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Abstract

Background: One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is
robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the
previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to
fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to
dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are
known as common structures to biological oscillators, the analytical solutions have not been presented for a
general model of negative feedback oscillators.

Results: We present the analytical expressions for the period, amplitude and their associated MPSs for a general
model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical
solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters.
The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one,
the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present
the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation
period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the
number of molecular species constituting the feedback loop).

Conclusions: Since a general model of negative feedback oscillators was employed, the results shown in this
paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis
that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions
give synthetic biologists some clues to design gene oscillators with robust and desired period.

Background
Robust oscillations are ubiquitous in biology such as cir-
cadian rhythms and cell cycles [1-4]. Robustness is the
ability to resume reliable operation in the face of different
types of perturbations: environmental and genetic
changes, parameter uncertainty, and stochastic fluctua-
tions [5-8]. It is critically important to understand the
mechanisms by which biological oscillators robustly work
in ever-fluctuating environments.

To quantify biochemical systems’ robustness to fluctua-
tions in all the kinetic parameters, multiparameter sensi-
tivity (MPS) was used [8]. Although MPS is given by the
sum of the squared single-parameter sensitivities, it repre-
sents how fragile the system’s output is when small, ran-
dom, and simultaneous fluctuations are provided to all
kinetic parameters [8]. MPS is mathematically equal to the
normalized variance calculated by the Monte Carlo
method [9-11]. Use of MPS has revealed that negative
feedback loops with multiple phosphorylations produce
oscillators robust to parameter uncertainty [8]. The dual
feedback model, a simplified version of the Drosophila
PER-TIM feedback model [12], was found to be the most
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robust and entrainable among many feedback models with
various connection logics [13].
Both numerical and analytical approaches are important

for an understanding of design principles underlying
robust biological oscillators. A number of numerical stu-
dies have been reported for the biological oscillators and
many of mathematical models are available from databases
such as JWS Online [14], BioModels [15,16] and BioFNet
[17]. Numerical analyses have revealed the mechanisms of
how a variety of feedback structures produce robust oscil-
lators [8,13] and identified critical kinetic parameters that
are related to changes in the period and amplitude [9,11].
Although numerical simulations are useful for a quantita-
tive understanding of how complicated biological oscilla-
tors behave, they do not provide explicit information on
how the period, amplitude and their robustness depend on
kinetic parameters.
On the other hand, analytical solutions directly link the

mechanisms and kinetic parameters to dynamic proper-
ties such as period and amplitude. However, analytical
studies for biological oscillators are scarce compared to
numerical counterparts. Most of analytical studies
[18-20] focused on whether their models oscillate, but
not on the robustness of period and amplitude. Kut et al
[21] provided the analytical expressions for the period
and amplitude for Elowitz-Leibler repressilator [22] and
Barkai-Leibler circadian clock [23,24]. Their work is a
great step toward an understanding of how the dynamic
properties depend on kinetic parameters. However, the
models they analyzed lack generality. Their analytical
solutions are not applicable to other biological oscillators.
To our knowledge, few analytical solutions for the period
and amplitude have been reported. Analytical solutions
for a general model of negative feedback loops, which are
common structures to biological oscillators [25,26],
greatly contribute to an understanding of design princi-
ples underlying robust biological oscillators.
In this paper, we present analytical solutions for the

period and amplitude, and their associated MPSs for a
general model of negative feedback oscillators. The analy-
tical solutions are in agreement with numerical solutions
of their ordinary differential equations. Our analytical or
theoretical study of MPSs reveals the mechanisms by
which negative feedback loops in biology generate robust
oscillations. We present the first mathematical proof that
long negative feedback loops make oscillators robust to
parameter fluctuations by the distributed time-delay
mechanism.

