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ABSTRACT 

 

In the first chapter of the thesis entitled ‘Potential Use of Superheated Steam 

Treatment In An Underutilized Fruit of Engkala (Litsea garciae) and Evaluation of Its 

Antioxidant Capacity’, an introduction on the study was given where the link between 

antioxidants, free radicals and degenerative diseases, which is the increasingly 

deterioration of the function or structure of the affected body tissues or organ over 

time, such as cancer, atherosclerosis, arthritis, gastritis, diabetes mellitus and 

neurodegenerative diseases were discussed. The onset of these diseases was 

confirmed by accumulation of free radicals that are produced from oxidation process 

as well as from toxic present in the environment. The damaging effects of the free 

radicals however can be stopped by the action of antioxidants supplied by plants 

when incorporated in a human diet. In the introduction, the role of polyphenols as 

antioxidants and their source especially from fruits were also discussed and engkala 

and avocado fruits, which belong in the same family were introduced as source of 

antioxidant in this study. Drying process of food was also discussed, emphasizing 

the use of freeze drying and superheated steam. 

 

In chapter 2, the characteristics of engkala fruit and its antioxidant capacity was 

evaluated. The physical properties, nutritional composition and minerals composition 

were discussed. This study showed that engkala fruit, just like avocado is a fleshy 

fruit where the pulp accounted for more than 50% of the fruit weight. Nutritional 

compositions of engkala showed that this fruit is high in moisture, protein, 

carbohydrate, K, Na, Fe, Zn and Ca. Polyphenol content of engkala was determined 

by measuring the total phenolic and total flavonoid content. Antioxidant activities of 
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engkala extracts were determined by using DPPH assay and ORAC assay.  In 

DPPH assay, the concentration of the extract inhibiting 50% of the DPPH radical 

activity was measured as an indicator of the antioxidant activity. In this study, the 

edible part of the fruit which is the pulp showed highest activity when dried with 

superheated-steam at the temperature of 170°C. In ORAC assay, the oxygen radical 

absorbing capacity of the fruit extract was measured. The pulp of engkala also 

showed the same pattern, where superheated-steam dried pulp at the temperature 

of 170°C gave the highest ORAC value. This study showed that superheated-steam 

drying gave higher polyphenol contents and antioxidant activities in engkala pulp, 

while freeze drying gave higher results in the seed part of the fruit. The polyphenol 

compound present in engkala extract was also studies by using HPLC, TG/DTA, GC-

MS and LC-MS system.  

 

In the third chapter, polyphenol content and antioxidant activities in avocado fruit was 

evaluated. The avocado pulp followed the same pattern as shown by engkala pulp, 

where the total phenolic, total flavonoid content as well as antioxidant activities in the 

pulp was significantly higher when dried with superheated-steam. The peel and seed 

on the other hand showed significantly higher results when freeze dried. 

 

In the fourth chapter, the antioxidant capacity of both engkala and avocado fruits 

were compared. The data showed that engkala pulp and seed showed higher 

antioxidant capacity compared to avocado. The peel on the other hand showed 

higher antioxidant capacity of avocado compared to engkala peel. Considering the 
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edible part of the fruit, engkala was ranked higher than avocado where antioxidant 

capacity was in concern.  

 

The final chapters remark the conclusion of the whole study. It was concluded that 

both superheated-steam drying and freeze drying can offer their advantages in 

application of dried fruit production, where superheated-steam drying was preferred 

in drying the pulp of engkala and avocado, while freeze drying was the preferred 

method of drying for the seed and peel of engkala and avocado. The high potential 

of the by-products as given by the high antioxidant capacity especially when freeze 

dried suggested that they could be utilized and developed as natural antioxidants or 

food additives. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Introduction  

 

Aging process has been linked to degeneration of human biological systems. Apart 

from aging, many chronic and degenerative diseases including cancer, 

cardiovascular disease and neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s diseases have been associated with oxidative stress (Ames, Gold & 

Willet, 1995; Diaz et al., 1997; Christen, 2000; Lang & Lozano, 1998; Ames, 

Shinegana & Hagen, 1993). The presence of reactive oxygen species in the body, 

generated as by-products by normal cells during aerobic respiration can cause 

damage to biological molecules including DNA, proteins and lipids. The human body 

is created with a very delicate defence mechanism to protect itself from the harmful 

effects of the free radical. Even though it eliminates the free radicals from the body, 

the efficiency is not 100% (Young & Woodside, 2001; Davies, 2000). Exposure to 

toxins from the environment such as toxic chemicals, cigarette smoke, and air and 

water pollutants may also expose the body cells to harmful free radicals.  

 

Diets rich in fruits and vegetables have been considered as excellent sources of 

antioxidants (Block, Patterson, & Subar, 1992; World Cancer Research Fund, 1997; 

Ness & Powles, 1997). Vitamin C, vitamin E, polyphenols and carotenoids have 

been thought to be responsible for most of the antioxidant activity in foods 

(Esterbauer et al., 1991; Jialal et al., 1990). While the available synthetic 

antioxidants may cause negative effects on human health, clinical trials on vitamin C, 

E and carotenoids supplements recently have provided inconsistent results (Cooper 
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et al., 1999; Jha et al., 1995; Hercberg et al., 1999; Vivekananthan et al., 2003). 

Clinical trials with whole fruits and vegetables are more likely to give positive results 

in terms of disease prevention (Joshipura, Ascherio et al., 1999; Eastwood, 1999; 

Joshipura, Hu et al., 2001).  

 

Polyphenols, being the most abundant antioxidants in a human diet, have been 

researched by many scientists. Fruits and vegetables are among the major sources 

of polyphenols. In this study, nutritional compositions, antioxidant capacity and 

phenolic compounds were measured and analysed for the first time in the different 

parts of an underutilized fruit of engkala (Litsea garciae). At the same time, 

antioxidant capacity of avocado fruit, which belongs in the same family as engkala, 

was also measured, and comparison was made among the two fruits. 

 

1.2. Antioxidants and free radicals 

 

Antioxidant is something that can be defined as organic substance, such as vitamin 

C (ascorbic acid), vitamin E (tocopherols, tocotrienols), or beta carotene, that is 

capable of counteracting the damaging effects of oxidation or free radicals in living 

organisms.  Antioxidants act as radical scavenger, hydrogen donor, electron donor, 

peroxide decomposer, singlet oxygen quencher, enzyme inhibitor, synergist, and 

metal-chelating agents. Both enzymatic and non-enzymatic antioxidants exist in the 

intracellular and extracellular environment (Frie et al., 1988), produced during normal 

metabolism in the body (Shi et al., 1999), while other lighter antioxidants are found in 

the diet. Beta carotene is the most studied antioxidants, where more than 600 

different carotenoids that have been discovered. Other than that, food sources of 
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antioxidants also come from polyphenol, selenium, glutathione, peroxidase and 

cystein (hprc-online.org, 2014). 

 

   

 

 

 

 

 

Free radicals in the body on the other hand can be defined as reactive atom or group 

of atoms that has one or more unpaired electrons, produced in the body by natural 

biological processes or introduced from outside (tobacco smoke, x-ray, toxins, or 

pollutants) and can cause depletion of immune system antioxidants, damage cells, 

proteins, and DNA by altering their chemical structure (Dictionary.com, 2010). They 

can either donate or accept an electron from other molecules, therefore behaving as 

oxidants or reductants (Cheeseman & Slater, 1993). The most important oxygen-

containing free radicals related to many diseases are hydroxyl radical, superoxide 

anion radical, hydrogen peroxide, oxygen singlet, hypochlorite, nitric oxide radical, 

and peroxynitrite radical (Young & Woodside, 2001). Free radicals can affect various 

biological functions. For example, they neutralize defence mechanisms such as 

enzymes (glutathione peroxidase, catalase, superoxide dismutase), glutathione, and 

Beta carotene 

Vitamin E 
  Vitamin C 
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ferritin to maintain a balance (Pietta, 2000). Over production of some free radicals 

and their activity, particularly reactive oxygen species (ROS) can lead to oxidative 

stress, a condition which arises as a result of an imbalance between free radical 

production and antioxidant defences, making the endogenous antioxidant 

mechanisms insufficient for scavenging ROS (Kukic et al., 2006). Free radicals are 

considered as important factors in the initiation and development of aging-related 

diseases such as neurodegenerative diseases, cancer and inflammatory diseases 

(Aruoma, 1999). Many disorders in humans can be related to free radicals including 

atherosclerosis, arthritis, ischemia and reperfusion injury of many tissues, central 

nervous system injury, gastritis, cancer and AIDS (Kumpulainen and Salonen, 1999; 

Cook and Samman, 1996).  

 

Natural antioxidants in human body such as catalase and hydroperoxidase enzymes 

convert hydrogen peroxide and hydroperoxides to nonradical forms. But due to 

depletion of these immune system natural antioxidants, it has become necessary to 

consume antioxidants as free radical scavengers (Halliwell, 1994; Kuhnan, 1976; 

Kumpulainen and Salonen, 1999; Younes, 1981). 

 

Currently available synthetic antioxidants such as butylated hydroxy anisole (BHA), 

butylated hydroxy toluene (BHT), tertiary butylated hydroquinon and gallic acid 

esters show low solubility and moderate antioxidant activity. Moreover, they have 

been suspected to cause negative effects on human health. Thus, strong restrictions 

have been placed on their application and eventually, they have to be substituted 

with naturally occurring antioxidants (Barlow, 1990; Branen, 1975).  
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1.3. Antioxidants in degenerative diseases prevention 

 

Degenerative diseases are associated with aging where over time, oxidative damage 

to cell components, DNA, proteins and lipids accumulates and contributes to the 

degeneration of the somatic cells and the onset of these diseases (Scalbert, 

Johnson, & Saltmarsh, 2005; Scalbert, Manach, Morand, Rémésy, & Jiménez, 

2005). Natural defence mechanisms within the organism limit the levels of reactive 

oxidants and their damaging effects. Among the defences include enzymes such as 

superoxide dismutase, catalase and glutathione peroxidase. In addition to the 

protective effects of these endogenous enzymatic antioxidants, consumption of 

dietary antioxidants appears to be of great importance. Fruits and vegetables, which 

are the main source of antioxidants in the diet, are associated with a lowered risk of 

degenerative diseases. 172 studies in the epidemiological literature have been 

reviewed by Block, Patterson, & Subar (1992), which relates consistently, cancer 

  BHT 

BHA 

Tert-butylhydroquinon 
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incidence to the lacking of adequate consumption of fruits and vegetables. Protective 

effect of fruit and vegetable consumption on cardiovascular disease and stroke has 

also been described (Gaziano et al., 1992). European countries with low fruit and 

vegetable intake (e.g. Scotland) have higher rates of cardiovascular disease and 

cancer and generally are poorer in health than countries with high intake (e.g. 

Greece) (James, Ferro-Luzzi, Isaksson, & Szostak, 1988). 

 

1.4. Polyphenols as antioxidants  

 

Polyphenols are the most abundant antioxidants in a human diet. Their sources 

mainly are fruits, vegetables, legumes, cereals as well as plant-derived beverages 

such as juices, tea, coffee and red wine. Research on the effects of dietary 

polyphenols on human health has strongly supports its contribution in prevention of 

degenerative diseases, particularly cardiovascular diseases and cancers and 

osteoporosis, as well as prevention of neurodegenerative diseases and diabetes 

mellitus. Degenerative diseases are associated with aging where over time, oxidative 

damage to cell components, DNA, proteins and lipids accumulates and contributes 

to the degeneration of the somatic cells and the onset of these diseases (Scalbert, 

Johnson, et al., 2005; Scalbert, Manach, et al., 2005). Antioxidants found in food can 

help limit this damaging effect by acting directly on reactive oxygen species or by 

stimulating endogenous defence systems. The phenolic groups in polyphenols can 

accept an electron to form relatively stable phenoxyl radicals, thereby disrupting 

chain oxidation reactions in cellular components (Kehrer & Smith, 1994). The 

antioxidant potency of polyphenols has been evaluated in vitro by measuring their 

ability to trap free radicals and reduce other chemicals. Their potency is compared to 
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that of a reference substance, usually Trolox (a water-soluble derivative of vitamin 

E), gallic acid, or catechin. In all cases, the reaction studied is the reduction of an 

oxidant by polyphenols (Scalbert, Manach, et al., 2005) 

 

A study on Litsea monopelata has described antioxidant activity of extracted 

phenolic compounds (Arfan et al., 2008). Polyphenols retard or inhibit lipid 

autoxidation by acting as radical scavengers and, consequently, are essential 

antioxidants that protect against the propagation of the oxidative chain (Navarro et 

al., 2006). Experimental studies on animal and human cell lines have demonstrated 

that polyphenols can play a role in preventing cancer and cardiovascular diseases, 

when taken daily in adequate amounts (Wijngaard et al., 2009). Polyphenols have 

been identified to improve the status of different oxidative stress biomarkers 

(Williamson & Manach, 2005). In the field of cardiovascular diseases, significant 

progress has been achieved, where it is well established today that some 

polyphenols when incorporated into diet improve health status, as indicated by 

several biomarkers closely associated with cardiovascular risk (Vita, 2005; Keen et 

al., 2005; Sies et al., 2005). Furthermore, this protective effect of polyphenol 

consumption against cardiovascular diseases has been confirmed by epidemiologic 

studies (Arts & Hollman, 2005). 

 

1.5. Fruits as source of polyphenols 

 

Fruits contain a group of natural antioxidants that could have not only a high 

antioxidant activity but also a good combination or mixture of antioxidants (Hong 

Wang et al., 1996). Vitamins and polyphenols in fruits (and vegetables) are 
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considered to be responsible for their antioxidant activity, with polyphenols being the 

most active (Leja et al., 2003).  

 

Wolfe et al. (2008) studied cellular antioxidant capacity of 25 fruits commonly 

consumed in the United States and found that pomegranate and berries (wild 

blueberry, blackberry, raspberry, and blueberry) had the highest cellular antioxidant 

activity. Li Fu et al. (2010) systematically evaluated 56 wild fruits from South China 

and indicated that generally, these fruits have high antioxidant capacities and total 

phenolic contents, where the antioxidant components in the wild fruits are capable of 

reducing oxidants and scavenging free radicals. 

 

Recent epidemiological studies have associated benefits from consumption of apple 

and/or related products for many chronic diseases of humans, most noticeably in 

lowering risk of cardiovascular disease, lung dysfunctions, and various cancers, 

particularly prostate, liver, colon, and lung cancers (Knekt et al., 1996; Eberhardt et 

al., 2000; Le-Marchand et al., 2000; Xing et al., 2001). This biological impact of 

apple, similar to that of many other fruits, may be due largely to the presence of 

antioxidants (5), which are considered to be from phytochemicals such as 

polyphenolics, rather than from vitamin C, vitamin E, or beta-carotene (Hyson et al., 

2000; Bors et al., 1990; Hanasaki et al., 1994; Wang et al., 1996). 
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1.6. Engkala (Litsea garciae) fruit 

 

Litsea is a large genus of trees which belongs to the family Lauracea. It can be found 

in tropical Asia and eastwards to Australia and the Pacific. All Litsea species are 

aromatic and many of them have unpleasant odors. In Malaysia, some of Litsea spp. 

are applied in traditional medicine to treat boils and fever (Burkill, 1966). Litsea 

cubeba is believed to be the most popular species, which is the source of an 

internationally traded essential oil, flavor and fragrance material due to its pleasant 

citrus-like, fresh, sweet odor and taste (Coppen, 1995). 

 

Litsea garciae Vidal or also known as Engkala is a native of Borneo, Indonesia and 

some say Philippines (www.tradewindsfruit.com/litsea.htm, 2010). Belonging to the 

Lauraceae family, which is the same family as avocado fruit, the fruit of L. garciae is 

pink to purple in colour, edible, and having a delicate avocado-like flavour. There are 

two recognized varieties in Borneo, known as padi and bulan. Padi is slightly smaller, 

more intense pink-fuschia colour when ripe, and reputed to be tastier, while bulan is 

the larger form, lighter pinkish-green when ripe, and creamier (Spanner, 2010). 

Traditionally, the bark of L. garciae is used to treat skin burns (Forest Department 

Sarawak, 2010), lightly burned bark is used to cure caterpillar stings, and the oil is 

extracted from the seeds to make soaps and candles (Hovenkamp, 2009).  

