gel process from TTIP in water-in-oil emulsion. 

The magnetic TiO2 microspheres containing Fe3O4 at a content higher than 46 wt% increased the 

temperature of the agar phantom to above 43°C in 3 min. They are expected to be useful for arterial 

embolization hyperthermic treatment of cancer, but control of their diameter is essential. 
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Figure Caption 

Figure 1. XRD patterns of samples in comparison with those of COP and SA. 

Figure 2. Oxidation state of iron analyzed by the WPPF method. 

Figure 3. SEM photographs of samples. 

Figure 4. Size distribution curves of samples. 

Figure 5. TEM photographs of COP and SA. 

Figure 6. Hysteresis loops of samples measured with the maximum applied field of 10 

kOe. 

Figure 7. Time-dependent temperature curves of the agar phantom. 

Figure 8. Hysteresis loops of samples measured with the maximum applied field of 300 

Oe. 
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Figure 1. XRD patterns of samples in comparison with those of 

COP and SA. 



 

19 
 

 
 
 
 
 
 

Figure 2. Oxidation state of iron analyzed by WPPF method. 
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Figure 3. SEM photographs of samples. 
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Figure 4. Size distribution curves of samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

22 
 

 
 

Figure 5. TEM photographs of COP and SA. 
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Figure 6. Hysteresis loops of samples measured with the maximum 

applied field of 10 kOe. 
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Figure 7. Time-dependent temperature curves of the agar phantom. 
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Figure 8. Hysteresis loops of samples measured with the maximum 

applied field of 300 Oe. 
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Table 1. Compositions and characteristics of samples and MNPs. 
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Table 2. Magnetic properties and MNP contents of samples in 

comparison with MNPs. 
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Table 3. Hysteresis loss and SAR value of samples 

 