Results and discussion
Negative feedback oscillator model
We consider a general model of negative feedback oscil-
lators with arbitrary loop length, where the feedback is
imposed by the last species of the cascade on the first

species. Figure 1 shows a schematic diagram of the
negative feedback oscillator model. The dynamics is
described by a set of differential equations:

dx1

dt
= β1 · θ(Kn, xn) − α1x1

dx2

dt
= β2 · θ(x1, K1) − α2x2

...

dxn

dt
= βn · θ(xn−1, Kn−1) − αnxn

(1)

where xi is the concentration of the ith molecular spe-
cies (e.g., transcription factor, specifically modified form
of protein, metabolite, etc.), αi is the decay rate constant,
βi is the production rate constant, and Ki is the thresh-
old for turning on/off the production of the target mole-
cular species (i ∈ {1, 2, . . . , n}). αi, βi and Ki take positive
values. n is the number of molecular species or indicates
feedback loop length. θ is the unit step function given by

θ(a, b) =
{

0 (a < b)
1 (a ≥ b)

(2)

where a and b are arbitrary positive values. Introdu-
cing the step function makes dynamic models tractable
[27]. This on/off behavior arises from a sigmoidal Hill
function. Ki corresponds to the concentration of a regu-
lator molecule at which the production rate of a target
molecule reaches a half maximum in Hill function. xi

takes a positive value in the range of (0, βi/αi). The

Figure 1 Schematic diagram of the negative feedback
oscillator model. xi is the ith molecular species, αi is the decay
rate constant, βi is the production rate constant, and Ki is the
threshold for turning on/off the production of the target molecular
species (i ∈ {1, 2, . . . , n}). n is the number of molecular species.
xi activates xi+1 (i ∈ {1, 2, . . . , n − 1}). xn represses x1. All
molecular species are subject to degradation.
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negative feedback oscillator model can produce oscilla-
tions when both n ≥ 3 and Ki < βi/αi (i ∈ {1, . . . , n}) are
satisfied. It has been proved that this type of negative
feedback models cannot generate a sustained oscillation
when n < 3[20]. An example of the dynamics is shown
in Figure 2.
Since at least one negative feedback loop is necessary

for any biochemical networks to produce oscillations
[25], the above model is found everywhere as a network
motif in biological oscillatory networks. For example,
circadian clock networks can be described by assuming
that xi are clock genes or specifically modified forms of
clock proteins. Our model can also be found in the field
of synthetic biology. Elowitz-Leibler repressilator [22]
and Atkinson’s genetic circuit [28] can be considered as
slightly modified versions of our model.

Analytical solutions for period, amplitude and their
associated MPSs
The period and amplitude were symbolically solved as
follows. First, we divided a cycle of oscillations into time
intervals (Iij in Figure 2). Next, we obtained the interval
times, peaks and troughs. Finally, we connected all the
intervals to calculate the period and amplitude (for
details, see Methods). The period τ and the ith species
amplitude εi for the oscillatory model of Eq (1) are
given by

τ = −
n∑

i=1

ln(γiδi)
αi

(3)

εi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C11

(
n∏

j=1
γj

α1/αj − 1

)
(i = 1)

Ci1

(
n∏
j=i

γj
αi/αj

i−1∏
j=1

δj
αi/αj − 1

)
(i > 1)

(4)

where γi and δi are

γi =
Ki − βi/αi

Ci1
(5)

δi =
Ki

Ci2
(6)

Cij (i ∈ {1, . . . , n}, j ∈ {1, 2}) are the integral constants:

Ci1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K1

n∏
j=2

δj
α1/αj − β1

α1
(i = 1)

Ki

i−1∏
j=1

γj
αi/αj

n∏
j=i+1

δj
αi/αj − βi

αi
(1 < i < n)

Kn

n−1∏
j=1

γj
αn/αj − βn

αn
(i = n)

(7)

Ci2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C11

n∏
j=1

γj
α1/αj +

β1

α1
(i = 1)

Ci1

n∏
j=i

γj
αi/αj

i−1∏
j=1

δj
αi/αj +

βi

αi
(i > 1)

(8)

Although Cij are hard to solve in symbolic form, they
can be determined by numerically solving the system of
Eqs (7)-(8).
Assuming that the peak and trough of xi are βi/αi and

zero, respectively, the integral constants can be deter-
mined without any numerical computations, and the
analytical solutions for the period τ and the ith species
amplitude εi are given by (for details, see Methods)

τ = −
n∑

i=1

ln[ρi(1 − ρi)]
αi

(9)

εi =
βi

αi
(10)

where ρi is the ratio of the threshold Ki to the ampli-
tude βi/αi:

ρi =
Kiαi

βi
(11)

Multiparameter sensitivity (MPS) represents how fra-
gile system’s properties are to fluctuations in kinetic
parameters (for details, see Methods). The period MPS