 

The nutritional value of the fruit of L. garciae so far has only been studied by Voon 

and Kueh (1999). They reported that there are approximately 76 species of 

indigenous fruits found in Sarawak (Borneo), of which 16 of them were analyzed for 

their nutritional value. Out of all the fruits analyzed, five have been identified to have 
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good economic potential, and L. garciae is listed as one of them. Other than 

becoming popular and commercially important due to taste and flavour, it is also 

found to be highly nutritious (Voon and Kueh 1999). Another study on L. garciae was 

conducted by Lee et al. (1995) to investigate the alkaloidal contents. The study led to 

the isolation of bases namely laurolitsine, actinodaphnine, (+)-reticuline, 

isodomesticine and boldine. 
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Figure 1. Litsea garciae (engkala). 
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1.7. Avocado (Persea Americana Mill) fruit 

 

Avocado fruit is classified in the Lauraceae family and is native to Mexico and 

Central America. The tree can grow up to 65 feet in height and the fruit vary in 

weight from 8 ounces to 3 pounds depending upon the variety (Chen et al. 2008; 

http://www.whfoods.com/genpage.php?tname=foodspice&dbid=5, 2012). Avocados 

are cultivated in tropical and Mediterranean climates throughout the world for their 

commercial importance. They ripen after being harvested where the fruit depicts a 

green-skinned, fleshy body that resembles the shape of either pear, egg or spherical. 

The trees are propagated through grafting to maintain a predictable quality and 

quantity of the fruit (http://en.wikipedia.org/wiki/Avocado, 2012).  

 

Many studies have reported on the bioactive phytochemicals of this fruit. They 

include carotenoids (Lu et al. 2005), many phenolic acids and flavonoids (Rodriguez-

Carpena et al., 2011; Kosińska et al., 2012). In medicinal usage, avocado has been 

applied in stimulating hair growth, wound healing, treating dysentery and diarrhoea 

as well as an emmenagogue and aphrodisiac (DerMarderosian & Beutler, 2002). 

Lutein, together with other carotenoids and vitamins found in avocado fruit extracts 

contributes to inhibition of prostate cancer cells (Lu et al. 2005). Many in vitro and in 

vivo studies have indicated that avocado contains many cancer preventing 

phytochemicals and it should be listed among the fruits with cancer prevention 

properties (Ding, Chin, Kinghorn, & D’Ambrosio, 2007). Phytochemical isolated from 

avocado idioblast cells have shown antifungal activities by inhibiting spores 

germination of a pathogenic fungus (Domergue et al. 2000). Antioxidant activities 
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have also been reported in avocado correlating to the high phenolic contents in the 

fruit (Wang et al. 2010).  

 

1.8. Drying process of food 

 

In food industry, drying is an important process. Drying is involved in food 

preparation as well as to extent its shelf life. The nutrients and quality of dried food 

products, however, can significantly be affected by the drying process. One of the 

most common techniques applied in drying process of food materials is freeze 

drying. This drying method enables food to maintain its colour and nutrient 

composition, thus producing good quality product. This attractive attribute however is 

not without disadvantages. The initial investment cost for freeze drying is expensive. 

The process also involves high energy consumption and maintenance cost (Jiang, 

Zhang, Liu, Mujumdar, & Liu, 2013; Zotarelli, Porciuncula, & Laurindo, 2012). 

 

Steam drying is another drying technique which, in recent years, has been applied in 

many industries such as food, paper, furniture and timber as a method of drying 

(Mujumdar, 1995). Superheated-steam drying, is a method where steam with a 

temperature above the saturation or boiling point is applied as the drying medium.  It 

offers numerous advantages by saving energy in one way and reducing energy 

wastage in another. It is also a safe drying method requiring low energy 

consumption. It is non-polluting, can improve production efficiency as well as product 

qualities (Tang & Cenkowski, 2000). The product quality from superheated-steam 

drying tends to be better than conventional hot air dried. The drying process involves 

no product oxidation, allows high vitamin C retention, pasteurization, sterilization and 



 
 

14 
 

deodorization of food products (Caixeta, Moreira, & Castell-Perez, 2002; Mujumdar 

& Law, 2010). 

 

Drying process of plant materials is usually involved in many research conducted to 

access the polyphenols contents in fruits and vegetables, as well as their antioxidant 

activity. Studies have shown that the contents of polyphenols as well as antioxidant 

activity in dried plant materials can be higher compared to the fresh plant materials 

(C. H. Chang, Lin, Chang, & Liu, 2006; Choi, Lee, Chun, Lee, & Lee, 2006). 

 

1.9. Problem statement and research objectives 

 

The underutilized fruit of engkala is little known outside its native regions, consumed 

mostly by only the locals. Those outside the native regions has no or minimal 

information about the fruit and its potential. Although claimed to be highly nutritious, 

studies reported are still limited. The first objective of this study was to characterize 

the physical properties and nutritional composition of Litsea garciae fruit in order to 

evaluate its potential as a good source of functional food. 

 

The use of superheated-steam in the process of food drying has captured more 

interest in the recent years. Reports on the application of superheated-steam drying 

on fruits however are very limited. The second objective of this study was to 

investigate on the effect of superheated-steam drying on antioxidant capacity of 

engkala and avocado fruits compared to the freeze dried, and also to study the 

phenolic compounds present in the fruit extracts. 
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Being an underutilized fruit,  the ‘ranking’ of where engkala belongs as a source of 

antioxidant is unknown. Avocado, being in the same family and having similar 

physical properties as engkala, avocado fruit makes a good comparison for this 

under utilized fruit. The third objective of this study was to compare the antioxidant 

capacity between engkala and avocado fruits. 

 

  



 
 

16 
 

CHAPTER 2. ENGKALA FRUIT: EVALUATION OF ITS CHARACTERISTICS AND 

ANTIOXIDANT CAPACITY 

 

2.1. Introduction 

 

Increased attention to underutilized species can lead to great genetic diversity and 

heritage of indigenous knowledge. It also creates opportunity for the enhancement of 

the species mostly maintained by local communities. Many underutilized species are 

nutritionally rich. They complement the diet based on staple crops significantly by 

providing important vitamins and minerals (Food and Agriculture Organization of the 

United Nations, 1999). 

 

The underutilized fruit of engkala is claimed to be highly nutritious (Voon & Kueh, 

1999). It is usually eaten after being softened in hot water or steamed with rice. It is 

variably liked by first time consumers, but is a much-enjoyed delicacy to most of the 

locals. More studies are needed in order to help encourage the consumption of this 

fruit and promote its potential application as food for health as well as a potential 

antioxidant source. Hence, this chapter aims  

• To do some characterization on engkala fruit 

• To study the phenolic and flavonoid content and antioxidant activities in 

engkala fruit as affected by different drying processes 

• To determine the phenolic compounds present in engkala fruit extracts. 
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2.2. Methodology  

 

2.2.1. Chemicals  

 

Folin-Ciocalteu’s phenol reagent, gallic acid (C7H6O5), sodium nitrite (NaNO2), 

aluminum chloride (AlCl3), rutin (C27H30O16) were purchased from Sigma-Aldrich 

Chemie GmbH, Germany. Sodium carbonate (Na2CO3), sodium hydroxide (NaOH),  

hydrochloric acid (HCl) 37% were purchased from Merck, Germany. DPPH (2,2-

diphenyl-1-picrylhydrazil) (C18H12N5O6), Fluorescein sodium salt (C20H10Na2O5), 

AAPH: 2,2’-Azobis(2-methyl propionamidine)dihydrochloride (C8H18N6.2HCl), Trolox 

(6-Hydroxy -2,5,7,8-tetramethyl-chroman-2-carboxylic acid) were purchased from  

Sigma-Aldrich Inc., USA. Phosphate buffer saline (PBS) was purchased from 

Invitrogen Corporation, CA, USA. All chemicals were of analytical grade. Phenolic 

standards were purchased from Sigma-Aldrich Inc. USA and Sigma-Aldrich Chemie 

GmbH, Germany. Methanol and acetic acid were purchased from Fisher Scientific, 

Leicestershire, UK, and water for chromatography was purchased from Merch, 

Germany, all were of HPLC grade. 

 

2.2.2. Litsea garciae (Engkala) fruit 

 

2.2.2.1. Physical Properties Study 

 

10 of the smallest and largest individual fruits were selected from at least 7 kg of 

engkala fruits for determination of the physical properties. Length, width, flesh 

thickness, fruit mass (inclusive of pulp, peel and seed) and mass of individual parts 
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(pulp, peel, seed and cupule) were measured using a vernier caliper, Kern Germany, 

reading to 0.001mm. All mass were measured using electronic balance with a 

sensitivity of 0.001 g. 

 

2.2.2.2. Sample Preparation 

 

Fresh engkala fruits (padi variant) at the maturity stage were purchased from the 

local market in Sarawak, Malaysia. All the fruits were cleaned and manually 

separated into pulp, peel, seed and cupule and then were dried. The moisture loss 

from each part was measured using Moisture Balance MOC-120H, Shimadzu 

Corporation Japan.  

 

2.2.3. Drying methods 

 

Half of the fruits were subjected to each drying process, i.e. superheated-steam 

drying or freeze drying to produce superheated-steam dried (SHSD) and freeze dried 

(FD) samples respectively. The former process was conducted in a superheated 

steam oven (DC Quto QF-5200C, Naomoto, Japan) at different steam temperature 

of 130°C, 150°C and 170°C, while the latter treatment was operated at -50°C in a 

freeze dryer (EYELA FDU-1200, Tokyo Rikakikai Co. Ltd., Japan). The fruit parts 

were dried until they reached the final moisture content of ~10%, measured using 

Moisture Balance MOC-120H (Shimadzu Corporation, Japan). Dried fruit parts were 

ground to fine powder using Waring commercial blender 8011S (Connecticut, USA) 

and kept at -40°C until further use. 
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2.2.4. Nutritional compositions 

 

Peroximate composition (inclusive of energy, moisture, protein, fat, carbohydrate, 

crude fibre and ash), minerals composition inclusive of potassium (K), calcium (Ca), 

magnesium (Mg), iron (Fe), copper (Cu), zink (Zn) and sodium (Na), as well as 

Vitamin C were determined using laboratory procedures which were in accordance 

with the official method of analysis of Association of Official Analytical Chemists 

(AOAC) International (Horwitz, 2002). 

 

2.2.5. Sample extraction 

 

Ultrasonic-assisted extraction as described in chapter 3 (section 3.2.4.) was applied. 

One gram of dried sample was extracted in 80% ethanol with ratio of solid:liquid was 

at 1:30 (wt/vol). The mixture was ultrasonicated for 15 min using a 37kHz ultrasonic 

generator (UT-106, SHARP, Japan) and then centrifuged at 400 rpm at the 

temperature of 40°C for 30 min using Heidolph Instrument Unimax 1010DT orbital 

shaker, Germany. The extracts were then filtered using a Whatman No. 4 filter paper 

and kept at -40°C until further use. 

 

2.2.6. Phytochemical Study 

 

2.2.6.1. Total Phenolic Content (TPC) 

 

Total phenolics were determined using the modified Folin-Ciocalteau colorimetric 

method (Waterhouse 2002; Wolfe et al. 2008). 0.25ml of ethanolic extract was 
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diluted with 1ml distilled water in a test tube. 0.25ml Folin-Ciocalteau reagent was 

added to the solution and allowed to stand for 6 min. Then, 2.5ml of 7% sodium 

carbonate solution was added into the test tubes, and the mixture was diluted to 6ml 

with deionized water. Each sample was allowed to stand for 90 minutes, and 

measured at 760 nm using a UV-Vis Spectrophotometer, Shimadzu Corporation. 

The measurement was compared to a standard curve of gallic acid concentrations 

and expressed as milligrams of gallic acid equivalents (GAE) per 100g dried sample.  

  

2.2.6.2. Total Flavonoid Content (TFC) 

 

The measurement of total flavonoid content was determined using a modified 

colorimetric method by Wolfe et al. (2003). 0.5 ml of ethanolic extract was mixed with 

2.5ml of distilled water in a test tube. And this solution was mixed with 0.15ml of 5% 

sodium nitrite solution. After 5 minutes, 0.3ml of 10% aluminum chloride solution was 

added. After 6 minutes, 1ml of 1M sodium hydroxide was added and mixed. The total 

volume of mixture was made up to 5ml with distilled water. The sample absorbance 

was read immediately at 510nm using UV-Vis Spectrophotometer, Shimadzu 

Corporation. All measurements were compared to a standard curve of rutin 

solutions. The flavonoids content was expressed as milligrams of rutin equivalents 

(RE) per 100g dried plant sample. 
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2.2.7. Antioxidant Activities 

 

2.2.7.1. DPPH radical scavenging activity 

 

The capacity of the fruit extract to scavenge the free radical DPPH (2,2-diphenyl-1-

picrylhydrazil) was carried out using colorimetric method (Othman, Ismail, Abdul 

Ghani, & Adenan, 2007) with modification. Briefly, 1 ml of ethanolic extract was 

mixed with 2 ml 0.15mM DPPH in ethanol. The mixture was left in the dark for 30 

min before measuring the absorbance at 517nm using a UV-Vis spectrophotometer 

UV1601 (Shimadzu Corporation, Australia). The ethanol solution of DPPH served as 

a control. The percentage inhibition value was calculated according to the following 

equation: 

Scavenging activity (%) = [(A0 – As) / A0] x 100%,  

Where As is the absorbance of the sample and A0 is the absorbance of the blank 

control. The inhibition percentage was plotted against the appropriate known 

concentrations and the sample concentration providing 50% inhibition (IC50) of the 

DPPH radical was determined from this graph.  All tests were carried out in 

triplicates. 

 

2.2.7.2. Oxygen radical absorbing capacity (ORAC) 

 

The peroxyl radical scavenging efficacy of the avocado pulp extracts were measured 

using the ORAC assay (Ahmad Aufa, Hassan, Ismail, Mohd Yusof, & Hamid, 2014). 

Briefly, a volume of 150 μL of 10nM fluorescein in 10mM sodium phosphate buffer, 

pH 7.4 (working buffer) was added to each well in a black, clear-bottom, 96-well 
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microplate. Then 25 μL of blank (working buffer), Trolox standard or sample was 

added to triplicate wells. No outside wells were used in order to avoid results with 

greater variation. The mixture was then incubated at 37°C for at least 10 min. 25 μL 

of freshly prepared 240 mM 2,2’-Azobis(2-methylpropionamidine)-dihydrochloride 

(AAPH) in working buffer were added using a 12-channel pipetter. The microplate 

was immediately inserted into a Fluostar Omega microplate reader (BMG LabTech 

GmbH, Ortenburg, Germany) at 37°C. The decay of fluorescence at emission 

wavelength 520nm was measured with excitation at 485 nm every 1.5 min for 3 hrs. 

The areas under the fluorescence versus time curve for the samples minus the area 

under the curve for the blank were calculated and compared to a standard curve of 

the areas under the curve for 25, 50, 100, 200 and 400 μM Trolox standards minus 

the area under the curve for blank. 

ORAC value = (AUCsample – AUCblank) / (AUCTrolox – AUCblank), where AUC is area 

under the curve. 

ORAC values were expressed as mean micromoles of Trolox equivalents (TE) per 

1g of dried fruit sample. 
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2.2.8. Phenolic Compounds Analysis 

 

2.2.8.1. Extraction of Phenolic Compounds 

 

Extraction was performed using method as described by Chew et al. (2012) with 

slight modifications. 1 g of dried sample was subjected to ultrasonic-assisted 

extraction in 30 ml 80% ethanol (v/v) in the presence of HCl (final concentration of 

HCl was 1.2 N). The mixture was sonicated for 15 min using a 37kHz ultrasonic 

generator (UT-106, SHARP, Japan) and then shaken at 40°C using orbital shaker 

(Heidolph Instrument Unimax 1010DT, Germany) at 400 rpm for 30 min. The sample 

extract was filtered using a Whatman No. 4 filter paper. The filtrate was washed once 

with 60 ml hexane in a separating funnel to remove lipoidal materials. The recovered 

aqueous phase was further refluxed for 2 hours at 80°C and finally filtered through a 

0.45-μm membrane filter prior to analysis. 