τ and amplitude MPS 
εi are given by

Figure 2 Example of dynamics of the negative feedback
oscillator model. n = 3, αi = 1, βi = 1 and Ki = 0.5
(i ∈ {1, 2, 3}). Iij are the intervals used to derive the analytical
solutions for the period and amplitude (see Text).
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τ =

n∑
i=1

[(
ln[ρi(1 − ρi)]

αi
− 1 − 2ρi

αi(1 − ρi)

)2

+ 2
(

1 − 2ρi

αi(1 − ρi)

)2
]

[
n∑

i=1

ln[ρi(1 − ρi)]
αi

]2
(12)


εi = 2 (13)

Validation of the analytical solutions
First, we like to validate the analytical solutions given by
Eqs (3)-(4) (which are free of the assumptions of βi/αi

peak and zero trough). In order to determine Cij, fsolve
function of MATLAB (The MathWorks, Inc.) was used.
The MPSs for period and amplitude were numerically
calculated by providing a small perturbation to the
values of αi, βi and Ki (see Methods). The computed
period, amplitude and MPSs are referred to as the semi-
analytical solutions because numerical methods were
partially used. The semi-analytical solutions were com-
pared with the numerical integration solutions. The
numerical integration solutions for the period and
amplitude were obtained by numerically integrating
Eq (1). Table 1 summarizes the methods to obtain the
semi-analytical and numerical integration solutions. We
assigned uniform random values over (0, 1) to αi and βi,
and those over (0, βi/αi) to Ki. The semi-analytical solu-
tions were consistent with the numerical integration
solutions (Figure 3). Thus, the analytical solutions given
by Eqs (3)-(4) were validated.
In addition to the correctness of the solutions, the

semi-analytical approach is computationally more effi-
cient than the numerical integration approach. When
n = 3, the semi-analytical approach (fsolve function of
MATLAB) required 0.1 sec per parameter set in order
to calculate the period, amplitude and their associated
MPSs. On the other hand, the numerical integration
approach (ode15s function of MATLAB) required 12
sec per parameter set. Although it looks computationally
inexpensive to numerically integrate the differential
equations of Eq (1), it takes much computational cost
because of ‘stiffness’ that comes from the step function
of Eq (2).
Next, we like to validate the analytical solutions given

by Eqs (9)-(10) and Eqs (12)-(13) (which were derived

by assuming βi/αi peak and zero trough). The solutions
given by Eqs (9)-(10) and Eqs (12)-(13) are referred to
as the full analytical solutions because they are free of
any numerical methods (Table 1). We compared the full
and semi-analytical solutions. We assigned random
values to kinetic parameters as we did for the compari-
son between the semi-analytical and numerical integra-
tion solutions. The results are shown in Figure 4. The
full and semi-analytical solutions are consistent espe-
cially when the feedback loop is long, because the
assumptions (the peak is βi/αi and the trough is zero)
are met when the feedback loop is long (Figure 5, and
compare it with Figure 2). Even for the short loop
(n = 3), the differences between the full and semi-analy-
tical solutions are less than an order of magnitude for
most parameter sets. Note that, in Figure 4D, the full
analytical solutions for the amplitude MPS are always
two, independent of kinetic parameter values (Eq (13)).
Although some symbols seem scattered away from the
diagonal line in Figure 4D, most of the symbols are so
concentrated on the diagonal line that the full and semi-
analytical solutions are consistent. In summary, the ana-
lytical solutions given by Eqs (9)-(10) and Eqs (12)-(13)
were validated.

Effect of changes in kinetic parameters on period and its
MPS
Having validated the analytical solutions given by Eqs
(9)-(10) and Eqs (12)-(13), we investigated how the per-
iod and period MPS depend on the values of kinetic
parameters (we do not investigate the amplitude and
amplitude MPS because how they depend on kinetic
parameters is clear from Eqs (10) and (13)). Figure S1
shows that how the period depends on kinetic para-
meters. For simplicity, we assumed n = 3, αi = α, βi = β,
Ki = K (i ∈ {1, 2, 3}), and ρ = Kα/β. When the period is
given as a function of α, it reaches the minimal values at
ρ = 0.7228 (Figure S1AB in Additional file 1). When
the period is given as a function of β or K, it reaches
the minimal values at ρ = 0.5 (Figure S1CDEF). Note
that the negative feedback oscillator model produces
oscillations only when K < β/α (ρ < 1). Figure S2
(Additional file 1) shows how the period MPS depends
on kinetic parameters. The period MPS always reaches

Table 1 Summary of how to obtain numerical integration, semi-analytical, and full analytical solutions

Numerical integration solution Semi-analytical solution Full analytical
Solution

τ Numerical integration of Eq (1) Eq (3)
(Eqs (7)-(8) are numerically solved)

Eq (9)

εi Numerical integration of Eq (1) Eq (4)
(Eqs (7)-(8) are numerically solved)

Eq (10)


τ Numerical computation (see Methods) Numerical computation (see Methods) Eq (12)


εi Numerical computation (see Methods) Numerical computation (see Methods) Eq (13)
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the minimal value 0.2222 at ρ = 0.5959, implying that
the period MPS depends solely on ρ (when n is fixed).
Assuming αi = α and ρi = ρ (i ∈ {1, 2, . . . , n}), Eq (12)

reduces to


τ =
f (ρ)

n
(14)

where

f (ρ) =

(
ln[ρ(1 − ρ)] − 1 − 2ρ

1 − ρ

)2

+ 2
(

1 − 2ρ

1 − ρ

)2

(
ln[ρ(1 − ρ)]

)2
(15)

f (ρ) reaches the minimal value 0.6667 at ρ = 0.5959,
and lim

ρ→1
f (ρ) = ∞ (Figure 6). Eq (14) shows that ρ has a

significant effect on the period MPS. In order to reduce
the period MPS, i.e., to make the period robust to para-
meter fluctuations, ρ should not be close to one. Eq (14)
also shows the feedback loop length n is important. The
following section explains how the period MPS depends
on the feedback loop length.

Effect of changes in feedback loop length on period and
its MPS
Assuming ρi = 0.5 (Ki = βi/2αi), Eq (9) and Eq (12)
reduce to

Figure 3 Comparison of the semi-analytical and numerical integration solutions . A: period, B: amplitude, C: period MPS, D: amplitude MPS.
The values of αi and βi (i ∈ {1, 2, . . . , n}) were randomized with a range of (0, 1), while the value of Ki (i ∈ {1, 2, . . . , n}) was randomized
with a range of (0, βi/αi).
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τ = ln 4 ·
n∑

i=1

αi
−1 (16)


τ =

n∑
i=1

αi
−2

(
n∑

i=1
αi

−1

)2 (17)

respectively. Therefore, the value of period MPS is
constrained by

Figure 4 Comparison of the full analytical and semi-analytical solutions. A: period, B: amplitude, C: period MPS, D: amplitude MPS. The
values of αi and βi (i ∈ {1, 2, . . . , n}) were randomized with a range of (0, 1), while the value of Ki (i ∈ {1, 2, . . . , n}) was randomized
with a range of (0, βi/αi).

Figure 5 Examples of dynamics of the negative feedback
oscillator model. A: n = 5, B: n = 7. αi = 1, βi = 1 and
Ki = 0.5 (i ∈ {1, 2, . . . , n}).
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1
n

≤ 
τ ≤ 1 (18)

The minimal value of the period MPS decreases as n
increases. Here, let �τbe the sum of all the single-para-
meter sensitivities of the period. Then, we get an inter-
esting relationship among the single-parameter
sensitivities (see Eqs (61)-(63) in Methods):

�τ =
n∑

i=1

(
Sτ

αi
+ Sτ

βi
+ Sτ

Ki

)

=
n∑

i=1

Sτ
αi

= −1

(19)

Note that Sτ
βi

= Sτ
Ki

= 0 and Sτ
αi

< 0 when ρi = 0.5. Eq (19)
indicates that all the degradation reactions share the influ-
ence on the period. The MPS given by Eq (17) is minimized
when all the degradation reactions equally share the influ-
ence (Sτ

αi
= −1/n), which is achieved by equating all αi.