 

2.2.8.2. Reversed Phase-High Performance Liquid Chromatography (HPLC) 

Analysis 

 

Analysis of phenolic compounds was performed using Agilent 1100 Series liquid 

chromatographic system equipped with an Agilent 1100 Series diode array detector 

(DAD) HPLC system (Agilent Technologies, Germany). A reversed phase 

Lichrospher C-18 column (250×4 mm, i.d. and particle size 5 μm; Merck KGaA, 

Darmstadt, Germany) was used as a solid phase for separation. Analysis was 

conducted according to a method as described in a reported study (Chew et al., 

2012) with slight modification. The mobile phases used were (A) 0.5% acetic acid 
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(v/v) and (B) methanol. The gradient elution profile was as follows: 0–20 min, linear 

gradient from 0% to 90% B; 20–25 min, 90% B isocratic; 25–30 min, linear gradient 

from 90% to 0% B and finally, washing and reconditioning of the column. The flow 

rate and column temperature were set at 2.0 ml/min and 30°C respectively. 

Wavelengths used for detection of phenolic acids and flavonoids were 280, 254 and 

329 nm. UV absorption spectra were recorded from 210 to 400 nm during HPLC 

analysis. 

 

The phenolic compounds in the sample extracts detected in the chromatograms 

were identified by comparing their retention times (tR) and UV–vis absorption spectra 

with those of authentic standards, and further confirmed by spiking the sample with 

authentic standards. The purity of each phenolic compound identified was checked 

by HPLC-DAD. 

 

2.2.8.3. Thermo Gravimetry (TG) / Differential Thermal Analysis (DTA) 

 

Degradation temperature of substances present in the samples was analysed by 

using Exstar S2 TG/DTA7200 thermo gravimetry / differential thermal analyser 

(Hitachi High-Tech Science Corporation, Japan), where changes in mass of the 

samples over temperature increase were measured at the temperature range of 30 - 

550°C with rate of temperature increase at 10°C/min. Nitrogen gas was used as the 

carrier and the sample used ranged at 5-9 mg.  
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2.2.8.4. Gas Chromatography – Mass Spectrometry (GC-MS) Analysis 

 

GC-MS analysis on the samples was done using GCMS-QP5050A, coupled with 

Double Pyrolizer PY-2020D, Shimadzu, Japan. Temperature was set at 60 - 550°C 

at the rate of 10°C/min. Sample in minute quantity was used and put into deactivated 

stainless-steel cup.  

 

2.2.8.5. Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis 

 

1uL sample at room temperature was injected and analysed using Acquity UPLC H-

Class PDA/QDa System, Waters Corporation. Acquity UPLC HSS T3 1.8um, 

2.1x100mm column was used for separation. The mobile phases used were (A) 

acetonitrile, (B) water and (C) 100mM ammonium formate. The gradient elution 

profile was as follows: 1-10 min, linear gradient from 5% to 90% A, from 85% to 0% 

B and 10% C isocratic; 10-15 min, linear gradient 90% to 5% A, 0% to 85% B and 

10% C isocratic, and finally washing and reconditioning of the column using 

acetonitrile. The flow rate and column temperature were set at 0.6 mL/min and 40°C 

respectively. Wavelength of 280 nm was used for detection of polyphenolic 

compounds. UV absorption spectra were recorded from 215 to 450 nm during 

analysis.  

 

The mass spectrometer was operated in both negative and positive electrospray 

ionization (ESI) modes, in a range of 100 - 1000 Da. The capillary temperature was 

set at 600°C. The run time was 20 min. In the MS analysis (negative and positive full 

scan modes), data was collected over a mass of 100-800 m/z. The phenolic 
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compounds present in the sample extracts and detected in the chromatograms were 

analysed by observing their retention times (tR), UV-vis absorption spectra, and MS. 

 

2.2.9. Statistical analysis  

 

All experiments were performed in triplicates. The results were expressed as mean ± 

standard deviation (S.D). The experimental data were analyzed using analysis of 

variance (ANOVA) (Microsoft Excel 2010). The mean values were considered at the 

95% confidence level (p = 0.05). Correlation between the phenolic contents and the 

antioxidant activity was determined using IBM SPSS Statistics (version 19). 
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Total Phenolic Content Total Flavonoid Content   DPPH Assay ORAC Assay 

Measures phenolic acids 
content; Folin-Ciocalteau 
colorimetric method 
(Waterhouse, 2002; Wolfe 
et al., 2008). 

Measures flavonoids 
content; colorimetric 
method by (Wolfe et al., 
2003) with slight 
modification. 

  Measures the capacity of 
fruit extract to scavenge 
DPPH free radical; 
Colorimetric method (Othman 
et al., 2007)  

Measures oxygen radical 
scavenging efficacy of fruit 
extract; Ahmad Aufa et al. 
(2014) 

Absorbance at 760 nm; UV-
Vis spectrophotometer 

Absorbance at 510nm;  UV-
Vis spectrophotometer 

  Absorbance at 517nm; UV-Vis 
spectrophotometer 

Decay of fluorescence at 
emission wavelength 520nm; 
multi-mode 
spectrophotometer 

Data expressed as mg 
gallic acid equivalents 
(GAE) /100 g dw 

Data expressed as mg rutin 
equivalents (RE) /100g dw 

  Data expressed as sample 
concentration providing 50% 
inhibition (IC50) of the DPPH 
radical 

Data expressed as µmol 
Trolox equivalents (TE) /1g 
dw 

Phenolic compounds analysis  

TG/DTA, GC-MS, HPLC, LC-MS 

Engkala fruit 

Cupule, Pulp, Peel & 

Seed 

Freeze drying 
Superheated-steam 

drying 

130, 150, 170°C 

Final moisture <10% 

Sovent extraction, 80% 

EtOH 

Antioxidant activities Phytochemical study 

Physical 
properties 

Nutritional 
compositions 
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2.3. Results and discussion 

 

2.3.1. Physical properties, yield and nutritional compositions 

 

Engkala fruits are of two well-known varieties, namely padi and bulan which differ in 

appearance, mainly size and colour. Padi is the smaller variant with more intense 

pinkish skin colour, while bulan is the larger sized with lighter colour and creamier 

taste. 

 

Just like avocado, it has a large and hard central seed. The edible portion of engkala 

is its cream-white flesh, which has a creamy but light consistency, as well as the 

skin, which is thin and smooth in texture. Once ripen, the fruit unfortunately does not 

keep long and will become rotten after about 2-3 days. 

 

In this study, 10 of the smallest and 10 of the largest sized fruits were measured to 

give the characteristics of the small and large groups of both padi and bulan variants. 

The differences between the variants were summarized in Table 1. Generally, the 

round fruit of engkala was 1.9 - 3.15 mm long, 2.42 - 4.54 mm in width, weighed 

between 5.9 and 32.9 grams without the cupule attached, and having flesh with 

thickness of 0.5 – 0.84 mm. 

 

This result upholds the character of engkala being a fleshy fruit, where the 

percentage of the pulp was more than 50% of the total fruit weight (excluding the 

cupule). The seed account for 24 – 40% of the fruit weight, while the skin was the 

part of the fruit which took the least of the weight, with only <20%. 
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Table 1. Physical properties of engkala fruit. 

 

Padi   Bulan 

Properties Small Large 

 

Small Large 

Length, mm 1.900 - 2.317 2.500 - 2.767 

 

2.138 - 2.427 2.862 - 3.152 

Width, mm 2.417 - 2.610 3.067 - 3.533 

 

2.570 - 3.267 4.248 - 4.538 

Flesh Thickness, mm 0.460 - 0.663 0.333 - 0.467 

 

0.453 - 0.755 0.570 - 0.840 

Fruit mass, g 5.902 - 7.186 14.923 - 20.490 

 

7.131 - 12.426 27.785 - 32.902 

Pulp, g 3.083 - 4.634 7.514 - 11.445 

 

4.718 - 7.803 16.473 - 19.592 

Seed, g 1.218 - 1.941 5.964 - 8.043 

 

1.035 - 4.669 8.385 - 11.463 

Skin, g 0.995 - 1.535 1.407 - 2.078 

 

0.769 - 1.267 1.487 - 2.077 

Cupule, g 3.114 - 5.372 4.629 - 7.110 

 

2.017 - 5.649 8.423 - 11.266 

 

n=10 for each group 

 

 
 
 
 
 
 
 
 
 
 

   Seed        Pulp 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Peel        Cupule 

 
 

Figure 2. Engkala fruit parts. 
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Table 2 shows percentage yield of engkala fruit parts dried with two different 

methods, namely superheated-steam drying and freeze drying. In SHSD samples, 

seed gave the highest yield (average of 39.95%), while in FD samples, pulp 

(30.34%) yield the highest when dried.  

 

It has been reported that the moisture content of engkala fruit is 78.3% (Voon & 

Kueh 1999).The obvious difference between superheated-steam drying and freeze 

drying was the duration of the fruit parts to reach the final moisture of ~10%. The 

pulp took 3 hrs, the cupule and seed took 2 hrs while the peel only took 1 hr to 

reduce their moisture content to the desired percentage. The freeze dried samples 

for all the fruit parts on the other hand took many days to reach the similar result 

(data not shown). 

 

Table 2. Percentage yield and final moisture of SHSD and FD engkala. 

    
Yield 
(%)   

Final 
moisture 

(%) ± S.D.   

Cupule FD 14.95 
 

6.29 0.46 
 a2 hrs SHSD, 130°C 15.47 

 
10.32 0.11 

 

 
SHSD, 150°C 15.04 

 
8.89 0.59 

   SHSD, 170°C 14.32   5.23 0.75   

Pulp FD 30.34 
 

4.16 0.27 
 a3 hrs bSHSD, 130°C     24.27 

 
6.94 0.52 

 

 
SHSD, 150°C 26.66 

 
5.10 0.52 

 

 
SHSD, 170°C 25.12 

 
3.35 0.87 

 Seed FD 26.28   7.69 0.44   
a2 hrs SHSD, 130°C 44.35 

 
10.89 0.08 

 

 
SHSD, 150°C 38.33 

 
9.08 0.25 

   SHSD, 170°C 37.17   7.55 0.36   

Peel FD 24.44 
 

5.90 0.31 
 a1 hrs SHSD, 130°C 28.33 

 
5.32 0.46 

 

 
SHSD, 150°C 22.80 

 
5.28 0.60 

   SHSD, 170°C 20.10   4.51 0.49   

Results expressed as mean ±S.D. (n=3). a duration of SHS treatment for the group.  
b additional 30 mins. 
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Table 3, 4 and 5 gave the nutritional compositions of engkala fruit. These data 

indicated that engkala fruit was high in moisture, protein, and carbohydrate. As for 

the minerals, K was the dominating one. Other minerals namely Na, Fe, Zn (highest 

in the pulp) and Ca (highest in the peel) were also high. 

 

Fruits are very good source of vitamin C and polyphenols. Most fruits are usually 

consumed fresh. Engkala however, is usually either soaked in hot water or steamed 

with rice before consumption to soften the fruit and make it more palatable. For the 

analysis of vitamin C, the content was found to be higher in the pulp than in the seed 

for both FD and SHSD samples. The SHSD samples for both pulp and seed 

however showed significantly higher amount of vitamin C, which nearly tripled the 

amount compared to the FD samples. 

 

Table 3. Peroximate composition of engkala fruit. 

 
per 100g fresh sample 

 
Energy Moisture Protein Fat CHO Crude fibre Ash 

 
(kcal) (g) (g) (g) (g) (g) (g) 

        Pulp 93.3 65.1 2.4 0.0 20.9 3.8 2.4 

        Seed 83.4 68.2 3.1 0.0 17.7 4.8 1.3 

        Results expressed as mean (n=3). 

 

Table 4. Minerals composition of engkala fruit. 

  mg per 100g fresh sample 

  K Ca Mg Fe Cu Zn Na 

Cupule 607.3 11.3 0.8 0.7 0.1 0.5 12.4 

Pulp 652.9 4.2 3.7 4.9 1.0 1.6 91.5 

Seed 331.5 2.4 1.8 1.1 0.6 1.1 6.3 

Peel 531.9 12.9 2.2 1.4 0.6 1.1 22.2 

Results expressed as mean (n=3). 
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Table 5. Vitamin C content  in engkala fruit. 

  Vitamin C (mg/100g fresh sample) 

  FD 
 

SHSD 

      Pulp 11.8 ±   0.2 
 

34.7 ±   2.8 

      Seed 4.8 ±   0.2 
 

13.0 ±   0.3 

            

Results expressed as mean ±S.D. (n=3). 

 

Table 6 compares the nutritional compositions of engkala with avocado as well as 

other common local fruits, namely banana, papaya and durian (USDA, 2012). This 

study examined engkala in its different fruit parts as opposed to the study done by 

Voon & Kueh (1999) which study the fruit as a whole. 

 

In this study, energy content in the pulp (93.3 kcal) of engkala was found to be 

higher than the seed (83.4 kcal), slightly lower than reported by Voon & Kueh (104 

kcal). The energy content in engkala was lower compared to avocado (160 kcal) and 

durian (147 kcal) but higher than banana (89 kcal) and papaya (43 kcal). 

 

Protein in the seed (3.1g) was higher than in the pulp (2.4g), while Voon & Kueh 

reported that the whole fruit has 1.4% protein content. Protein in the pulp and seed in 

this study was found to be higher than all the other fruits in comparison.  

 

Engkala parts in this study however showed no content of fat, contrasting the fat 

content reported by Voon & Kueh (6.8%).  
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Carbohydrate content of the pulp (20.9g) was found to be higher than the seed 

(17.7g). Voon & Kueh reported that the fruit has 10% carbohydrate content. 

Carbohydrate of engkala in this study was found to be higher than avocado and 

papaya but lower than durian and banana. 

 

Voon & Kueh reported 1% of crude fibre in engkala fruit. This study gave 3.8g crude 

fibre in the pulp and 4.8g in the seed.  

 

As for mineral content, the highest was found to be potassium (K), where the highest 

content was in the pulp (652.9mg), followed by cupule (607.3mg), skin (531.9mg) 

and seed (331.5mg). Voon & Kueh reported 355mg K in the fruit. K content in the 

edible portion (pulp and skin) was significantly higher compared to avocado and all 

the local fruits. 

 

Voon and Kueh did not report on sodium (Na) but this study found that Na content in 

engkala was higher than the other fruits. The highest was found in the pulp (91.5 

mg), followed by the skin (22.2 mg), cupule (12.4 mg) and seed (6.3 mg). 

 

Calcium (Ca) was also reasonable high in engkala especially the skin (12.9 mg). 

Earlier report only shows 1.0 mg Ca content in engkala (Voon & Kueh, 1999). This 

amount was higher than reported on avocado (12 mg), banana (5 mg) and durian (6 

mg), but lower than papaya (20 mg). 

 



 
 

34 
 

Iron (Fe) was another mineral with high content in engkala fruit. Fe was highest in 

the pulp (4.9mg) followed by the skin (1.4mg). Fe content in this study was higher 

compared to as reported by Voon and Kueh (0.5mg) as well as the other fruits. 

 

Zink (Zn) was another mineral found to be present higher in engkala than the other 

fruits. The highest amount was found in the pulp (1.6 mg). Higher amount was also 

found in the peel and seed (1.1 mg). This result was found to be similar to the Zn 

content reported earlier (1.02 mg) (Voon & Kueh, 1999). 

 

Some differences in the amount of nutritional contents between engkala fruit 

reported in this study and the one reported by Voon & Kueh (1999) might be due to 

difference in fruit variants and sampling location. Fruits of the same species but 

grown at different locality might contain different nutritional contents due different 

environmental factors. There are many factors that can influence the nutritional 

composition of produce, including environmental and cultural factors. The 

environmental factors which are likely to affect food quality include geographical 

area, soil type, soil moisture, soil health, pollution, weather and climate conditions 

such as temperature, rainfall, flooding and drought. Cultural practices including 

humus management techniques, variety, seed source, fertilization, cultivation and 

postharvest handling are also likely to affect food quality (Diver, 2002). A study on 

cherry tomato grown in different environmental factors, namely temperature, solar 

radiation and vapour-pressure deficit shows that difference in these factors 

influenced nutritional quality as well as flavour of the fruit (Rosales et al., 2011).  
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As for the vitamin C content, Voon & Kueh (1999) has reported low vitamin C content 

in engkala fruit (3.4mg). This study however showed much higher vitamin C content 

in the fruit compared to their study. It was high in the FD pulp (11.8mg), but lower in 

the FD seed (4.8mg). The vitamin C content however was found to be significantly 

higher in both pulp (34.7mg) and seed (13.0mg) when SHSD, and giving higher 

vitamin C content compared to avocado (10mg) and banana (8.7mg), but lower than 

papaya (60.9mg).  