Assuming αi = α, Eq (16) and Eq (17) further reduce to

τ =
n ln 4

α
(20)


τ =
1
n

(21)

respectively. Eq (20) indicates that the period increases
with an increase in the feedback loop length n and/or
with a decrease in the decay rate constant α. Eq (21)
indicates that changes in α do not alter the MPS. On
the other hand, the MPS decreases as n increases.
In the negative feedback oscillators, the period is given

by the sum of the time delays generated by the reactions

belonging to the feedback loop (Figure 7). As the num-
ber of the reactions increases (thus, n increases), the
time delays can be distributed to more reactions. This
‘distributed-time delay’ mechanism provides the oscilla-
tion period with robustness to parameter fluctuations,
decreasing the MPS.
In the previous paper [8], we proved that the merge

reactions with addition logic contribute to keeping a
steady-state component concentration constant against
fluctuations in kinetic parameters. The concentration
MPS decreases as the number of merging influx reac-
tions increases (see Appendix A4 in [8]). The period
MPS given by Eq (17) resembles the concentration MPS
in the merge reactions. Although the oscillation period
and steady-state concentration are different properties,
our studies suggest that the underlying mechanisms that
provide robustness are common to both the cases. The
oscillation period is given by the sum of time delays,
and the steady-state concentration is determined by the
sum of influxes.

Conclusions
We presented the analytical solutions of period, ampli-
tude, and their associated MPSs for a general model of
negative feedback oscillators. We validated the analytical
solutions by comparing them with numerical solutions.
Next, using the analytical solutions, we investigated how
changes in kinetic parameters affect the period and its
associated MPS. ρi, the ratio of threshold value to the
amplitude, was found to be an important determinant of
the period MPS. When ρi is close to one (Ki ≈ βi/αi ),
MPS is very large, indicating that the period is very sen-
sitive to fluctuations in kinetic parameters. Finally, we
gave the first mathematical proof that long negative
feedback loops make oscillations robust to parameter
fluctuations by the distributed time-delay mechanism.
Since the analytical solutions were derived for a general
model of negative feedback loops that are common
structures in biological oscillators, the results presented

Figure 6 f (ρ) vs. ρ. f (ρ) is given by Eq (15) in Text.

Figure 7 Distributed time-delay mechanism. Oscillators with two
(left) and eight (right) time delays. The right is more robust than
the left because of the distributed time-delay mechanism (see
Text).
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in this paper are expected to be true for many of biolo-
gical oscillators.
In circadian rhythm networks, clock proteins have

multiple phosphorylation sites. It has been reported that
the phosphorylation is responsible for sleep disorders
[29-31] and temperature compensation [32]. In the pre-
vious study, we carried out numerical simulations to
predict that the multiple phosphorylations contribute to
enhanced robustness of circadian rhythms [8]. The theo-
retical study in this paper strongly supports our previous
result. The multiple phosphorylations form a long nega-
tive feedback loop, providing the distributed time-delay
mechanism. It is reasonable for organisms to devise the
multiple phosphorylation sites in order to make circa-
dian cycles robust.
To date synthetic biologists have focused on whether

their artificial gene regulatory circuits oscillate
[22,28,33-35]. Their next challenge would be to design
oscillator circuits with desired and accurate period. Our
study demonstrates key factors for designing such a
high-performance clock. For instance, ρi (= Kiαi/βi)
should not be close to one to make the period insensi-
tive to parameter fluctuations (Eqs (14)-(15)). When
ρi = 0.5959, the period becomes robust to parameter
fluctuations. The robustness can be further increased by
lengthening a feedback loop. To design an oscillator
with long period, one can employ a long negative feed-
back loop (large n) and/or slow decay rates (small αi) as
suggested by Eq (9). Our analytical study recommends
increasing the feedback loop length instead of decreasing
decay rates, achieving a robust oscillator (Eqs (17)-(18)
and Eq (21)). In summary, the analytical solutions pre-
sented in this paper greatly contribute to designing
robust gene oscillators with desired period.

Methods
Derivation of analytical solutions for period and
amplitude
In this section, we explain how to derive the analytical
solutions for the period and amplitude. For simplicity,
we assume n = 3 and Eq (1) becomes

dx1

dt
= β1 · θ(K3, x3) − α1x1

dx2

dt
= β2 · θ(x1, K1) − α2x2

dx3

dt
= β3 · θ(x2, K2) − α3x3

(22)

An example of the dynamics is shown in Figure 2. First,
we divide a cycle of oscillations into time intervals (Iij in
Figure 2). In Ii1, xi increases from its trough to Ki. In Ii2, xi

decreases from its peak to Ki. The time taken for Iijis
denoted by τij. Next, we derive analytical expressions for

each time interval, and the peaks and troughs of oscilla-
tion. Finally, we connect all the time intervals to obtain
period. The amplitude is obtained by subtracting the
trough from the peak. We set t = 0 to the starting time of
I11.
In I11, I21 and I31, the first molecular species is pro-

duced (θ = 1) and thus the differential equation for x1 in
Eqs (22) becomes

dx1

dt
= β1 − α1x1 (23)