 

The significant difference in vitamin C content of engkala fruit in these two different 

studies might be due to the different samples preparation. The preparation of fruit 

sample in the procedure of vitamin C determination allowed exposure of the sample 

to oxygen. In their study, fresh fruit samples are used to determine the nutritional 

compositions. By using fresh samples, ascorbic acid oxidase enzyme, found in fruits 

and vegetables is readily available. With the presence of oxygen, it catalyses the 

oxidation of vitamin C to dehydroaxcorbic acid and water (Dawson & Tokuyama, 

1961). Determination of vitamin C content in this case measures the content after 

oxidation process takes place, hence does not reflect the actual content of the 

vitamin. Considering the nature of engkala fruit where oxidation can happen in a 

short amount of time, especially indicated by the rapid browning of the fruit, 

measuring the vitamin C content in its fresh form is not preferable. In this study, the 

low temperature of freeze drying preserved this enzyme, thus allowing oxidation 

process to be continued once the sample is exposed to air. The high temperature 

applied in the use of superheated-steam on the contrary allowed the denaturation of 

the ascorbic acid oxidase enzyme. A study on thermal stability of vitamin C and 

ascorbic acid oxidase enzyme in crushed broccoli suggested that heat treatment 
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above 70°C is recommended for crushed vegetable in order to prevent oxidation of 

ascorbic acid to dehydroxyascorbic acid, and treatment at 80°C almost completely 

inactivated the ascorbic acid oxidase enzyme (Munyaka, Makule, Oey, Van Loey, & 

Hendrickx, 2010). This indicated that the vitamin C was not really affected by the 

high drying temperature but instead, was destroyed by oxidation process with the 

presence of oxygen in the air. Since ascorbic acid oxidase enzyme catalyses the 

oxidation process, and could be destroyed by heat, superheated-steam thus served 

to protect the vitamin C.  
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Table  6. Nutritional compositions of engkala fruit in comparison with avocado and other common local fruits. 

    per 100g fresh sample   

  
Engkala 

 
Avocado Banana Papaya Durian 

 

    Cupule Pulp Seed Skin     
Voon & Kueh 

(1999)                  USDA (2012)   

Energy 
 

- 93.3 83.4 - Kcal 
 

104.0 kcal 
 

160.0 89.0 43.0 147.0 Kcal 

Moisture 
 

86.68 65.1 68.2 75.97 % 
 

78.3 % 
 

73.2 74.9 88.1 65.0 % 

Protein 
 

- 2.4 3.1 - g 
 

1.4 % 
 

2.0 1.1 0.5 1.5 g 

Fat 
 

- 0.0 0.0 - g 
 

6.8 % 
 

14.7 0.3 0.3 5.3 g 

CHO 
 

- 20.9 17.7 - g 
 

10.0 % 
 

8.5 22.8 10.8 27.1 g 

Crude fibre 
 

- 3.8 4.8 - g 
 

1.0 % 
 

6.7 2.6 1.7 3.8 g (dietary fibre) 

Ash 
 

- 2.4 1.3 - g 
 

2.5 % 
 

- - - - 
 

                Minerals 
               K 
 

607.3 652.9 331.5 531.9 mg 
 

355 mg 
 

485.0 358.0 182.0 436.0 mg 

Ca 
 

11.3 4.2 2.4 12.9 mg 
 

1.0 mg 
 

12.0 5.0 20.0 6.0 mg 

Mg 
 

0.8 3.7 1.8 2.2 mg 
 

17.0 mg 
 

29.0 27.0 21.0 30.0 mg 

Fe 
 

0.7 4.9 1.1 1.4 mg 
 

0.5 mg 
 

0.6 0.3 0.3 0.4 mg 

Cu 
 

0.1 1.0 0.6 0.6 mg 
 

0.3 mg 
 

- - - - 
 Zn 

 
0.5 1.6 1.1 1.1 mg 

 
1.0 mg 

 
0.6 0.2 0.1 0.3 mg 

Na 
 

12.4 91.5 6.3 22.2 mg 
 

- 
  

7.0 1.0 8.0 2.0 mg 

                

   
     SHSD 

           Vit C 
  

34.7 13.0 mg 
  

3.4 mg 
 

10.0 8.7 60.9 19.7 mg 

                

   
     FD 

           

   

11.8 4.8 mg 
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2.3.2. Phytochemical Study 

 

2.3.2.1. Total Phenolic Content (TPC) 

 

Spectrophotometry is one of the relatively simple techniques for analysis of plant 

polyphenols. The Folin-Ciocalteu method is a widely used spectrophotometric assay 

to measure total phenolics in plant materials for many years. The assay is based on 

a chemical reduction involving reagents containing tungsten and molybdenum, 

where in the presence of phenolic compounds, the reduction produced a blue 

colored mixture with a broad light absorption spectrum around 760nm (Box, 1983; 

Khoddami, Wilkes, & Roberts, 2013). 

 

Table 7 shows TPC of engkala fruit parts dried using freeze drier and superheated-

steam dryer (steam temperature of 130°C, 150°C and 170°C). FD engkala yield the 

highest TPC in the seed at 3405.09 mg GAE/100g dried sample, whereas the TPC 

value for FD cupule, pulp and peel were quite similar at the value of 898.52, 986.15 

and 915.30 mg GAE/100g dried sample respectively. For the seed, TPC value was 

drastically lower (1472.58 – 1783.15 mg GAE/100g) when samples were SHSD at all 

three temperatures used. Seed is the part of fruit which contains an embryonic plant 

in a resting condition needing appropriate temperature and water in order to undergo 

germination. This makes the seed sensitive towards heat, and high temperature 

applied in the drying process in SHSD seemed to have an injurious effect on the 

chemical components in the seed. Heating will reduce germination (Hill & Johnstone, 

1975) and heating most probably will also destroy polyphenols in the seed. This 

could explain why the TPC in the seed was significantly lower when SHSD and the 
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TPC value decreased even lower with the increase in temperature as shown in this 

study. 

 

The most targeted part of the fruit, which was the pulp on the contrary, showed 

significantly higher TPC when SHSD (1624.00 - 1809.33 mg GAE/100g) compared 

to FD (986.15 mg GAE/100g). When SHSD, the highest TPC for engkala was 

observed in the pulp when dried at the temperature of 170°C, giving the value of 

1809.33 mg GAE/100g dried sample (83.47% increase compared to freeze dried 

sample).  Reconstruction of molecules in nutrition can happen when heat is 

absorbed from the heating process involved. The energy is used to change the 

chemical structure, thus contributing to the increase in the concentration of the 

desired compounds. A study shows heating gave no effect on caffeic acid because 

hydrolysis of chlorogenic acid gave rise to its concentration (Miglio, Chiavaro, 

Visconti, Fogliano, & Pellegrini, 2008). 

 

The peel also showed slight but not significantly higher TPC when SHSD. The 

cupule gave the lowest TPC value of all the fruit parts, both FD (898.52 mg 

GAE/100g) and SHSD (649.88 mg GAE/100g).  
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Table 7. Total phenolic content of engkala fruit parts dried under different conditions. 

  
 

mg GAE/100g dw ± S.D. 
 Cupule FD 898.52 29.77 a 

 
SHSD, 130°C 772.09 18.03 b 

 
SHSD, 150°C 649.88 9.40 c 

  SHSD, 170°C 883.30 47.16 ab 

Pulp FD 986.15 28.75 a 

 
SHSD, 130°C 1624.00 25.22 b 

 
SHSD, 150°C 1677.27 62.71 bc 

 
SHSD, 170°C 1809.33 31.93 c 

Peel FD 915.30 65.75 a 

 SHSD, 130°C 1047.85 31.34 a 

 SHSD, 150°C 1078.06 27.07 a 

  SHSD, 170°C 1050.42 10.96 a 

Seed FD 3405.09 123.94 a 

 
SHSD, 130°C 1783.15 19.14 b 

 
SHSD, 150°C 1754.24 18.93 b 

  SHSD, 170°C 1472.58 5.77 c 

Results expressed as mean ±S.D. (n=3). Different letters in the same column indicate 
significant difference (p<0.05). 

 

2.3.2.2. Total Flavonoid Content (TFC) 

 

Table 8 shows TFC of engkala fruit parts dried using freeze dryer and superheated-

steam dryer (steam temperature of 130°C, 150°C and 170°C). For the FD engkala 

samples, highest TFC was observed in the seed part (1534.94 mg RE/100g dried 

sample) followed by the pulp, skin and cupule (930.08, 659.71 and 528.29 mg 

RE/100g dried sample respectively). For the seed, TFC value was drastically 

lowered to around one third (416.29 - 550.00 mg RE/100g) of the FD value (1534.94 

mg RE/100g) when SHSD at all the three temperatures. Pulp of engkala, on the 

other hand gave significantly higher TFC when SHSD (1040.12 - 1335.92 mg 

RE/100g) compared to FD (930.08 mg RE/100g). The skin and cupule also showed 

significantly higher TFC values when SHSD. This result for TFC of engkala was 

similar to the result for TPC, except for the cupule.  
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Table 8. Total flavonoid content of engkala fruit parts dried under different conditions. 

  
 

mg RE/100g dw ± S.D. 
 Cupule FD 528.29 17.89 a 

 
SHSD, 130°C 556.49 44.52 a 

  SHSD, 150°C 716.90 79.58 b 

  SHSD, 170°C 668.16 73.34 ab 

Pulp FD 930.08 101.26 a 

 
SHSD, 130°C 1335.92 50.54 b 

 
SHSD, 150°C 1219.27 114.24 b 

 
SHSD, 170°C 1040.12 107.92 b 

Peel FD 659.71 17.36 a 

 SHSD, 130°C 770.61 68.27 a 

 SHSD, 150°C 895.63 98.48 a 

  SHSD, 170°C 814.86 85.51 a 

Seed FD 1534.94 118.11 a 

 
SHSD, 130°C 507.02 35.04 bc 

 
SHSD, 150°C 550.00 59.94 b 

  SHSD, 170°C 416.29 78.09 c 

Results expressed as mean ±S.D. (n=3). Different letters in the same column indicate 
significant difference (p<0.05). 
 

The superheated-steam applied in the drying process in this study caused the TPC 

and TFC to be significantly higher in some part of the fruit but significantly lower in 

some others compared to their FD counterparts. The significantly higher TPC and 

TFC particularly in the pulp when heat was applied in the drying process could be 

due to the changes in the chemical structure which transformed the molecules to 

become polyphenols. This could indicate that energy applied in the process is 

absorbed to induce the changes in the chemical structure of the molecules. On the 

other hand, the significantly lower TPC and TFC as evident in the seed part when 

SHSD compared to FD simply indicate that the polyphenols in the seed are most 

probably sensitive toward heat, thus destroyed by the high energy in the 

superheated-steam.  
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2.3.3. Antioxidant Study 

 

2.3.3.1. DPPH radical scavenging activity 

 

DPPH (2,2-diphenyl-1-picrylhydrazyl) is a well-known stable free radical where its 

application in antioxidant assay is very common. The DPPH radical has a deep violet 

color in solution, and it becomes pale yellow when neutralized by the presence of 

antioxidants. This property allows visual monitoring of the reaction, and the number 

of initial radicals can be counted from the change in the optical absorption at 520 nm, 

the wavelength where a strong absorption band is centred (Alger, 1997). 

 

In this study, inhibition concentration (IC50), which is the amount of substance 

required to inhibit the initial concentration of DPPH radical by half was calculated 

from a series of dose-response data. The lower the concentration to deplete the 

DPPH, the better is the antioxidant activity displayed by the substance. 

 

Table 9 shows DPPH radical scavenging activity of engkala fruit parts dried using 

freeze drier and superheated-steam dryer (steam temperature of 130°C, 150°C and 

170°C). The scavenging activity of engkala fruit parts showed a similar trend as 

portrayed by the TPC and TFC as discussed above. As presented in Table 9, seed 

was the part which showed the highest antioxidant activity in this study, where FD 

(0.22 mg/ml) and SHSD (0.56 – 0.91 mg/ml) seed gave very low IC50 values. This 

was followed by the SHSD pulp dried at the temperature of 170°C (1.82 mg/ml).  
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Other than the seed, freeze drying also offered advantages in the drying of the peel 

and cupule as indicated by the lower IC50 value of the FD parts compared to their 

respective SHSD counterparts. The edible part, which is the pulp on the contrary, 

favoured superheated-steam as its drying method and the antioxidant activity went 

higher with the increase in the steam temperature. A study conducted on tomatoes 

also shows that the sample dried under heat gave a higher DPPH radical scavenging 

activity compared to its FD and fresh sample (C.-H. Chang, Lin, Chang, & Liu, 2006). 

 

Table 9. DPPH radical scavenging activity of engkala fruit parts. 

   
IC50 (mg/ml)   

       Mean ± S.D.   

Cupule FD 
 

a  1.79 0.16 
 

 
SHSD, 130°C 

 
b  3.49 0.06 

 

 
SHSD, 150°C 

 
bc  3.79 0.05 

   SHSD, 170°C   d  2.94 0.14   

Pulp FD 
 

a 11.85 0.85 
 

 
SHSD, 130°C 

 
b  2.52 0.15 

 

 
SHSD, 150°C 

 
c  2.30 0.12 

   SHSD, 170°C   d  1.82 0.11   

Peel FD  a  2.26 0.34  

 SHSD, 130°C  a  3.05 0.08  

 SHSD, 150°C  a  3.16 0.09  

  SHSD, 170°C   a  3.18 0.12  

Seed FD  a 0.22 0.01 
  SHSD, 130°C  b 0.56 0.03 
  SHSD, 150°C  c 0.67 0.01 
   SHSD, 170°C   d 0.91 0.09   

Results expressed as mean ±S.D. (n=3). DPPH, 2,2-diphenyl-1-picrylhydrazil;  
 *p<0.05 compared to FD sample. 
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2.3.3.2. Oxygen radical absorbing capacity (ORAC) 

 

The ORAC assay measures the degree of inhibition of peroxy-radical-induced 

oxidation by the compounds of interest via hydrogen atom transfer reaction 

mechanism. AAPH radical is added to initiate the reaction. Fluorescein (FL), a 

synthetic nonprotein probe is consumed by the radical as the reaction progresses 

where the FL intensity decreases. In the presence of antioxidant, the FL decay is 

inhibited. ORAC assay measures the performance of the compounds against a 

standard, Trolox (a water soluble derivative of vitamin E), and the results are 

reported in Trolox Equivalents (TE) (Huang, Ou, & Prior, 2005). 

  

Table 10 shows ORAC value of engkala fruit parts dried using freeze drier and 

superheated-steam dryer (steam temperature of 130°C, 150°C and 170°C). The 

oxygen radical absorbing capacity of the fruit parts was similar to the DPPH radical 

scavenging activity as described above, where the seed gave the highest antioxidant 

activity in this study, both FD (120675 µmol TE/100g) and SHSD (42885 – 54588 

µmol TE/100g). This was followed by the SHSD pulp dried at the temperature of 

170°C (22446 µmol TE/100g).  

 

The peel and cupule also favoured freeze drying as a drying method, as indicated by 

the higher ORAC values of the FD parts compared to their SHSD counterparts. But 

when SHSD, the ORAC values were found to be lower. The pulp, which is the edible 

part on the other hand could offer more benefit when consumed after being SHSD. 

The ORAC values were significantly higher (17575 - 22446 µmol TE/100g) 
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compared to their FD counterpart (3848 µmol TE/100g), where the values were 

higher with the increase in the steam temperature.  

 

Table 10. Oxygen radical absorbing capacity (ORAC) of engkala fruit parts. 

  

ORAC (µmol TE/100g)   

    Mean ± S.D.   