Integrating Eq (23), we obtain

x1(t) =
β1

α1
+ C11e−α1t (24)

Similarly, in I21, I31 and I12, x2 follows

x2(t) =
β2

α2
+ C21e−α2(t−τ11) (25)

Since t = 0 is the starting time of I11, the subtraction of
τ11 appears in Eq (25). The same shall apply to Eq (26)
and Eqs (28)-(30). In I31, I12 and I22, x3 follows

x3(t) =
β3

α3
+ C31e−α3(t−τ11−τ21) (26)

In I12, I22 and I32, the first molecular species is not
produced (θ = 0) and thus the differential equation for
x1 in Eqs (22) becomes

dx1

dt
= −α1x1 (27)

Integrating Eq (27), we obtain

x1(t) = C12e−α1(t−τ11−τ21−τ31) (28)

Similarly, in I22, I32 and I11, x2 follows

x2(t) = C22e−α2(t−τ11−τ21−τ31−τ12) (29)

In I32, I11 and I21, x3 follows

x3(t) = C32e−α3(t−τ11−τ21−τ31−τ12−τ22) (30)

Cij(i ∈ {1, 2, 3}, j ∈ {1, 2}) are the integral constants.
Here, we would like to calculate τij. Since xi increases
and reaches to Ki at t =

i∑
j=1

τj1 (Figure 2), we obtain

xi(
i∑

j=1

τj1) = Ki (31)

By inserting Eqs (24)-(26), Eq (31) becomes

βi

αi
+ Ci1e−αiτi1 = Ki (32)

Maeda and Kurata BMC Systems Biology 2014, 8(Suppl 5):S1
http://www.biomedcentral.com/1752-0509/8/S5/S1

Page 8 of 12



By solving Eq (32) for τi1, we obtain

τi1 = − ln γi

αi
(33)

where

γi =
Ki − βi/αi

Ci1
(34)

Since xi decreases and reaches to Ki at

t =
3∑

j=1

τj1 +
i∑

j=1

τj2 (Figure 2), we obtain

xi(
3∑

j=1
τj1 +

i∑
j=1

τj2) = Ki (35)

By inserting Eqs (28)-(30), Eq (35) becomes

Ci2e−αiτi2 = Ki (36)

By solving Eq (36) for τi2, we obtain

τi2 = − ln δi

αi
(37)

where

δi =
Ki

Ci2
(38)

By inserting Eqs (33) and (37) into Eqs (24)-(26), we
get the peaks of x1, x2 and x3:

x1(
3∑

i=1

τi1) =
β1

α1
+ C11γ1γ2

α1/α2γ3
α1/α3 (39)

x2(
3∑

i=1

τi1 + τ12) =
β2

α2
+ C21γ2γ3

α2/α3δ1
α2/α1 (40)

x3(
3∑

i=1

τi1 + τ12 + τ22) =
β3

α3
+ C31γ3δ1

α3/α1δ2
α3/α2 (41)

By inserting Eqs (33) and (37) into Eqs (28)-(30), we
get the troughs of x1, x2 and x3:

x1(
3∑

i=1

τi1 +
3∑

i=1

τi2) = K1δ2
α1/α2δ3

α1/α3 (42)

x2(
3∑

i=1

τi1 +
3∑

i=1

τi2 + τ11) = K2δ3
α2/α3γ1

α2/α1 (43)

x3(
3∑

i=1

τi1 +
3∑

i=1

τi2 + τ11 + τ21) = K3γ1
α3/α1γ2

α3/α2 (44)

By summing up τij, we obtain the period:

τ =
3∑

i=1

(τi1 + τi2)

= −
3∑

i=1

ln(γiδi)
αi

(45)

The oscillation amplitude is calculated by subtracting
the trough from the peak. From Eqs (24) and (39), the
amplitude of x1 is

ε1 = x1(
3∑

i=1

τi1) − x1(0)

= C11(γ1γ2
α1/α2γ3

α1/α3 − 1)

(46)

Similarly, from Eqs (25) and (40), the amplitudes of x2

is

ε2 = x2(
3∑

i=1

τi1 + τ12) − x2(τ11)

= C21(γ2γ3
α2/α3δ1

α2/α1 − 1)

(47)