Cupule FD 15079 335 a 

 

SHSD, 130°C 14793 1469 a 

 

SHSD, 150°C 13263 619 a 

 
SHSD, 170°C 11938 172 b 

Pulp FD 3848 152 a 

 

SHSD, 130°C 17575 1287 b 

 

SHSD, 150°C 19454 1001 b 

  SHSD, 170°C 22446 1528 c 

Peel FD 19722 849 a 

 

SHSD, 130°C 16241 619 b 

 

SHSD, 150°C 15409 733 b 

  SHSD, 170°C 17489 1045 b  

Seed FD 120675 6226 a 

 SHSD, 130°C 54588 278 b 

 SHSD, 150°C 50295 1556 c 

  SHSD, 170°C 42885 2141 c 

Results expressed as mean ±S.D. (n=3). ORAC, Oxygen radical absorbing capacity. Different letters 
in the same group indicate significant differences (p<0.05). 

 

 

Comparing with other well-known fruits reported in another study (Wolfe et al., 2008), 

the ORAC value for FD pulp of engkala fruit in this study was found to be lower than 

the ORAC values for fresh samples of wild blueberry, cranberry, strawberry, 

blackberry, cherry, plum, raspberry, blueberry, apple and pomegranade, (with above 

4000 µmol TE/100g fruit), but higher than orange, red grape, peach, lemon, pear, 

grapefruit, nectarine, watermelon, avocado, kiwifruit, mango, pineapple, banana, 

honeydew and cantelope. The SHSD pulp in this study however, gave higher ORAC 

value than all the fruits mentioned above (with ORAC values less than 10000 µmol 

TE/100g fruit).  
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The pulp and peel are the parts of the engkala fruit that are being consumed.  This 

result is in agreement with the method of preparation for eating engkala fruit, where 

the fruits are subjected to high temperature of hot water or steam. Cooking, or 

application of heat on food particularly on fruits and vegetables have been shown to 

increase the nutritional values beside making them more palatable. Carotenoids are 

a type of compound which has been reported to increase in concentration when 

green fresh vegetables are boiled or steamed. This is due to the release of 

carotenoids from the matrix of carotenoid-protein complexes, leading to better 

extractability (Bernhardt & Schlich, 2006; Miglio et al., 2008). High temperature in 

sweet potatoes cooked by superheated steam and roasting also had higher total 

phenols and flavonoids than raw sweet potatoes, probably due to increase in reagent 

binding sites from the breakdown of the phenolic compounds bindings (Wang et al. 

2012).  

 

 

Natural compounds could become lost during processing involving heat due to the 

sensitivity of some compounds toward high temperature. However, recent studies 

have shown that certain fods especially fruits and vegetables, when thermally 

processed gave higher biological activities due to the various chemical changes 

during heat treatment (Dewanto, Wu, Adom, & Liu, 2002; Kim et al., 2000). Stahl & 

Sies (1992) reported that cooked tomatoes and carrots showed higher bioavailability 

of lycopene and b-carotene compared to the raw ones. Drying of soybean using 

superheated-steam has been reported to increase significantly the levels of β-

glucosides (a type of isoflavone),  which leads to the increase in antioxidant activity 

of the dried soybeans, and the increase of β-glucosides levels increases with the 
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increase in the drying temperature probably due to the inter-conversion of 

isoflavones at higher temperatures (Niamnuy et al. 2011). Other than that, steaming 

process has been found to inactivate enzymes responsible in oxidation of 

polyphenols in green tea, making the polyphenol content in green tea much higher 

than the others (Hoffman, 2014).  

 

Peroxidase (POD) and polyphenol oxidase (PPO), present in many fruits and 

vegetables are closely associated with enzymatic colour changes with consequent 

loss of nutritional quality and sensorial properties (Duarte, Coelho, & Leite, 2002; 

Robinson, 1991). PPO enzymes generally consume many different phenolic 

compounds as substrates. POD on the other hand catalyses reduction of hydrogen 

peroxide to water while oxidizing a variety of substrates (Robinson, 1991). High 

temperature is capable of destroying these enzymes. Inactivation of POD and PPO 

has been shown in pineapple treated with high temperature in a circulated water 

bath up to a temperature of 95°C (Lee et al., 2009). At temperatures above 90°C, 

treatment with microwave in green coconut water simulated solutions reduced PPO 

and POD enzymatic activity to undetectable levels (Matsui, Granado, de Oliveira, & 

Tadini, 2007). The high temperature applied in the superheated-steam might 

denature these enzymes present in the fruit of engkala, hence inhibiting oxidation of 

polyphenols in the dried fruit. This might also contribute to the higher antioxidant 

activities of the SHSD pulp compared to the FD counterpart, where the enzymes 

were preserved at low temperature. 

 

Superheated-steam drying may be offered in food industry as an alternative drying 

method. When saturated steam is heated to over 100°C, it becomes ‘superheated’, 
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which has the same properties as hot air in terms that it can release large amounts 

of heat energy when in contact with objects at low temperature. This characteristic 

can then be used in both heating and drying of food (Iyota et al., 2001). Yoshida & 

Hyodo (1966) demonstrated that drying food using superheated steam yielded better 

colour, lower percentage of oxidisation and nutrient loss. Fraile & Burg (1997) also 

reported that superheated steam had great potential for high-starch foods. The lack 

of oxidative reaction during dehydration with superheated steam could improve the 

quality of some food products (Wang et al., 2012). 

 

 

2.3.4. Correlation among phenolic content, flavonoid content and antioxidant 

activities 

 

The TPC of engkala when correlated with ORAC and DPPH data, Pearson 

correlation gave very strong correlation (r2 = 0.899) for ORAC while the correlation 

was moderate (r2 = -0.448) for DPPH. Wolfe et al. (2008) in their study on antioxidant 

activity of common fruits also observed that TPC are significantly correlated to 

ORAC values. Meanwhile, the TFC and ORAC values gave moderate correlation (r2 

= 0.328), while the TFC and DPPH IC50 values gave weak correlation (r2 = 0.059). 

This data suggested that the radical absorbing activities in engkala might be 

contributed more by the phenolic than the flavonoid compounds in the fruit. 
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2.3.5. Phenolic Compounds Analysis 

 

2.3.5.1. Thermal Analysis 

 

Thermal analysis, which can be defined as experimental methods for characterizing 

a system (element, compound or mixture) by measuring changes in physico-

chemical properties at high temperatures as a function of increasing temperature, 

have found wide application in analytical chemistry. The methods mainly involve 

thermo gravimetric (TG) analysis, in which changes in weight are measured as a 

function of increasing temperature, and differential thermal analysis (DTA), in which 

changes in heat content are measured as a function of increasing temperature. 

These analyses provide information relating to certain physical phenomena such as 

crystalline transition, second-order transition, fusion, vaporization, sublimation, 

absorption, adsorption and desorption. Likewise,  they also provide information on 

certain chemical phenomena such as chemisorption, desolvation, decomposition and 

oxidative degradation (Coats & Redfern, 1963). 

 

Figure 3 shows TG and DTA of engkala pulp, while figure 4 shows TG and DTA of 

engkala seed. In the pulp, even though the final residue of the TG curves showed 

similar percentage, some differences were observed in the curve of FD and SHSD 

pulp at the initial stage until at the temperature of around 350°C. Meanwhile, the 

DTA curves showed some increase and decrease in the first and second peak 

respectively. This data might suggest some degradation and recombination of 

molecular components occurred in the sample of the pulp after being SHSD. A study 

on the effect of steaming at 100°C on raw ginseng for 2-3 hr to produce red ginseng 
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has reported increase in pharmacological activities compared to air-dried ginseng, 

which is due to changes in the chemical components that occur during steam 

treatment. Ginsenosides which were absent in raw ginseng were detected in the 

steamed ginseng (Kim et al., 2000).  

 

In figure 4 of the seed part, the last peak in the DTA curve showed some increase 

after SHSD relating to the slight decrease in the TG residue. In the seed, the first 

peak present in the pulp was not noticed, indicating different compounds, which were 

not present in the seed were present in the pulp.  

 

 
 

Figure 3. Thermal analysis of FD and SHSD engkala pulp. 
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Figure 4. Thermal analysis of FD and SHSD engkala seed. 

 

Figure 5 and 6 show DTA curves of FD and SHSD engkala pulp and seed before 

and after solvent extraction. From the graphs, it was noticeable that the chemical 

compounds present in the samples were extracted into the ethanolic solvent used in 

this study. In research involving extraction of polyphenols from plant materials, many 

solvents are used including methanol, ethanol, ethyl acetate and acetone. The 

highest yields are usually achieved with ethanol and methanol and their mixtures 

with water. Water and ethanol are most widely used with the advantage of 

modulating the polarity of the solvent by changing their ratios, as well the low toxicity 

and high extraction yield properties (Franco et al., 2008; Nur Syukriah, Liza, Harisun, 

& Fadzillah, 2014). 
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(a) 
 
 

 
 

(b) 
 
 

Figure 5. DTA of (a) FD and (b) SHSD engkala pulp before and after solvent 
extraction. 
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(a) 
 
 

 
 

(b) 
 
 

Figure 6. DTA of (a) FD and (b) SHSD engkala seed before and after solvent 
extraction. 
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2.3.5.2. High Performance Liquid Chromatography (HPLC) Analysis 
 

The content of phenolic compounds in biological samples can be determined by the 

usage of various analytical instruments. HPLC has proved to be the most 

appropriate, owing to the structural similarity and diversity of phenolic compounds, 

allowing the analysis with sufficient precision, selectivity and done within a 

reasonable time. Detectors coupled with HPLC such as ultraviolet-visible (UV) and 

DAD (photodiod-array-detector) are among the most useful and common ones in 

ordinary laboratories (Zhang et al., 2013).   

 

Looking at the HPLC chromatograms in figure 7, it was observed that the 

significantly higher TPC values in SHSD pulp (Figure 7b) were probably contributed 

partially by the high concentration of compound given by the peak at 5.9 min of 

retention time. Appearance of peak at 12.5 min and increased in the peaks at 7.04 

min and 11.6 min as well as other minor peaks were observed when the pulp was 

SHSD could explain the significantly higher TPC and antioxidant activities. The 

increased TPC in SHSD peel (Figure 7c) saw the uprise of peaks at 5.9, 7.4, 11.4, 

12.3, and 13.6 min of retention time. On the other hand, in the seed part of engkala 

(Figure 7d), most peaks within the retention time of 8-13.5 min range were higher in 

the FD sample. When SHSD however, appearance of peak at 5.9 min but decreased 

in most of the peaks existed in the FD seed were observed. This decrease could 

explain the significantly lower TPC values when SHSD. The high TPC in the FD 

seed could be due to the present of peaks in the 8-13 min range. Table 11 

summarizes the peaks of HPLC chromatograms for the different parts of FD and 

SHSD engkala fruit. 
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Studies on avocado, which is a fruit belonging to the same family as engkala has 

reveal by using HPLC system the presence of flavanol monomers, 

proanthocynaidins, hydroxycinnamic acids and flavonol glycosides in the fruit 

(Kosińska et al., 2012). Another study detected the presence of catechins, 

procyanidins and hydroxycinnamic acids in the peel and seed, whereas the pulp is 

rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins detected by 

using UPLC system (Rodríguez-Carpena, Morcuende, Andrade, Kylli, & Estévez, 

2011).  

 

Spiking authentic standards with engkala fruit samples was done in order to identify 

the compounds in the samples. Due to limitation of authentic standards, 

unfortunately no peaks were identified from the HPLC analysis in this study. Studies 

were further continued with mass spectrometry analysis. 
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SHSD                  FD 
 

Figure 7(a). HPLC chromatograms of SHSD and FD cupule of engkala fruit. 
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Figure 7(b). HPLC chromatograms of SHSD and FD pulp of engkala fruit. 
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SHSD               FD 
 

Figure 7(c). HPLC chromatograms of SHSD and FD peel of engkala fruit. 
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Figure 7(d). HPLC chromatograms of SHSD and FD seed of engkala fruit. 
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Table 11. Peaks of HPLC chromatograms for FD and SHSD engkala fruit parts. 

    
 

FD   SHSD   

Sample   Compound tR (min) 
Area 

(mAU*s)   tR (min) 
Area 

(mAU*s)   

Cupule 
 

1 5.83 7151 
 

5.88 8795 
 

  
2 9.10 495 

 
7.08 490 

 

  
3 9.77 448 

 
8.28 287 

 

  
4 10.78 486 

 
8.54 271 

 

  
5 11.45 475 

 
9.69 222 

 

  
6 12.53 346 

 
11.55 1010 

     7       12.39 433   

Pulp 
 

1 5.94 18360 
 

5.77 16236 
 

  
2 7.61 372 

 
7.04 633 

 

  
3 9.04 258 

 
8.78 410 

 

  
4 11.55 588 

 
9.02 469 

 

  
5 

   
11.59 1012 

 

  
6 

   
12.48 480 

 

  
7 

   
13.47 445 

     8       13.93 461   

Peel 
 

1 5.94 10422 
 

5.86 14023 
 

  
2 9.13 444 

 
7.44 1002 

 

  
3 9.73 250 

 
9.02 740 

 

  
4 10.16 342 

 
9.27 569 

 

  
5 10.81 535 

 
9.63 607 

 

  
6 11.52 485 

 
10.39 483 

 

  
7 12.48 586 

 
10.69 583 

 

  
8 13.72 350 

 
11.40 1406 

 

  
9 

   
12.28 922 

 

  
10 

   
13.19 735 

     11       13.61 713   

Seed 
 

1 8.27 791 
 

5.81 6319 
 

  
2 9.04 3375 

 
8.04 390 

 

  
3 9.59 2638 

 
8.94 421 

 

  
4 10.14 2014 

 
9.30 423 

 

  
5 10.48 4799 

 
9.43 308 

 

  
6 10.84 2433 

 
9.70 838 

 

  
7 11.11 4316 

 
10.88 623 

 

  
8 11.42 3438 

 
11.05 869 

 

  
9 11.984 1960 

 
11.55 1039 

 

  
10 12.144 3117 

 
11.96 1775 

 

  
11 12.959 3663 

 
12.37 1188 

     12 13.53 1598         
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2.3.5.3. Gas Chromatography - Mass Spectrometry (GC-MS) Analysis 

 
 
Pyrolysis Gas Chromatography (Py-GC) used in this study allows analysis of almost 

all sorts of materials including insoluble materials and complex materials at trace 

levels without any pre-treatment of samples, and information otherwise unobtainable 

by other techniques can be obtained. Py-GC technique is therefore becoming an 

important technique in the area of characterization (Frontier Lab, 2008). 

 

Figures 7 and 8 show Py-GC chromatograms of engkala pulp and seed respectively. 

In figure 7 of the pulp part, peak A appeared at around 8 min of retention time but not 

observed in the chromatogram of the seed (figure 8). Other than that, for both the 

pulp and seed parts, the chromatograms for FD and SHSD samples for each part 

showed similar patterns of peaks (B, C and D) appearing between 20 and 25 min of 

retention time, with difference in intensity. From the database (NIST107 and NIST21) 

peak B, C and D were identified as fatty acid derivatives. Peak A however was not 

identified and marked as unknown. Figures 9 and 10 show the mass spectra 

corresponding to the peaks obtained from the pulp and seed respectively.  
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Figure 8. Py-GC chromatograms of FD and SHSD engkala pulp. 
 

 
 
 

 
 

Figure 9. Py-GC chromatograms of FD and SHSD engkala seed. 
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(D) 

 
Figure 10. Mass spectra corresponding to the Py-GC chromatograms of engkala 

pulp.  
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Figure 11. Mass spectra corresponding to the Py-GC chromatograms of  
engkala seed.  
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2.3.5.4. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis 
 

Liquid Chromatography-Mass Spectrometry (LC-MS) is a powerful analytical 

technique that has very high sensitivity and selectivity, therefore useful in many 

applications. It combines the physical separation capabilities of liquid 

chromatography with mass analysis capabilities of mass spectrometry, where its 

application aims toward separation, general detection and potential identification of 

chemicals of particular masses. It applies usually in analysis of complex mixtures 

such as natural products extracts.  

 

In this study, LC-MS analysis was performed to detect the presence of polyphenolic 

compounds in the sample extracts of engkala fruit. Figure 12, 14, 16 and 18 show 

UV chromatograms of SHSD and FD engkala pulp, seed, cupule and peel 

respectively. The UV chromatograms showed similar patterns as the results obtained 

in the HPLC analysis described earlier. Table 12 summarizes the phenolic 

compounds detected in FD and SHSD engkala pulp as indicated by the peaks in the 

UV chromatograms (Figure 12). In engkala pulp, peak 2, 4, 5 and 8 showed increase 

in intensity in the SHSD sample compared to the FD, while four new peaks, peak 3, 

6, 9 and 10, which were not detected in the FD sample appeared in the SHSD pulp. 
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Table 12. Phenolic compounds in FD and SHSD engkala pulp. 

UPLC PULP   MW    

Peak FD (tR) SHSD (tR)   (m/z) Suspected compound 

1 1.209 1.208 
   2 1.603 1.603 
   3 

 
2.176 

 
454.3 Viniferin (stilbene) 

4 2.435 2.434 
 

194.1 Ferulic acid (phenolic acid) 
5 3.337 3.337 

 
231.1 

 6 
 

3.473 
 

137.0 
 7 3.605 3.604 

 
539.3 

 8 3.673 3.669 
   9 

 
5.436 

 
250.2 

 10 
 

5.734 
 

264.2 
 11 5.803 5.798   287.2 Cyanidin (flavonoid) 

tR, retention time (min); MW, molecular weight 

 
 
 

The increased intensity in some of the peaks as well as detection of new peaks in 

the SHSD pulp compared to its FD counterpart might suggest more phenolic 

compounds of the same type as well as of different types were present in the SHSD 

pulp. It was suggested that the higher TPC and antioxidant activities in the SHSD 

pulp was probably due to this reason. Figure 13 shows mass spectrometry (MS) 

chromatograms of SHSD and FD engkala pulp. Some suspected phenolic 

compounds present in the pulp could be viniferin, ferulic acid and cyanidin.   
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Figure 12(a). UV chromatograms of SHSD and FD engkala pulp. 

 
 

 
Figure 12(b). UV chromatograms of SHSD and FD engkala pulp (close-up). 
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(a) SHSD Pulp 
 
 

 

 
 

(b) FD Pulp 
 

Figure 13. MS chromatograms of (a) SHSD and (b) FD engkala pulp. 
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Table 13 summarizes the phenolic compounds detected in the FD and SHSD 

engkala seed as indicated by the peaks in the UV chromatograms (Figure 14). While 

some increase in intensity was detected in peak 1, 10 and 11, engkala seed saw 

more decrease in intensity in the peaks of the SHSD sample compared to the FD, as 

observed in peak 2, 4, 7, 9 and 13. Furthermore, peak 3, 5, 6 and 14 which were 

detected in the FD seed were not detected in the SHSD sample.  

 

Table 13. Phenolic compounds in FD and SHSD engkala seed. 

UPLC SEED 
 

  

Peak FD (tR) SHSD (tR) MW Suspected compound 

1 1.230 1.210 234.1 
 2 1.357 1.367 

  3 1.419 
 

176.1 
 4 1.523 1.531 

  5 1.984 
 

172.1 
 6 2.041 

 
304.2 Dihydroquercetin (Flavonoid) 

7 2.552 2.545 296.2 p-Coumaroyl tartaric acid (Phenolic acid) 
8 2.582 2.587 

  9 2.917 2.957 312.2 Caffeoyl tartaric acid (Phenolic acid) 
10 3.343 3.339 214.1 

 11 3.489 3.476 266.3 
 12 3.519 3.521 310.2 Cinnamoyl glucose (Phenolic acid) 

13 3.791 3.795 348.1 
 14 4.320   308.2   

tR, retention time (min); MW, molecular weight 

 

 

This result showed that more phenolic compounds of the same type as well as of 

different types were present in the FD seed compared to the SHSD seed. This might 

suggest that the phenolic compounds present in the seed of engkala were probably 

sensitive towards heat, thus either reduced in amount or destroyed by the high 

temperature of the superheated-steam. This might explain the lower TPC and 

antioxidant activities in the SHSD seed compared to its FD counterpart described 

earlier. Figure 15 shows MS chromatograms of SHSD and FD engkala seed. Some 
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suspected phenolic compounds present in the seed could be dihydroquercetin, p-

coumaroyl tartaric acid, caffeoyl tartaric acid and cinnamoyl glucose. 

 
 

 

 
 

Figure 14(a). UV chromatograms of SHSD and FD engkala seed. 
 

 

 
 

Figure 14(b). UV chromatograms of SHSD and FD engkala seed (close-up). 
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(a) SHSD Seed 
 
 

 
 

(b) FD Seed 
 

 

Figure 15. MS chromatograms of (a) SHSD and (b) FD engkala seed. 
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Table 14 summarizes the phenolic compounds detected in the FD and SHSD 

engkala cupule as indicated by the peaks in the UV chromatograms (Figure 16). The 

chromatograms detected two increase in the SHSD cupule, namely peak 2 and 5, 

but in the FD cupule, the chromatogram detected peak 9, which was not present in 

the SHSD cupule. Not much difference was observed in the intensity of the other 

peaks in both samples. The TPC and the antioxidant activities of the cupule 

described earlier showed not much difference in the trends between the FD and 

SHSD samples, which might be owed to the suggestion that mostly similar type of 

phenolic compounds with similar intensity were present in the FD and SHSD cupule. 

Figure 17 shows MS chromatograms of SHSD and FD engkala cupule. Some 

suspected phenolic compounds present in the cupule could be ferulic acid, 

cinnamoyl glucose and epigallocatechin. 

 
 
 

Table 14. Phenolic compounds in FD and SHSD engkala cupule. 
 

UPLC CUPULE      

Peak FD (tR) SHSD (tR) MW  Suspected compound 

1 1.210 1.210 
 

 
 2 1.608 1.604 

 
 

 3 2.447 2.434 194.1  Ferulic acid (phenolic acid) 
4 2.585 2.587 172.1  

 5 3.335 3.337 310.2  Cinnamoyl glucose (phenolic acid) 
6 3.474 3.484 137.0  

 7 3.515 3.515 294.2  
 8 3.606 3.604 306.2  Epigallocatechin (flavanols) 

9 5.545   269.2    
tR, retention time (min); MW, molecular weight 
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Figure 16(a). UV chromatograms of SHSD and FD engkala cupule. 
 
 
 

 
 

Figure 16(b). UV chromatograms of SHSD and FD engkala cupule (close-up). 
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(a) SHSD Cupule 
 
 

 

 
 

(b) FD Cupule 
 

 

Figure 17. MS chromatograms of (a) SHSD and (b) FD engkala cupule. 
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Table 15 summarizes the phenolic compounds detected in the FD and SHSD 

engkala peel as indicated by the peaks in the UV chromatograms (Figure 18). Some 

increase in intensity was detected in peak 2, 7 and 9 in the SHSD engkala peel. 

However, five peaks were observed in the FD peel, namely peak 3, 6, 8, 10 and 11, 

which were not present in its SHSD counterpart, while four peak were also observed 

to be present in the SHSD peel, namely peak 4, 13, 14 and 15, which were not 

present in its FD counterpart. 

 

 

Table 15. Phenolic compounds in FD and SHSD engkala peel. 
 

UPLC PEEL      

Peak FD (tR) SHSD (tR) MW  Suspected compound 

1 1.210 1.209 
 

 
 2 1.608 1.604 

 
 

 3 2.079 
 

172.1  
 4 

 
2.176 454.3  Viniferin (stilbene) 

5 2.721 2.726 200.1  
 6 2.912 

 
627.4  Delphinidin 3,5-O-diglucoside (flavonoid) 

7 3.339 3.339 248.2  

 8 3.387 
 

294.2  
 9 3.493 3.475 310.2  Cinnamoyl glucose (phenolic acid) 

10 3.527 
 

294.2  
 11 4.505 

 
409.3  

 12 4.821 4.817 276.2  
 13 

 
5.126 

 
 

 14 
 

5.441 250.2  
 15   5.738 264.2    

tR, retention time (min); MW, molecular weight 

 

Even though significant difference was observed in the ORAC antioxidant activity, 

however no significant difference was observed in the TPC, TFC and DPPH 

antioxidant activity as described earlier, suggesting that similar amount of phenolic 

compounds were present in the FD and SHSD peel. This result also suggested that 

more difference in the type of phenolic compounds between the FD and SHSD 

http://phenol-explorer.eu/compounds/73
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samples present in the peel compared to the other parts. Figure 19 shows MS 

chromatograms of SHSD and FD engkala peel. Some suspected phenolic 

compounds present in the peel could be viniferin, delphinidin 3,5-O-diglucoside and 

cinnamoyl glucose. 

 

Superheated-steam treatment in engkala fruit in this study have brought some 

changes in the phenolic compounds profile of the fruit, where the high energy from 

the superheated-steam could cause some compounds either to be destroyed or 

induce some inter-conversion of phenolic compounds to produce new structure. The 

higher antioxidant capacity particularly in the pulp of engkala could indicate that 

phenolic compounds with better antioxidant capacity could be produced in the 

process. A study done on red ginseng shows strongest antioxidant activity when 

ginseng is steamed at 120°C, which is the highest temperature used in the study. 

HPLC results saw changes in elution profile where levels of certain ginsenosides 

decrease, while levels of others increase after steam treatment (Kim et al., 2000).  
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Figure 18(a). UV chromatograms of SHSD and FD engkala peel. 
 
 

 
 

Figure 18(b). UV chromatograms of SHSD and FD engkala peel (close-up). 
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(a) SHSD Peel 
 
 
 

 
 

  
 

(b) FD Peel 
 
 

Figure 19. MS chromatograms of (a) SHSD and (b) FD engkala peel. 
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2.4. Conclusions   

 

The result obtained in this study was in agreement with Voon & Kueh (1999), where 

engkala fruit was found to be highly nutritious. It contained high protein, 

carbohydrate, K, Na, Fe, Zn, and vitamin C. The vitamin C content in the SHSD 

engkala was found to be significantly higher compared to the FD samples was 

probably due to denaturation of ascorbic acid oxidase enzyme by the high 

temperature of the superheated-steam, thus protecting the vitamin from oxidation 

process when exposed to oxygen in the air. 

 

The current method of preparation for eating engkala where the fruits are subjected 

to high temperature of hot water or steam was found to be appropriate as treatment 

with superheated-steam lead to significantly higher TPC, TFC and antioxidant 

activities in the pulp. Hence superheated-steam drying was considered as the 

preferred method of drying for production of engkala pulp products. The significantly 

high antioxidant capacity in the SHSD engkala pulp compared to the FD might be 

due the increase in certain polyphenols as well as the presence of new polyphenols 

which were not found in the FD pulp, acquired through inter-conversion of phenolic 

compounds in the pulp.  

 

This study also showed that among all the parts, the FD seed of engkala fruit 

contained the highest antioxidant capacity. When SHSD, the seed showed 

significantly lower TPC, TFC and antioxidant activities compared to the FD samples. 

The elusion profile of the phenolic compounds showed by the seed might suggest 

that the phenolic compounds present were probably heat sensitive.  
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CHAPTER 3. EVALUATION OF POLYPHENOL CONTENT AND ANTIOXIDANT 

CAPACITY IN AVOCADO FRUIT DRIED WITH SUPERHEATED-STEAM 

 

3.1. Introduction 

 

Avocado extract is usually obtained by solid-liquid extraction with different solvents. 

In research involving plants, various extraction methods have been developed for the 

extraction of phytochemicals in order to increase the extraction yield, shorten the 

extraction time as well as enhance the quality of extracts.  Ultrasound- assisted 

extraction is among the methods used to enhance the process of extraction. It is 

inexpensive, simple and efficient alternative to conventional extraction techniques. 

Like soxhlet extraction, it can be used with any solvent for extracting a wide variety 

of natural compounds.  In solid-liquid extraction, it offers advantages which include 

increased yield and faster kinetics. The apparatus is cheaper and easier to operate 

compared to other novel extraction techniques such as microwave-assisted 

extraction and supercritical fluid extraction (L. Wang & Weller, 2006). Ultrasound-

assisted extraction is widely used in the extraction of plant compounds. However, no 

information is available on the effect of ultrasound-assisted extraction on polyphenol 

content in avocado.  

 

Drying process of plant materials is involved in many research conducted to access 

the polyphenol contents in fruits and vegetables, as well as their antioxidant 

activities. Studies have shown that the contents of polyphenols and antioxidant 

activity in dried plant materials can be higher compared to the fresh plant materials 

(C. H. Chang et al., 2006; Choi et al., 2006). Freeze drying is based on the 
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dehydration by sublimation of a frozen product. Most deterioration and microbial 

reactions are prevented due to the absence of liquid water and the low temperatures 

required for the process. These in return produce a final product of excellent quality. 

Unfortunately, freeze drying has always been recognized as the most expensive 

drying process (Ratti, 2001). Studies on avocado fruit usually involve either freeze 

dried or fresh fruit samples. No information is available on the effects of drying with 

higher temperature on avocado. 

 

Hence, this chapter aims  

• To evaluate the usage of ultrasound in overcoming the limitation of conventional 

extraction of avocado fruit 

• To evaluate antioxidant capacity of avocado fruit undergoing heat treatment, 

superheated-steam in particular, and freeze drying was used as reference. 

 

3.2. Methodology  

 

 3.2.1. Chemicals  

  

Folin-Ciocalteu’s phenol reagent, gallic acid (C7H6O5), sodium nitrite (NaNO2), 

aluminum chloride (AlCl3), rutin (C27H30O16) were purchased from Sigma-Aldrich 

Chemie GmbH, Germany. Sodium carbonate (Na2CO3), sodium hydroxide (NaOH)  

were purchased from Merck, Germany. DPPH (2,2-diphenyl-1-picrylhydrazil) 

(C18H12N5O6), Fluorescein sodium salt (C20H10Na2O5), AAPH: 2,2’-Azobis(2-methyl 

propionamidine)dihydrochloride (C8H18N6.2HCl), Trolox (6-Hydroxy -2,5,7,8-

tetramethyl-chroman-2-carboxylic acid) were purchased from  Sigma-Aldrich Inc., 
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USA. Phosphate buffer saline (PBS) was purchased from Invitrogen Corporation, 

CA, USA. All chemicals were of analytical grade.  

 

3.2.2. Preparation of Avocado fruit sample 

 

Three kilogram of fresh avocado fruits (Hass avocado of Mexican strain) were 

purchased from the local grocery store in Kitakyushu, Japan and left at room 

temperature to ripen naturally. Once ripened, as indicated by the softened fruit and 

darkened skin, all the fruits were cleaned and manually separated into pulp, peel and 

seed. The fruit parts were then dried and the moisture loss was measured using 

Moisture Balance MOC-120H (Shimadzu Corporation, Japan).  

 

3.2.3. Drying methods 

 

Refer to section 2.2.3. (page 18). 

 

3.2.4. Sample extraction 

 

One gram of dried sample was extracted in 80% ethanol with ratio of solid:liquid was 

at 1:30 (wt/vol). The mixture was centrifuged at 400 rpm under 30°C and 40°C for 2 

hours using Heidolph Instrument Unimax 1010DT orbital shaker, Germany.   

 

As another extraction approach, ultrasound assisted extraction (UAE) method was 

applied, where the ethanolic solution was ultrasonicated for 5, 10, 15 and 20 minutes 

using a 37kHz ultrasonic generator (UT-106, SHARP, Japan). Extraction process 
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was continued using orbital shaker following the procedure as mentioned above but 

the duration was reduced to only 30 minutes. The extracts were then filtered using a 

Whatman No. 4 filter paper and the resulting ethanolic extract was analyzed for total 

phenolic content (preliminary study). The extraction temperature and ultrasonication 

duration which give the highest total phenolic content was selected as a standard 

extraction method in this study. 

 

3.2.5. Phytochemical Study 

 

3.2.5.1. Total Phenolic Content (TPC) 

 

Refer to section 2.2.6.1. (page 19). 

 

3.2.5.2. Total Flavonoid Content (TFC) 

 

Refer to section 2.2.6.2. (page 20). 