From Eqs (26) and (41), the amplitudes of x3 is

ε3 = x3(
3∑

i=1

τi1 + τ12 + τ22) − x3(τ11 + τ21)

= C31(γ3δ1
α3/α1δ2

α3/α2 − 1)

(48)

The general expressions for the period and amplitude
are shown as Eqs (3) and (4), respectively. To calculate τ

and εi (i ∈ {1, 2, 3}), we have to determine Cij

(i ∈ {1, 2, 3}, j ∈ {1, 2}). Cij are determined by solving the
following six equations. x1 at the end of I32 equals to
that at the starting point of I11. By equating Eq (42) to
x1(0) of Eq (24),

C11 = K1δ2
α1/α2δ3

α1/α3 − β1

α1
(49)

x2 at the end of I11 equals to that at the starting point
of I21. By equating Eq (43) to x2(τ11) of Eq (25),

C21 = K2δ3
α2/α3γ1

α2/α1 − β2

α2
(50)

x3 at the end of I21 equals to that at the starting point
of I31. By equating Eq (44) to x3(τ11 + τ21) of Eq (26),

C31 = K3γ1
α3/α1γ2

α3/α2 − β3

α3
(51)

x1 at the end of I31 equals to that at the starting point

of I12. By equating Eq (39) to x1(
3∑

i=1

τi1) of Eq (28),

Maeda and Kurata BMC Systems Biology 2014, 8(Suppl 5):S1
http://www.biomedcentral.com/1752-0509/8/S5/S1

Page 9 of 12



C12 = C11γ1γ2
α1/α2γ3

α1/α3 +
β1

α1
(52)

x2 at the end of I12 equals to that at the starting point

of I22 . By equating Eq (40) to x2(
3∑

i=1

τi1 + τ12) of Eq (29),

C22 = C21γ2γ3
α2/α3δ1

α2/α1 +
β2

α2
(53)

x3 at the end of I22 equals to that at the starting point of

I32. By equating Eq (41) to x3(
3∑

i=1

τi1 + τ12 + τ22) of Eq (30),

C32 = C31γ3δ1
α3/α1δ2

α3/α2 +
β3

α3
(54)

The general forms of Eqs (49)-(51) and Eqs (52)-(54) are
expressed as Eq (7) and Eq (8), respectively. Since there
are six integral constants (Cij) and six equations (Eqs (49)-
(54)), the integral constants can be calculated. For this
purpose, we used fsolve of MATLAB in this study.

Approximation of analytical solutions for period and
amplitude
Assuming θ = 1 for Eqs (1), xi moves toward its steady-
state value βi/αi, which is given by setting dxi/dt = 0.
Similarly, assuming θ = 0, xi moves toward zero. As
shown in Figure 2 and 5, the peak and trough of xi are
close to βi/αi and zero, respectively. Therefore, we
assume that the peak and trough are βi/αi and zero,
respectively, i.e., xi increases (decreases) to reach its
steady state before it begins to decreases (increases).
This assumption allows us to symbolically derive the
period and amplitude as shown below. The assumption
is validated in “Results and discussion.”
The assumption that the trough is zero gives

x1(0) = 0

xi(
i−1∑
j=1

τj1) = 0 (i > 1)
(55)

Using Eq (55) and Eqs (24)-(26), the integral constants
Ci1 are

Ci1 = −βi

αi
(56)

The assumption that the peak is βi/αi gives

x1(
n∑

j=1

τj1) =
βi

αi

xi(
n∑

j=1

τj1 +
i−1∑
j=1

τj2) =
βi

αi
(i > 1)

(57)

Using Eqs (57) and Eqs (28)-(30), the integral con-
stants Ci2 are

Ci2 =
βi

αi
(58)

By inserting Eqs (56) and (58) into Eqs (34) and (38),
respectively, the period τ described by Eq (3) (or
Eq (45)) becomes

τ = −
n∑

i=1

ln[ρi(1 − ρi)]
αi

(59)

where ρi = Kiαi/βi. From the assumption that the peak
and trough are βi/αi and zero, respectively, the ampli-
tude of xi is

εi =
βi

αi
(60)

The relative change of a system property in response
to a relative change in a parameter is called single-para-
meter sensitivity (see the following section). The single-
parameter sensitivities for period are

Sτ
αi

=
αi

τ

∂τ

∂αi
= τ−1αi

−1
[

ln
[
ρi(1 − ρi)

] − 1 − 2ρi

1 − ρi

]
(61)

Sτ
βi

=
βi

τ

∂τ

∂βi
= τ−1αi

−1 1 − 2ρi

1 − ρi
(62)

Sτ
Ki

=
Ki

τ

∂τ

∂Ki
= −τ−1αi

−1 1 − 2ρi

1 − ρi
(63)

MPS is given by summing the squared single-para-
meter sensitivities and represents system’s fragility to
small, random, and simultaneous fluctuations in all
kinetic parameters (see the following section). Period
MPS is given by


τ =
n∑

i=1

[(
Sτ

αi

)2 +
(
Sτ

βi

)2 +
(
Sτ

Ki

)2
]

=

n∑
i=1

[(
ln[ρi(1 − ρi)]

αi
− 1 − 2ρi

αi(1 − ρi)

)2

+ 2
(

1 − 2ρi

αi(1 − ρi)

)2
]

[
n∑

i=1

ln[ρi(1 − ρi)]
αi

]2

(64)

The single-parameter sensitivities of amplitude are

Sεi
αj

=
αj

εi

∂εi

∂αj
=

{−1 (i = j)
0 (i �= j)

(65)

Sεi
βj

=
βj

εi

∂εi

∂βj
=

{
1 (i = j)
0 (i �= j)

(66)
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Sεi
Kj

=
Kj

εi

∂εi

∂Kj
= 0 (67)

Amplitude MPS is given by


εi =
n∑

j=1

[(
Sεi

αj

)2
+

(
Sεi

βj

)2
+

(
Sεi

Kj

)2
]

= 2 (68)

Multiparameter sensitivity (MPS)
Generally a dynamic model for biochemical networks is
described by ordinary differential equations:

ẋ = F(t,x,p) (69)

where t is time, x is the vector whose elements
are the variables for molecular concentrations,
p = (p1, p2, . . . , pm) is the kinetic parameter vector, and
m is the number of kinetic parameters. In this study,
p = (α1, . . . , αn, β1, . . . , βn, K1, . . . , Kn), where n is the
number of molecular species. Let q(p) be a given sys-
tem’s output (oscillation period and amplitude in this
study) which depends on the kinetic parameter vector.
The single-parameter sensitivity of the output with
respect to a change in the ith parameter is given by

Sq
pi

=
pi

q

∂q

∂pi
=

∂ ln q

∂ ln pi
(70)

Single-parameter sensitivities are used to identify para-
meters influential on the output.
Assuming that the relative change in the output is the

linear combination of a change in each parameter, mul-
tiparameter sensitivity (MPS) [8,36-38] is given by


q =
m∑

i=1

(
Sq

pi

)2
(71)

Although MPS is expressed as the sum of the squared
single-parameter sensitivities, it represents how fragile
the system’s output is when small, random, and simulta-
neous fluctuations are provided to all kinetic parameters
[8]. MPS can be used as an indicator of biochemical sys-
tem’s robustness in a cell, where kinetic parameters con-
stantly fluctuate. MPS is mathematically equal to the
normalized variance given by the Monte-Carlo method
[9-11], where all kinetic parameters are simultaneously
and randomly deviated from the nominal values. For
more details, see our previous work [8].

Numerical computation of multiparameter sensitivity
(MPS)
Generally, it is hard to derive the analytical solution for
MPS when the given biochemical models are compli-
cated. As a practical solution, the MPS is numerically
computed by providing a small perturbation to kinetic

parameters (αi, βi and Ki in this study) [8]. Eq (70) can
be rewritten as

Sq
pi

=
pi

q(p)
lim


pi→0

q(p’) − q(p)

pi

= lim

pi→0

ln q(p’) − ln q(p)
ln(pi + 
pi) − ln pi

(72)

where p = (p1, . . . , pi, . . . , pm) is the standard para-
meter vector, p’ = (p1, . . . , pi + 
pi, . . . , pm) is the per-
turbed parameter vector, and m is the number of kinetic
parameters. In the numerical computation of single-
parameter sensitivity, 
pi is not infinitesimal but a small
value (
pi = 10−3pi in this study). The numerical com-
putation shown here was used to obtain the numerical
integration solutions and semi-analytical solutions (see
Table 1). We validated the numerical computation in
the previous work [8].

Abbreviation
MPS: Multiparameter sensitivity.
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