 

3.2.6. Antioxidant Activities 

 

3.2.6.1. DPPH Radical Scavenging Activity 

 

Refer to section 2.2.7.1. (page 21). 

 

3.2.6.2. Oxygen Radical Absorbing Capasity (ORAC) 
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Refer to section 2.2.7.2. (page 21). 

 

3.2.7. Statistical analysis  

 

Refer to section 2.2.9. (page 26). 
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Total Phenolic Content Total Flavonoid Content   DPPH Assay ORAC Assay 
Measures phenolic acids 
content; Folin-Ciocalteau 
colorimetric method 
(Waterhouse, 2002; Wolfe 
et al., 2008). 

Measures flavonoids 
content; colorimetric 
method by (Wolfe et al., 
2003) with slight 
modification. 

  Measures the capacity of 

fruit extract to scavenge 
DPPH free radical; 

Colorimetric method 
(Othman et al., 2007)  

Measures oxygen radical 
scavenging efficacy of 

fruit extract; Ahmad Aufa 
et al. (2014) 

Avocado (Hass) 

variant) 

Pulp, Peel  & Seed 

Freeze drying Superheated-steam 

drying 

130, 150, 170°C 

Final moisture  <10% 

Sovent extraction, 80% EtOH 
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3.3. Results and discussion 

 

3.3.1. Moisture Content and Yield  

 

Moisture is a major component of avocado fruit, as indicated by the high moisture 

content (David Klein 1998). The moisture content of the different parts of fresh 

avocado fruit is shown is Table 12. The highest moisture content of avocado was 

shown in the pulp, followed by the peel and seed. The given data was similar to a 

reported moisture content of avocado (Rodríguez-Carpena et al., 2011). 

 

Table 16. Moisture content of fresh avocado fruit parts. 

    Avocado 

  
 

Moisture 
content (%) 

± 
S.D. 

Pulp 
 

74.43 2.18 

Peel  72.70 2.36 

Seed   52.43 4.04 

Results expressed as mean ±S.D. (n=3). 

 

Table 13 shows percentage yield of FD and SHSD (steam temperature of 130°C, 

150°C and 170°C) avocado fruit parts. Yield for the seed was higher than the pulp 

and peel, all relating to their respective moisture content. There were no significant 

difference between the yield obtained from freeze drying and superheated-steam 

drying. In the SHSD samples, duration of the drying process taken for the samples to 

reach their final moisture of ~10% was 3 hours for the pulp, 2 hours for the seed and 

1 hour for the peel. For the FD samples however, it was observed that the drying 

process took many days (data not shown) for the samples to reach similar results. 

The process was a highly time consuming in freeze drying compared to 
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superheated-steam drying. Energy saving is an advantage that superheated-steam 

drying is very well known for, apart from many other advantages (Mujumdar, 2007).  

 

Table 17. Percentage yield and final moisture of SHSD and FD avocado fruit parts. 

      
Yield 
(%)   

Final 
moisture 

(%) ± S.D. 

Pulp FD 
 

26.97 
 

4.03 0.83 
a3 hrs bSHSD, 130°C     

 
31.67 

 
2.29 0.25 

 
SHSD, 150°C 

 
27.18 

 
2.89 0.53 

 
SHSD, 170°C 

 
26.92 

 
1.49 0.15 

Seed FD   47.92   10.24 0.30 
a2 hrs SHSD, 130°C 

 
52.15 

 
3.74 0.70 

 
SHSD, 150°C 

 
49.87 

 
6.68 1.17 

  SHSD, 170°C   48.63   9.31 0.38 

Peel FD 
 

28.92 
 

7.12 0.36 
a1 hrs SHSD, 130°C 

 
26.76 

 
6.67 0.49 

 
SHSD, 150°C 

 
28.60 

 
5.86 0.55 

  SHSD, 170°C   26.65   4.90 0.31 

Results expressed as mean ±S.D. (n=3). a duration of SHS treatment for the group.               
b additional 30 mins. 

 

3.3.2. Total Phenolic Content (Preliminary Study) 

 

As presented in Table 14, solid:liquid (wt/vol) ratio that gave a higher TPC reading 

was 1:30 at both temperatures used. TPC was higher at the temperature of 40°C for 

both solid:liquid ratio. Thus, TPC was highest at solid:liquid ratio of 1:30 and at the 

temperature of 40°C. This condition gave the best result and it was taken as the best 

condition to perform avocado fruit extraction. This condition was therefore used for 

the extraction of all fruit samples in this study.  
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Table 18. Total phenolic content for non-UAE of avocado fruit. 

  30°C   40°C 

Wt/vol GAE ±S.D.   GAE ±S.D. 

1:30 163.27 1.43   166.32 0.98 

1:40 130.21 2.26   155.95 2.26 

Results expressed as mean ±S.D. (n=3). GAE, gallic acid equivalent (mg GAE/100g dried sample). 

 

When extraction was repeated using ultrasonic assisted extraction method, the TPC 

readings were higher as shown in  Table 15, compared to the non-ultrasonic (166.32 

mg GAE/100g dried sample extracted using 1:30 ratio at 40°C), where the increase 

was at  ~31% – 41% when 5 to 20 mins of sonication was applied. Among the four 

different durations used for sonication, the duration of 15 mins gave the highest TPC 

reading at 235.77 mg of GAE/100g dried sample, and this value was significantly 

higher when compared to the other duration. This duration was used to perform 

sonication in the preparation of all fruit extracts. 

 

Table 19. Total phenolic content for UAE of avocado fruit with different 
ultrasonication duration. 

Ultrasonication 
duration GAE ±S.D. 

 
% Increase 

  5 mins 226.69 0.56 36.30 

10 mins 219.19 0.28 31.79 

15 mins 235.77 0.80 41.75 

20 mins 222.44 0.85 33.74 

Results expressed as mean ±S.D. (n=3). GAE, gallic acid equivalent (mg GAE/100g dried sample). 
 

 

Ultrasound assisted extraction is an attractive alternative to conventional extraction 

techniques because it is easy, inexpensive and efficient. The main benefit of 

including ultrasound in extraction is it increases yield and extraction process can be 

done at a faster rate (L. Wang & Weller, 2006). In this study, the usage of ultrasound 

has successfully enhanced the extraction process as indicated by the significantly 
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higher TPC values and furthermore, has reduced the centrifuge time from 2 hours to 

30 minutes (75% reduction).  

 

This is made possible due to the propagation of ultrasound pressure waves through 

the solvent resulting in cavitation phenomena. The controlling mechanism of 

ultrasound-assisted extraction is generally attributed to mechanical, cavitation, and 

thermal effects which can result in disruption of cell walls, particle size reduction, and 

enhanced mass transfer across cell membranes, which leads to target compounds 

dissolving in the solvent, hence increasing yield with shorter time (Shirsath, 

Sonawane, & Gogate, 2012). Research have found that ultrasonication is a critical 

pretreatment to obtain high yields of oils from almond, apricot and rice bran (Sharma 

& Gupta, 2004). For extraction of saponin from ginseng assisted by ultrasound, the 

total yield and saponin yield increased by 15 and 30%, respectively (Hui Li, Ohdaira, 

& Ide, 1994). The yield of oil extracted from soybeans also increased significantly 

when ultrasound was applied (Haizhou Li, Pordesimo, & Weiss, 2004). 

  

3.3.3. Phytochemical Study 

 

3.3.3.1. Total Phenolic Content (TPC) 

 

Table 16 shows TPC of avocado fruit parts dried using freeze drier and superheated-

steam dryer at the temperature of 130°C, 150°C and 170°C. The pulp and seed part 

of avocado showed similar pattern for TPC values as engkala fruit as described in 

the earlier chapter. In the edible part of avocado (pulp), the TPC was significantly 

higher in SHSD pulp (735.06 - 934.61 mg GAE/100g dried sample) compared to the 
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FD pulp (520.55 mg GAE/100g dried sample), whereas the TPC of FD seed 

(3251.15 mg GAE/100g dried sample) was significantly higher compared to the 

SHSD (1315.45 - 1481.91 mg GAE/100g dried sample). The peel when FD gave the 

highest TPC in avocado at 4065.70 mg GAE/100g dried sample, but the TPC value 

was significantly lower when the peel was SHSD (2405.03 - 2761.64 mg GAE/100g 

dried sample).  

 

Table 20. Total phenolic content of avocado fruit parts. 

  
  

GAE/100g ± S.D.  

Pulp FD  520.55 48.59 a 

 
SHSD, 130°C 

 
735.06 41.70 b 

 
SHSD, 150°C 

 
739.33 22.81 b 

 
SHSD, 170°C 

 
934.61 14.56 c 

Peel FD  4065.70 83.64 a 

 SHSD, 130°C  2405.03 19.00 b 

 SHSD, 150°C  2748.61 2.29 c 

  SHSD, 170°C  2761.64 1.82 c 

Seed FD  3251.15 82.95 a 

 SHSD, 130°C  1481.91 21.95 b 

 SHSD, 150°C  1334.24 12.59 c 

  SHSD, 170°C  1315.45 49.64 c 

Results expressed as mean ±S.D. (n=3). GAE, Gallic acid equivalent. 

  

The result on FD avocado in this study was in agreement with studies on avocado 

done by Kosińska et al. (2012) reporting that TPC for FD peel is higher than the 

seed, while its pulp contains much less phenolic compounds (W. Wang, Bostic, & 

Gu, 2010). Although the pulp part contained the lowest amount of TPC in avocado 

fruit, the value from this finding was higher in both SHSD and FD pulp compared to a 

study conducted on fresh pulp of avocado (Wolfe et al. 2008), suggesting that drying 

might give positive effect on total phenolic of avocado pulp.  
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3.3.3.2. Total Flavonoid Content (TFC) 

 

Table 17 shows TFC of avocado fruit parts dried using freeze drier, and 

superheated-steam dryer at the temperature of 130°C, 150°C and 170°C. The result 

for TFC followed the same pattern as the above described TPC. The highest TFC 

was observed in the FD peel (2505.18 mg RE/100g dried sample) followed by the 

FD seed (1788.57 mg RE/100g dried sample). These values however, showed 

dramatic downturn when the peel and seed were SHSD, where the TFC were 

significantly lower (1149.92 - 1687.67 mg and 453.39 - 562.33 mg RE/100g dried 

sample in the peel and seed respectively). However in the edible part, just like in the 

TPC, the same pattern was also observed in the pulp where the FD pulp gave the 

lowest TFC value for the FD samples (492.08 mg RE/100g dried sample), but this 

value was significantly higher when the pulp was SHSD (643.92 - 731.31 mg 

RE/100g dried sample).  

 

Table 21. Total flavonoid content of avocado fruit parts. 

  
 

mg RE/100g dw ± S.D.  

Pulp  FD 492.08 41.76 a 

 SHSD, 130°C 688.86 28.20 b 

 
SHSD, 150°C 643.92 54.00 b 

 
SHSD, 170°C 731.31 73.06 b 

Seed FD 1788.57 53.24 a 

 
SHSD, 130°C 562.33 42.62 b 

 
SHSD, 150°C 453.39 34.33 c 

  SHSD, 170°C 472.82 12.34 c 

Peel FD 2505.18 39.41 a 

 
SHSD, 130°C 1149.92 60.12 b 

 
SHSD, 150°C 1642.49 25.63 c 

  SHSD, 170°C 1687.67 99.95 c 

Results expressed as mean ±S.D. (n=3). RE, Rutin equivalent. 
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In this study, superheated-steam drying gave significantly higher TPC and TFC in 

the edible part of avocado, which is the pulp, and the values increased with the 

increase in the steam temperature. Freeze drying on the other hand gave 

significantly higher TPC and TFC in the peel and seed. This result suggested that 

chemical components in the peel and seed seemed to be sensitive toward heat, thus 

destroyed by the high energy in the superheated-steam. This is evident especially in 

the seed where TPC value was found to be lower with the increase in steam 

temperature. The process of freeze drying on the other hand did not apply any heat 

on the samples, thus allowing more of the compounds to be preserved.  

 

3.3.4. Antioxidant Study  

 

3.3.4.1. DPPH radical scavenging activity 

 

Table 18 shows DPPH radical scavenging activity of avocado fruit parts dried using 

freeze drier and superheated-steam dryer at the temperature of 130°C, 150°C and 

170°C. The scavenging activity of avocado fruit parts showed a similar trend as 

portrayed by the TPC and TFC as discussed above. As presented in the table, 

freeze drying seemed to offer advantages in the drying of the seed and skin as 

indicated by the lower IC50 value of the FD parts compared to their respective SHSD 

counterparts. When these parts were SHSD, the IC50 values were found to be higher 

(lower antioxidant activity). The pulp on the contrary favoured superheated-steam as 

its drying method as the IC50 value was significantly lower compared to its FD 

counterpart, and this value went even lower with the increase in the steam 

temperature.  
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Table 22. DPPH radical scavenging activity of avocado fruit parts. 

  
  IC50 (mg/ml)  

      Mean ± S.D.  

Pulp FD 
 

35.02 3.409 a 

 
SHSD, 130°C 

 
11.79 0.419 b 

 
SHSD, 150°C 

 
12.16 0.471 bc 

  SHSD, 170°C   6.69 0.216 d 

Peel FD  0.09 0.001 a 

 SHSD, 130°C  0.50 0.011 b 

 SHSD, 150°C  0.27 0.014 c 

  SHSD, 170°C   0.26 0.005 cd 

Seed FD  0.22 0.019 a 

 SHSD, 130°C  1.47 0.020 b 

 SHSD, 150°C  1.47 0.070 b 

  SHSD, 170°C   1.56 0.053 b 

Results expressed as mean ±S.D. (n=3). DPPH, 2,2-diphenyl-1-picrylhydrazil;   
*p<0.05 compared to FD sample. 

 

3.3.4.2. Oxygen radical absorbing capacity (ORAC) 

 

Table 19 shows ORAC value of avocado fruit parts dried using freeze drier and 

superheated-steam dryer at the temperature of 130°C, 150°C and 170°C. The 

oxygen radical absorbing capacity of the fruit parts was similar to the DPPH radical 

scavenging activity as described above, where the seed and peel favoured freeze 

drying as a drying method, as indicated by the higher ORAC value of the FD parts. 

But when SHSD, the ORAC values were found to be lower. The pulp, which is the 

edible part the other hand could offer more benefit when SHSD. The pulp showed 

comparable radical absorbing capacity between the FD and the SHSD at 150°C. 

However, when the steam temperature was increased to 170°C, the ORAC value 

was significantly increased by 43% (from 1513 to 2658 µmol TE/100g) in the SHSD 

pulp.  
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Considering the edible part of avocado fruit, ORAC values of the FD and SHSD pulp 

in this study both were higher than the ORAC value for fresh avocado sample 

reported in another study (Wolfe et al., 2008). 

 

Table 23. Oxygen radical absorbing capacity (ORAC) of avocado fruit parts. 

   

ORAC (µmol TE/100g)  

      Mean ± S.D.  

Pulp FD   1518 185 a 

 

SHSD, 130°C 

 

537 76 b 

 

SHSD, 150°C 

 

1513 124 ac 

  SHSD, 170°C   2658 107 d 

Peel FD  212362 9604 a 

 SHSD, 130°C  32720 1087 b 

 SHSD, 150°C  50239 3360 c 

  SHSD, 170°C   53143 1840 cd 

Seed FD   92782 8210 a 

 SHSD, 130°C  15083 981 b 

 SHSD, 150°C  16393 334 bc 

  SHSD, 170°C   18607 171 d 

Results expressed as mean ±S.D. (n=3). Different letters in the same group indicate 
significant differences (p<0.05).  

 

The DPPH and ORAC assays showed that the highest antioxidant activities in 

avocado was found in the peel, followed by the seed and finally the pulp part, which 

contained the lowest. This result was in agreement with the DPPH and ORAC data 

given by another study on FD avocado (W. Wang et al., 2010). 

 

The antioxidant activities in both DPPH and ORAC assays were in parallel with the 

results from the TPC and TFC studies described above, suggesting correlation 

between them. The targeted part of the fruit, which was the pulp, showed that 

superheated-steam drying was a better choice of drying method. The by-products of 

avocado fruit, the peel and seed, however both gave results which contrast with the 

result for the edible part, where freeze drying appeared to be a better choice of 
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drying method. A recent study also showed freeze dried mango peel and kernel gave 

higher total phenolics and antioxidant activities compared to hot air, vacuum and 

infra-red drying (Sogi, Siddiq, Greiby, & Dolan, 2013).  

 

In avocado, pulp is the part of the fruit which is normally consumed for its nutritional 

benefit. Its peel and seed are considered as by-products and usually discarded as 

wastes. This study have shown that the phenolic and flavonoid content as well as 

antioxidant activities of the peel and seed of avocado were much higher compared to 

the data on pulp, especially when freeze dried. This is in agreement with another 

study on avocado where TPC and antioxidant activities of the peel and seed are 

much higher than the pulp part (Rodríguez-Carpena et al., 2011). A study on 

bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus) fruits also 

showed that total phenolic, total flavonoid and antioxidant activities are higher in the 

by-products compared to the flesh (Abu Bakar, Mohamed, Rahmat, & Fry, 2009).  

 

This study indicated that avocado fruit has good economic potential where not just 

the pulp consumed, but the by-products can be utilized as well. This can help 

minimize wastes produced from eating avocado fruit. The potential of these by-

products may be explored and utilized especially in food industry as natural 

antioxidant or food additives. Previous studies on avocado by-products application 

on burgers have shown their effectiveness in preventing oxidation and microbial 

growth (Rodríguez-Carpena et al., 2011). Other than that, avocado seeds have also 

been found to possess insecticidal, fungicidal, and anti-microbial activities (Dabas, 

Shegog, Ziegler, & Lambert, 2013). On another note, this study also indicated that 
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the peel and seed of avocado could benefit from freeze drying process for 

preservation of their antioxidant capacity.  

 

3.3.5. Correlation among phenolic content, flavonoid content and antioxidant 

capacities 

 

The TPC and TFC when correlated with ORAC, Pearson correlation gave very 

strong correlation (r2 = 0.881 and 0.893 respectively). This suggests that the radical 

absorbing activity might be contributed by the phenolic and flavonoid contents in 

avocado. Meanwhile, the TPC and DPPH IC50 values gave strong correlation (r2 = -

0.623), while the TFC and DPPH IC50 were moderately correlated with each other (r2 

= -0.446). 
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3.4 Conclusions 

 

The TPC of avocado pulp extracted with and without the application of ultrasonic 

were compared in this study. The results clearly indicated that the values of TPC 

were significantly higher when the extraction procedure included ultrasonic as 

assistance in the method. This study showed that avocado extraction can benefit 

from UAE especially by reducing the extraction time. 

 

The antioxidant capacity of the different avocado fruit parts was assessed by 

evaluating the TPC, TFC and antioxidant activities of the FD and SHSD avocado 

pulp, peel and seed. In the edible portion of avocado, namely the pulp, the results 

showed that antioxidant capacity was significantly higher when the pulp was SHSD 

in comparison with FD, suggesting that superheated-steam drying is a preferred 

drying method for the pulp. On the other hand, in the by-products of avocado, 

namely the peel and seed,  the antioxidant capacity was significantly higher when 

the peel and seed were FD compared to SHSD, suggesting that freeze drying is a 

preferred drying method for the peel and seed. The high antioxidant capacity in the 

FD peel and seed suggests their high potential as natural antioxidant. Comparing 

among the two parts, the peel gave higher antioxidant capacity compared to the 

seed. 
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4.0. FRUITS COMPARISON AND GENERAL DISCUSSION 

 

4.1. Comparison between the antioxidant capacity of engkala and avocado 

fruits 

 

Engkala, being an underutilized fruit, the scientific data has not been much available, 

thus its value and ranking in terms of antioxidant capacity among the fruits 

commonly available is still unknown. Being in the same family as avocado fruit and 

having some similarities in physical properties, avocado was selected as a 

comparison and the results obtained on both engkala and avocado fruits in this study 

were compared.  

 

4.1.1. Phytochemical study 

 

Figure 4 shows (a) TPC and (b) TFC of FD and SHSD engkala in comparison with 

avocado fruit. The pulp of engkala, both FD and SHSD showed higher values in both 

TPC and TFC compared to avocado. FD and SHSD engkala seed gave higher TPC 

but lower TFC values compared to avocado. The skin of avocado, which was the 

part containing the highest total phenolic and flavonoid in the fruit on the other hand, 

showed higher TPC and TFC values compared to engkala. The cupule, present only 

in engala fruit was not compared. 
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(a) TPC 

 

 

 

 

 

 

 

 

(b) TFC 

 

 

Figure 20. (a) Total phenolic content (TPC) and (b) Total flavonoid content (TFC) of 

FD and SHSD engkala and avocado fruit parts. 

 

4.1.2. Antioxidant activities 

 

In the antioxidant studies, both FD and SHSD engkala pulp again showed 

significantly higher radical scavenging activities compared to the avocado pulp in 

both DPPH and ORAC assays as shown in tables 20 and 21. The seed of FD 
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engkala and avocado showed similar DPPH radical scavenging activity, but in the 

ORAC assay, FD seed of engkala gave higher ORAC value than FD avocado seed.  

The SHSD seed of engkala also showed significantly higher antioxidant activities in 

both DPPH and ORAC assays compared to SHSD seed of avocado. The peel on the 

other hand showed significantly higher radical scavenging activities in avocado for 

both FD and SHSD compared to the engkala peel in both DPPH and ORAC assays, 

as indicated by the lower IC50 values and higher ORAC values. 

 

Table 24. DPPH radical scavenging activity of engkala and avocado fruit parts. 

          IC50 (mg/ml)   

   
Engkala   Avocado 

      Mean ± S.D.   Mean ± S.D. 

Cupule FD 
 

a 1.79 0.162 
 

- - 

 
SHSD, 130°C 

 

b 3.49 0.058 
 

- - 

 
SHSD, 150°C 

 

bc 3.79 0.053 
 

- - 

  SHSD, 170°C   d 2.94 0.144   - - 

Pulp FD 
 

a 11.85 0.851 
 

a 35.02 3.409 

 
SHSD, 130°C 

 

b 2.52 0.149 
 

b 11.79 0.419 

 
SHSD, 150°C 

 

c 2.30 0.118 
 

bc 12.16 0.471 

  SHSD, 170°C   d 1.82 0.113   d 6.69 0.216 

Seed FD 
 

a 0.22 0.006 
 

a 0.22 0.019 

 
SHSD, 130°C 

 

b 0.56 0.028 
 

b 1.47 0.020 

 
SHSD, 150°C 

 

c 0.67 0.013 
 

b 1.47 0.070 

  SHSD, 170°C   d 0.91 0.092   b 1.56 0.053 

Peel FD 
 

a 2.26 0.340 
 

a 0.09 0.001 

 
SHSD, 130°C 

 

a 3.05 0.084 
 

b 0.50 0.011 

 
SHSD, 150°C 

 

a 3.16 0.086 
 

c 0.27 0.014 

  SHSD, 170°C   a 3.18 0.122   cd 0.26 0.005 

Results expressed as mean ±S.D. (n=3). Different letters in the same group indicate 
significant differences (p<0.05).  
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Table 25. Oxygen radical absorbing capacity (ORAC) of engkala and avocado fruit 
parts. 

 
    ORAC (µmol TE/100g)   

   

Engkala   Avocado   

      Mean ± S.D.   Mean ± S.D.   

Cupule FD 

 
15079 335 a - -   

 

SHSD, 130°C 

 
14793 1469 a - -   

 

SHSD, 150°C 

 
13263 619 a - -   

 
SHSD, 170°C 

 11938 172 b - -   

Pulp FD   3848 152 a 1518 185 a  

 

SHSD, 130°C 

 
17575 1287 b 537 76 b  

 

SHSD, 150°C 

 
19454 1001 b 1513 124 ac  

  SHSD, 170°C   22446 1528 c 2658 107 d  

Seed FD   120675 6226 a 92782 8210 a  

 

SHSD, 130°C 

 
54588 278 b 15083 981 b  

 

SHSD, 150°C 

 
50295 1556 b 16393 334 c  

  SHSD, 170°C   42885 2141 b 18607 171 cd  

Peel FD 

 
19722 849 a 212362 9604 a  

 

SHSD, 130°C 

 
16241 619 b 32720 1087 b  

 

SHSD, 150°C 

 
15409 733 c 50239 3360 bc  

  SHSD, 170°C   17489 1045 d 53143 1840 c  

Results expressed as mean ±S.D. (n=3). Different letters in the same group indicate 
significant differences (p<0.05).  

 

In this study, engkala pulp and seed showed higher antioxidant capacity compared 

to their counterparts in avocado. However, antioxidant capacity of avocado peel was 

higher compared to engkala peel. 

 

4.2. General discussion 

 

Attempts have been made to rank fruits and other food categories in order to help 

consumers in adding more antioxidants to their daily diet. USDA scientists measured 

antioxidant concentration as well as antioxidant capacity per serving size of more 

than 100 different foods including fruits (Wu et al., 2004). In the fruit category in the 

study, avocado dried using freeze dryer is mid-positioned. ORAC values are 1381 

and 552 µmol TE/100g for lipophilic and hydrophilic ORAC respectively. Among the 
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fruits studied, blueberries, cranberries and blackberries are ranked highest in 

antioxidant capacity. Avocado, following behind raspberry, strawberry, apples, sweet 

cherries and plums, but having higher total antioxidant capacity than pears, orange, 

grapes, grapefruit, peaches, mango, apricot, tangerines, pineapples, bananas, 

nectarines, cantaloupe, honeydew and watermelon. The melons are reported to be 

the group where antioxidant capacity is relatively low.  

 

In this study, avocado pulp gave ORAC value of 1518 µmol TE/100g when FD, and 

537 - 2658 µmol TE/100g when SHSD. Engkala pulp on the other hand gave 3848 

µmol TE/100g when FD and 17575 – 22446 µmol TE/100g ORAC values when 

SHSD.  This result can help in putting engkala fruit in a ranking above avocado. 

Being an underutilized fruit unknown to most part of the world, there is no idea of 

where engkala fruit currently stands in its category. By knowing the ranking of 

avocado among the common fruits, comparing engkala with avocado pulp in this 

study gave some insight on where engkala fruit possibly ranks among the other 

fruits. Note that this ranking of engkala might only gave hints but the actual ranking 

must to be done through proper studies with the other fruits. 

 

4.3. Consclusion  

 

While the pulp of engkala and avocado fruits are readily eaten by many for their 

nutritional benefit, the seed of engkala and the peel of avocado could be utilized and 

developed as good source of natural antioxidants. In this study, it could be seen that 

engkala fruit sat higher in ranking than avocado when the edible part was in 

concerned. 
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5.0. CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE RESEARCH 

 

The potential of some underutilized species to become commodity crops should not 

be underestimated. Given adequate research and development (including marketing 

and commercialisation), economic returns is very likely for these species at national, 

regional or international level. The world has seen many once underutilized species 

now have become valuable. Hulled wheat (Triticum monococcum, T. dicoccum) 

being used in making biscuits and pasta, its cultivation in Italy has increased 

dramatically and at the same time raised interest in other countries, thanks to 

processing technologies and marketing strategies. The spicy vegetable rocket 

(Eruca sativa and Diplotaxis species) once only popular at local level across the 

whole Mediterranean has improve its level of use in Italy, thanks to research efforts 

on the improvement of agricultural practices and its commercialisation. Roselle 

(Hibiscus sabdariffa) known for centuries in Sub Sahara Africa has become a well- 

established beverage in Europe thanks to simple marketing strategies. Okra 

(Abelmoscus esculentus), a traditional African vegetable, is now accepted in most 

markets around the world. The seeds of carob tree (Ceratonia siliqua, a multipurpose 

species from the Mediterranean region) which contain high quality natural resins and 

gums are generating significant market demands for the pods of this tree and are 

contributing sensibly to the rediscovering of this valuable species (Padulosi and 

Frison, 1999). 

 

The underutilized fruit of engkala (Litsea garciae) in this study has shown good 

potential as a functional food. Being a fruit with high protein, carbohydrate, 

potassium, vitamin C and other minerals, its consumption could provide good 
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nutrition. The high total phenolic and flavonoid contents as well as antioxidant 

activities also could make it a good source of antioxidants. The current method of 

eating the fruit, which is by subjecting the fruit to steam or hot water was also found 

to be appropriate. The need of complex cooker or new preparation method seemed 

unnecessary. Comparison of the antioxidant capacity between engkala and avocado 

fruits had put engkala in a ranking above avocado, thus most probably putting it 

higher above other fruits which were ranked below avocado. 

 

This study also showed that heat is not necessarily the damaging factor of nutrients 

in food. This is especially evident in the edible part of the fruit, where the TPC, TFC 

and antioxidant activities of both engkala and avocado fruits were significantly higher 

in the SHSD samples compared to the FD ones. In engkala fruit, vitamin C content in 

the SHSD pulp and seed almost three-folds the content in the FD ones. The World's 

Healthiest Foods (whfoods.org, 2014) suggests that avocado fruit to be eaten raw to 

preserve the health benefits.  Other researchers have shown that freeze dried fruit 

can provide higher antioxidant activities compared to the fresh one, and heat treated 

fruit can have higher antioxidant activities compared the FD.  This study might 

change the perception on the way of eating avocado, where eaten in its raw form 

might not be the best way, as superheated-steam drying seemed favorable.  

 

The by-products of engkala and avocado fruits have shown good potential to be 

utilized as a source of natural antioxidant. In the future, by-products from fruit 

processing need to be reduced in order to move towards sustainable environment. 

The by-products of engkala and avocado, particularly the FD engkala seed and 
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avocado peel gave significantly high antioxidant capacity as shown this study. In the 

future, they could be developed as natural antioxidants or food additives. 

 

Drying is widely used to extend the shelf life of fruits. In this study, superheated-

steam drying was preferred in drying the edible part of the fruits of both engkala and 

avocado, while freeze drying was more favorable in drying the by-products.  The 

difference in the preferences of drying method could be due to the different 

compounds present in the different parts of the fruits. The treatment with high 

temperature of superheated-steam provided the fruit parts with high energy which 

could destroy the heat sensitive compounds, as observed in the seed part, or could 

be able of degrading or altering the bondings between or among the chemical 

compounds, as observed in the pulp part, thus making inter-conversion or 

recombination of polyphenols as well as increasing reagent-binding sites in the 

phenolic compounds possible.  

 

As an overall conclusion, both superheated-steam drying and freeze drying have 

their advantages in application of dried fruit production. Superheated-steam drying 

was preferred for production of dried pulp products, while freeze drying was 

preferred for production of dried fruit by-products. Drying of exotic fruits has not been 

researched as extensively as the common fruits. However, it is expected that as a 

result of globalization, exotic fruits native to certain developing regions will become 

known to the other parts of the world. This study was the first to give scientific data 

on the effect of steam treatment in engkala and also avocado fruit. It is hoped that 

the consumption of the underutilized fruit of engkala can be encouraged and its 

potential as antioxidant source and food for health be promoted. 
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Epilogue  
 

The knowledge obtained in this study apart from to contribute to the pool of 

knowledge in the scientific community is also aimed to serve the local community at 

which this underutilized fruit is grown. Creating a market for this engkala fruit in the 

local area where it is grown is not a problem since this fruit is always in demand by 

the locals when in season. It is in the neighbouring region that it is hoped awareness 

can be created on this underutilized fruit and the benefit it can offer, therefore 

creating a new market outside its locality. Once this is achieved, demand on the fruit 

will increase, and increase in demand will encourage local growers to increase 

production, furthermore can encourage the local government to start organizing 

proper cultivation of the crop. On top of that, this will attract more research and 

monetary funding. Local chefs can also play their part in further promoting the fruit in 

culinary applications. When chefs bring the knowledge back and apply it to their 

kitchens, restaurants or hotel operations, the visitors will also benefit from their 

experience with this underutilized fruit. In the end, the consumers will benefit from 

the knowledge on the healthy locally grown fruit, the growers will benefit from the 

increased revenue from sales, and the state will benefit from the growers increased 

revenue. Perhaps in the near future, engkala fruit can be a well-known fruit standing 

at par with avocado.  

 

The author is a local people of the region where this engkala fruit is grown and a 

consumer to this underutilized fruit.  
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